
C o m p u t a t i o n a l

G e o m e t r y
Theory and Applications

ELSEVIER Computational Geometry 7 (1997) 361-385

A comparison of sequential Delaunay triangulation algorithms
Peter Su a,l, Robert L. Scot Drysdale b,*,2

a Justsystem Pittsburgh Research Center, 4616 Henry Street, Pittsburgh, PA 15213, USA
b Department of Computer Science, 6211 SudikoffLaboratory, Dartmouth College, Hanover, NH 03755-3510, USA

Communicated by E. Welzl; submitted 10 April 1995; revised 1 April 1996

Abstract

This paper presents an experimental comparison of a number of different algorithms for computing the
Delaunay triangulation. The algorithms examined are: Dwyer's divide and conquer algorithm, Fortune's sweepline
algorithm, several versions of the incremental algorithm (including one by Ohya, Iri and Murota, a new bucketing-
based algorithm described in this paper, and Devillers's version of a Delaunay-tree based algorithm that appears
in LEDA), an algorithm that incrementally adds a correct Delaunay triangle adjacent to a current triangle in a
manner similar to gift wrapping algorithms for convex hulls, and Barber's convex hull based algorithm.

Most of the algorithms examined are designed for good performance on uniformly distributed sites. However,
we also test implementations of these algorithms on a number of non-uniform distributions. The experiments
go beyond measuring total running time, which tends to be machine-dependent. We also analyze the major
high-level primitives that algorithms use and do an experimental analysis of how often implementations of these
algorithms perform each operation. © 1997 Elsevier Science B.V.

Keywords: Voronoi diagram; Delaunay triangulation; Experimental analysis of algorithms; Practical algorithms

1. Introduction

Sequential algorithms for constructing the Delaunay triangulation come in five basic flavors: divide-
and-conquer [8,17], sweepline [11], incremental [7,15-17,20], growing a triangle at a time in a manner
similar to gift wrapping algorithms for convex hulls [9,19,25], and lifting the sites into three dimensions
and computing their convex hull [2]. Which approach is best in practice? This paper presents an
experimental comparison of a number of these algorithms. Many of these algorithms were designed
for good performance on uniformly distributed sites rather than good worst-case performance, but
implementations of these algorithms are also tested on a number of highly non-uniform distributions.

* Corresponding author. E-mail: scot.drysdale@dartmouth.edu.
1 E-mail: psu@jprc.com.
2 This study was supported in part by the funds of the National Science Foundation, DDM-9015851, and by a Fulbright

Foundation fellowship.

0925-7721/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.
PII S0925-7721 (96)00025-9

362 P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

In addition, we describe a new version of the incremental algorithm that is simple to understand
and implement, but is still competitive with the other, more sophisticated methods on a wide range
of problems. The algorithm uses a combination of dynamic bucketing and randomization to achieve
both simplicity and good performance.

The experiments in this paper go beyond measuring total run time, which is highly dependent on
the computer system. We also analyze the major high-level primitives that algorithms use and do an
experimental analysis of how often implementations of these algorithms perform each operation.

The rest of this section briefly describes the various algorithmic approaches. More detailed descrip-
tions of the algorithms, including pseudocode, can be found in Chapter 2 of the first author's Ph.D.
thesis [24].

1.1. Divide-and-conquer

Guibas and Stolfi [17] gave an O (n l o g n) Delaunay triangulation algorithm that is asymptotically
optimal in the worst case. The algorithm uses the quad-edge data structure and only two geometric
primitives, a CCW orientation test and an in-circle test. These primitives are defined in terms of 3
by 3 and 4 by 4 determinants, respectively. Fortune [12,13] shows how to compute these accurately
with finite precision.

Dwyer [8] showed that a simple modification of this algorithm runs in O(n log log n) expected
time on uniformly distributed sites. Dwyer's algorithm splits the set of sites into vertical strips with
v/-~-/log n sites per strip, constructs the DT of each strip by merging along horizontal lines, and then
merges the strips together along vertical lines. His experiments indicate that in practice this algorithm
runs in linear expected time. Another version of this algorithm, due to Katajainen and Koppinen [18],
merges square buckets together in a "quad-tree" order. They show that this algorithm runs in linear
expected time for uniformly distributed sites. In fact, their experiments show that the performance of
this algorithm is nearly identical to Dwyer's.

1.2. Sweepline algorithms

Fortune [11] invented another O(n log n) scheme for constructing the Delaunay triangulation using
a sweepline algorithm. The algorithm keeps track of two sets of state. The first is a list of edges called
the frontier of the diagram. These edges are a subset of the Delaunay diagram, and form a tour around
the outside of the incomplete triangulation. In addition, the algorithm uses a priority queue, called the
event queue to keep track of places where the sweep line should stop. This queue stores two types
of events called circle events and site events. Site events happen when the sweepline reaches a site,
and circle events happen when it reaches the top of a circle formed by three adjacent vertices on the
frontier. The algorithm sweeps a line up in the y direction, processing each event that it encounters.

In Fortune's implementation, the frontier is a simple linked list of half-edges, and point location
is performed using a bucketing scheme. The x-coordinate of a point to be located is bucketed to get
close to the correct frontier edge, and then the algorithm walks to the left or right until it reaches the
correct edge. This edge is placed in the bucket that the point landed in, so future points that are nearby
can be located quickly. This method works well as long as the query points and the edges are well
distributed in the buckets. A bucketing scheme is also used to represent the priority queue. Members

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385 363

of the queue are bucketed according to their priorities, so finding the minimum involves searching for
the first non-empty bucket and pulling out the minimum element.

1.3. Incremental algorithms

The third, and perhaps simplest class of algorithms for constructing the Delaunay triangulation
consists of incremental algorithms. These algorithms add sites to the diagram one by one and update
the diagram after each site is added. They have two basic steps. The first, L o c a t e , finds the triangle
containing the new site. (The algorithms are made simpler by assuming that the sites are enclosed
within large triangle.) The second, Update, updates the diagram.

All of the algorithms perform U p d a t e using an approach similar to that in Guibas and Stolfi [17],
flipping edges until all edges invalidated by the new site have been removed. Each edge is tested for
validity via an in-circle test. In the worst case we must do O(rfl) in-circle tests and edge flips, because
it is possible to construct a set of sites and insertion order where inserting the kth site into the diagram
causes O(k) updates. However, if the sites are inserted in a random order, Guibas, Knuth and Sharir
[16] show that the expected number of edge flips is linear no matter how they are distributed.

Therefore the bottleneck in the algorithm is the L o c a t e routine. Guibas and Stolfi start at a random
edge in the current diagram and walk across the diagram in the direction of the new site until the
correct triangle is found. The basic step is to perform a CCW orientation step against an edge of a
triangle to see if the site lies on the correct side of that edge. If not, the algorithm crosses to the other
triangle that shares that edge. If so, it steps to the next edge around the triangle. When the site is on
the correct side of all three edges in a triangle it has been located. This search is expected to perform
O(x/~) CCW orientation tests per L o c a t e .

Ohya, Iri and Murota [20] bucket the sites and process the buckets in the order of a breadth-first
traversal of a quad-tree. (They do not actually build such a tree, but simply insert sites in that order.)
They start a Guibas and Stolfi-like L o c a t e at an edge created by the previous insertion. The quad-
tree traversal order means that this edge is likely to be close to the correct triangle. They claim that
their algorithm runs in expected linear time on sites that are uniformly distributed, and they provide
experimental evidence for this fact.

Guibas, Knuth and Sharir propose a tree-based data structure where internal nodes are triangles that
have been deleted or subdivided at some point in the construction, and the current triangulation is
stored at the leaves. A step in the locate algorithm consists of going from a triangle containing the site
at one level to one of a constant number of triangles that might contain the site at the next level. It is
not hard to show that the total expected cost of L o c a t e will be O(n log n) time. Sharir and Yaniv
[23] prove a bound of about 12nHn + O(n). This structure is similar to the Delaunay tree described
by Boissonnat and Teillaud [5].

1.4. A faster incremental construction algorithm

We present a Locate variant that leads to an easily implemented incremental algorithm that seems
to perform better than those mentioned above when the input is uniformly distributed. We use a
simple bucketing algorithm similar to the one that Bentley, Weide and Yao used for finding the nearest
neighbor of a query point [4]. This leads to an O(n) time algorithm while maintaining the relative
simplicity of the incremental algorithm.

364 P. Su, R.LS. Drysdale / Computational Geometry 7 (1997) 361-385

The bucketing scheme places the sites into a uniform grid as it adds them to the diagram. To find
a near neighbor, the point location algorithm first finds the bucket that contains the query site and
searches in an outward spiral for a non-empty bucket. It then uses any edge incident on the site in this
bucket as a starting edge in the Guibas and Stolfi L o c a t e routine. If the spiral search fails to find a
site after a certain number of layers, the point location routine starts the Guibas and Stolfi L o c a t e
routine from an arbitrary edge in the current triangulation.

The bucketing scheme uses a dynamic table to deal with the fact that sites are processed in an
on-line fashion. The scheme does not bother to store all the sites that fall in a particular bucket, but
just stores the last site seen. This is because the bucket structure does not have to provide the insertion
algorithm with the true nearest neighbor of a query. It only has to find a site that is likely to be close to
the query. Therefore, it makes sense not to use the extra space on information that we do not need. Let
c > 0 be some small constant that we can choose later. The point location maintains the bucket table
so that on average between c and 4c sites fall into each bucket. It does this on-line by quadrupling
the size of the bucket grid and re-bucketing all sites whenever the average goes above 4c.

It is not hard to show that the expected cost of a Locate is O(1) and the total cost of maintaining
the buckets is O(n) if the floor function is assumed to be constant time. Thus, the total expected run
time of this algorithm is O(n) time when the sites are uniformly distributed in the unit square.

1.5. Gift wrapping algorithms

Another class of Delaunay triangulation algorithms constructs the Delaunay triangulation by starting
with a single Delaunay triangle and then incrementally discovering valid Delaunay triangles, one at
a time. Each new triangle is grown from an edge of a previously discovered triangle by finding the
site that joins with the endpoints of that edge to form a new triangle whose circumcircle is empty of
sites. Several algorithms in the literature, including ones due to Dwyer [9], Maus [19] and Tanemura
et al. [25], are based on this basic idea. They all differ in the details, and only Dwyer's algorithm has
been formally analyzed. Dwyer's analysis assumed that the input was uniformly distributed in the unit
d-ball, and extending this analysis to the unit cube appears to be non-trivial. However, in the plane
the difference is not great, and the experiments in the next section will show that the empirical run
time of the algorithm appears to be O(n).

The basic approach is to take an edge (a, b) of a triangle on the border of the part of the diagram
constructed so far and to choose a candidate site c for the third vertex of this triangle. Other sites
are tested to see if they fall within the circumcircle of triangle abc. If one does, it becomes the new
candidate site c. When a c is found such that the circumcircle of abc contains no other sites then abc is
added to the Delaunay triangulation. Note that sites lying far enough from the center of the circumcircle
of abc need not be explicitly tested, and "far enough" is just the radius of this circumcircle. Because
of this it can be useful to compute the center and radius of the current circumcircle. Given these it is
faster to perform the in-circle test by computing the distance from a site to this center and comparing it
to the radius than using the determinant method described above. (Actually, the square of the distance
is computed to save computing a square root.)

The trick is to examine sites in an order that allows the correct candidate can be found and verified
quickly, ideally after only a constant number of sites have been considered. Therefore the data structure
that is critical to the performance of this algorithm is the one that supports site searches. Dwyer's
algorithm [9] uses a relatively sophisticated algorithm to implement site searching. First, the sites are

P. Su, R.LS. Drysdale / Computational Geometry 7 (1997) 361-385 365

placed in a bucket grid covering the unit circle. The search begins with the bucket containing the
midpoint of (a, b), where (a, b) is an edge of a current triangle that does not yet have a triangle in
its other side. As each bucket is searched, its neighbors are placed into a priority queue that controls
the order in which buckets are examined. Buckets are ordered in the queue according to a measure
of their distance from the initial bucket. Buckets are only placed in the queue if they intersect the
half-plane to the right of (a, b) and if they intersect the unit disk from which the sites are drawn.
Dwyer's analysis shows that the total number of buckets that his algorithm will consider is O(n).

The site search algorithm in our gift wrapping algorithm is a simple variant on "spiral search" [4].
It differs from Dwyer's in several ways. The main difference is the lack of a priority queue to control
the action of the search routine. Our spiral search approximates this order, but it is not exactly the
same. Dwyer's algorithm is also careful not to inspect any buckets that are either to the left of (a, b)
or outside of the unit circle. Our algorithm is somewhat sloppier about looking at extra buckets. The
advantages of our scheme are that it is well tuned to the case when sites are distributed in the unit
square and it avoids the extra overhead of managing a priority queue, especially avoiding duplicate
insertions.

1.6. Convex hull based algorithms

Brown [6] was the first to establish a connection between Voronoi diagrams in dimension d and
convex hulls in dimension d + 1. Edelsbrunner and Seidel [10] later found a correspondence between
Delaunay triangles of a set of sites in dimension 2 and downward-facing faces of the convex hull of
those sites lifted onto a paraboloid of rotation in dimension 3. If each site (xi, yi) is mapped to the
point (xi, y~, x 2 + y2), the convex hull of these lifted points is computed, and the the upward-facing
convex hull faces are discarded, what is left is the Delaunay triangulation of the original set of sites.
(This correspondence is true for arbitrary dimension d.)

Guibas and Stolfi [17] note that their divide and conquer algorithm for computing the Delaunay
triangulation can be viewed as a variant of Preparata and Hong's algorithm for computing three
dimensional convex hulls [21]. Others have also used this approach. Recently Barber [2] has devel-
oped a Delaunay triangulation algorithm based on a convex hull algorithm that he calls Quickhull.
He combines the 2-dimensional divide-and-conquer Quickhull algorithm with the general dimension
Beneath-beyond algorithm to obtain an algorithm that works in any dimension and is provably robust.

2. Empirical results

In order to evaluate the effectiveness of the algorithms described above, we studied C imple-
mentations of each algorithm. Rex Dwyer provided code for his divide and conquer algorithm, and
Steve Fortune provided code for his sweepline algorithm. We implemented the incremental algo-
rithms and the gift wrap algorithm, Olivier Devillers provided a version of his Delaunay tree-based
code, and another version of his code was available in the programming package LEDA devel-
oped at the Max-Plank-Institut fiir Informatik in Saarbrticken. Because the LEDA version could have
more overhead we tested both. The LEDA code is available at f t p . m p i - s b . rapg. d e . (We have
been told that there are plans to replace this algorithm in the LEDA code sometime in the future.)
For the convex hull-based algorithm we used Brad Barber's code, which is available via Internet

366 P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

Table 1
List of the algorithms examined

N a m e Description

Dwyer

Fortune

Inc

Bucketlnc

Qtreelnc

Giftwrapping

Qhull

Dtree

LEDA

Dwyer's divide and conquer algorithm.

Fortune's sweepline algorithm.

Guibas and Stolfi's naive incremental algorithm.

The bucketed incremental algorithm presented in this paper.

Ohya, Iri and Murota's incremental using quad-tree insertion order.

The gift wrapping algorithm described in this paper.

Barber's algorithm that uses the Quickhull convex hull algorithm.

Devillers's implementation of Delaunay tree code.

The version of Delaunay tree code implemented in LEDA.

at ftp : //geom. umn. edu/pub/software/qhull, tar. Z. None of the implementations are

tuned in any machine dependent way, and all were compiled using the GNU C or C++ compiler and
timed using the standard UNIX tm timers. (The Delaunay tree and LEDA algorithms are in C++.) See
Table 1 for a list of the algorithms considered with short names that will be used to refer to them in
the rest of this paper.

Some notes on implementations are in order. First, all numerical primitives use floating point com-
putations. Using integer or exact arithmetic could greatly change the relative run times. Beyond using
Fortune's stable in-circle test we did little to handle degeneracies and numerical instabilities.

We tried to share primitives and data structures when this was possible. Dwyer was modified to
use Fortune's stable in-circle test, which is somewhat more expensive than the standard test. All of
the incremental algorithms use this same stable in-circle test. All incremental algorithms also use a
version of the quad-edge data structure like the one that Dwyer implemented for his divide-and-conquer
algorithm. This array-based structure proved to be substantially faster than a pointer-based structure
that we used earlier. Fortune was not modified, but does not use either in-circle tests or the quad-edge
data structure. Giftwrapping does not use the quad-edge data structure. As was mentioned above it
uses an in-circle test using the radius of the circumcircle rather than computing a determinant. All of
these algorithms use the same CCW orientation test.

Qhull, Dtree and LEDA were added after the initial series of experiments. The run times of the
unmodified programs were not fast enough to make re-writing them to share data structures and
primitives worth the effort. These run times will be discussed later.

The performance data presented in this section was gathered by instrumenting the programs to
count certain abstract costs. A good understanding of each algorithm, and profiling information from
test runs determined what was important to monitor. Each algorithm was tested for point set sizes of
between 1,024 and 131,072 sites. Ten trials with sites uniformly distributed in the unit square were run
for each size, and the graphs either show the median of all the sample runs or a "box plot" summary
of all ten samples at each size. In the box plots, a dot indicates the median value of the trials and
vertical lines connect the 25th to the minimum and the 75th percentile to the maximum.

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385 367

2.1. Performance of the incremental algorithms and Dwyer

The cost of an incremental algorithm is the sum of the cost of point location plus the cost of updating
the diagram once the correct triangle is found. The update portion is dominated by the in-circle test,
with the rest of the time going to a CCW orientation test, quad-edge data structure manipulation and
loop maintenance. The loop structure is such that the amount of other work is directly proportional to
the number of in-circle tests, so by counting in-circle tests we can get a number that lets us compare
the amount of update work performed by the various algorithms. (Because of shortcut evaluation it
is possible for the CCW evaluation to be done without the in-circle test being performed, but this
happens very rarely. In our tests this happened a bit less than 0.3% of the time for 1024 sites, but had
fallen off to 0.003% of the time for 131,072 sites.)

For all of the incremental algorithms except Dtree the main cost of point location is the walk across
the diagram once an edge has been selected. A CCW orientation step is performed each time through
the loop that performs this walk, and the number of calls to quad-edge manipulation routines and
other overhead in the walk across the diagram is proportional to the number of CCW orientation tests.
Therefore we use the number of CCW orientation calls to stand in for the work done in this loop. (We
count these separately from the CCW orientation tests done in the update portion.)

Finally, Dwyer also is based on the same two geometric primitives. Each quad-edge operation in
the merge loop can be charged to a CCW orientation test or to an in-circle test, so these numbers give
a good way to quantify the work in Dwyer as well. The specific additional operations associated to
one of these primitives in an incremental algorithm is different than in Dwyer, but because profiling
shows that the in-circle routine accounts for more time than any other routine (about half the time for
both Dwyer and incremental algorithms running on the Sparcstation 2 described below) and the CCW
orientation test is a significant part of what remains, looking at these numbers seems reasonable. We
also note that this implementation of Dwyer uses Quicksort to sort the points so is asymptotically
O(n log n), but that for the number of sites that we considered sorting was a very small part of the
overall work.

We first compare the point location strategies for Inc, Bucketlnc and Qtreelnc. While Inc spends
almost all of its time doing point location, the point location routines in Bucketlnc and Qtreelnc
effectively remove this bottleneck.

Fig. 1 compares the performance of the point location for Inc and Bucketlnc on uniformly distributed
sites. The plots show that Inc uses an average of O(v/-~) tests per point location step. Simple regression
analysis indicates that the number of tests per site grows as 0.86n °'49. Therefore, we have plotted the
curve 0.86v/n along with the data. The curve is a close fit to the experimental data.

The number of tests needed for point location in Bucketlnc depends on the average density of
the sites in the bucket grid. If the density of sites in buckets is too high, then the point location
routine will waste time examining useless edges. On the other hand, if it is too low the algorithm
will waste time examining empty buckets and will use more space for its buckets. Fig. l(d) shows
the dependence of the density on the cost of point location. (Here we just added together the numbers
of CCW tests, bucket insertions, and spiral search bucket examinations per site. The three are not
equivalent-time operations, but because the vast majority of these tests are CCW tests this gives a
first approximation to the total cost.) The graph shows the average cost of point location over ten
trials with n = 8192 and c ranging from 0.25 to 8. Based on this data and the actual run times,
we used c = 2 for the uniform distribution timing runs. Although the graph shows a large variation

368

28

27

CCW 2 6
Tests

Per Site 2 5

2 4

2 3

1.5

"Steps" 1
Per Site

0.5

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

(a) Without Buckets (b) With Buckets

[:

I I I ,

i :
I

I I I I I I I I I

2 s 29 2 Io 211 212 253 254 255 256

Number of Sites

(c) Cost of Bucketing

I I I I I I

210 211 212 213 214 215 216 217

Number of Sites

(d) Site Location vs.
Bucket Density

Bucketing Steps

4' 4" 4- + 4- + 4-

Spiral Search

I I I | | I I I

210 211 212 213 214 215 216 217

0

i ,
I I

l 2
I I I I I I

3 4 5 6 7 8
Bucket density

Fig. 1. Comparison of point location costs for Inc and BucketInc.

10.8

10.6

10.4

10.2

10

9.8

9.6

19

18

17

16

15

14

13

CCW
Tests

Per Site

Total
Comps
Per Site

in the number of tests needed per site, the actual effect on the run time of the algorithm was less
than 10%.

Adding the point location heuristic improves the performance of BucketInc substantially. The number
of CCW orientation tests performed per site appears to be bounded by a constant near 10.5. The
additional costs involved in spiral search and bucketing are insignificant. The algorithm almost always
finds a site in the first bucket in the spiral search, and the average number of times that a site
gets bucketed is 1.33 for even powers of two and 1.66 for odd powers. These last two operations
are substantially faster than the CCW orientation test, so they have a very small effect on the run
time.

We note that the average number of times a point gets put into a bucket can range between 1.33
and 2.33, with the exact value a function of n and c. The best case is just before a re-bucketing is
scheduled to occur. Then every point has been bucketed once, 1/4 of them have been bucketed a

12.5

CCW Tests
Per 12
Site

11.5

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

Site Location Edge Flipping

I I
!

I I I

T

¢

I I I I I I

210 211 2t2 213 214 21s 216 217

Number of Sites

I I I I I I I I

21o 211 212 213 214 21s 216 217

Number of Sites

Fig. 2. Performance of Qtreelnc.

9.8

9.6

9.4

9.2

9

8.8

8.6

In-circle Tests
Per
Site

369

second time, 1/16 a third time, etc. This sum adds up to 1.33. Adding one more point re-buckets every
point already bucketed and buckets the last one, raising the average by the one additional time that
(almost) every point has been re-bucketed.

The results in Fig. 2 show that Qtreelnc's point location performs somewhat worse than Bucketlnc's.
Qtreelnc performs about 20% more CCW orientation tests than Bucketlnc.

For both Bucketlnc and Qtreelnc the cost of point location fluctuates depending on whether log 2 n
is even or odd. In Bucketlnc this is due to the fact that the algorithm re-buckets the sites at each power
of four. Because of this, at each power of four the average bucket density drops by a factor of 4. The
implicit quad-tree structure in Qtreelnc gains another level at each power of 4.

We now consider the update operation. Since Inc and Bucketlnc insert the sites in random order, the
analysis of Guibas, Knuth and Sharir [16] shows that the total number of in-circle tests is asymptotically
O(n). Sharir and Yaniv [23] tightened this bound to about 9n. Fig. 3 shows that this analysis is
remarkably accurate. Fig. 2 shows that the quad-tree insertion order in Qtreelnc actually leads to 5 to
10% more in-circle tests than the random order in Bucketlnc and Inc.

Which of these incremental algorithms should run fastest? Inc's O(x/~) point location time make
it impractical for large sets of sites. Bucketlnc does fewer CCW orientation tests and fewer in-circle
tests than Qtreelnc. The extra work that Bucketlnc does re-bucketing sites and examining buckets
during spiral search is much less important than the reduced number of in-circle and CCW orientation
tests. Therefore we can conclude that for the uniform case Bucketlnc should perform slightly better
than Qtreelnc and should be the fastest of this group.

Both the Dtree and the LEDA versions of the incremental algorithm were many times slower than
Bucketlnc. (These results will be discussed later in this paper.) The update phase in these algorithms
is identical to the update in Inc and the Bucketlnc, so we know its performance. The operations in
maintaining the Delaunay tree are different enough from the other insertion algorithms that analyzing
them in detail did not seem worth the effort, given the poor runtime performance.

We now consider Dwyer. Also shown in Fig. 3 is the number of in-circle tests performed by Dwyer.
The plot shows that Dwyer performs about 25% fewer in-circle tests than Bucketlnc. Fig. 4 shows that

370 P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

9 ~ r f ~ "* * '
T BucketInc

8 . 5 -

8-

In-circle Tests
Per Site 7.5 -

7 -

6.5-

7.14 . ., ;

* Dwyer
I i
T

I I 1 I I I I

21o 211 212 213 214 2]5 216

Number o f Sites

Fig. 3. In-circle tests per site for Bucketlnc and Dwyer.

I

217

CCW Tests Used by Dwyer

CCW
Tests

Per Site

17.5

17

16.5

16

15.5

15

14.5

0

I I I I I I I I

210 211 212 213 214 215 216 217

Number of Points

Fig. 4. CCW orientation tests per site for Dwyer.

D w y e r also does a few less C C W or ienta t ion tests than Bucket Inc . (Dwyer does about 16.5 tests per

site, whi le Bucke t lnc does a bi t more than 10 in the locate por t ion and 9 in the update port ion.) There

are other overhead costs that we are not cons ider ing , bu t as long as they are rough ly comparab le or a

fairly smal l f ract ion of the total t ime D w y e r should run faster.

P. Su, R,L.S. Drysdale / Computational Geometry 7 (1997) 361-385 371

2.2. Performance of Giftwrapping

The determining factor in the run time of Giftwrapping is the cost of S i t e - s e a r c h . This can be
factored into two parts. The first is the number of times that a site is tested against a circumcircle.
The second is the number of buckets examined. By examined we mean that a bucket is at least tested
to see if the algorithm should search its contents for a new site.

Fig. 5 summarizes the behavior of these parameters in our tests. Figs. 5(a) and 5(b) show the
performance of the algorithm for sites chosen from the uniform distribution in the unit square, while
5(c) and 5(d) show the performance of the algorithm for sites chosen from the uniform distribution in
the unit circle. The reason for looking at both distributions in detail is that the behavior of Giftwrapping
is heavily influenced by the nature of the convex hull of the input. In the square distribution, the
expected number of convex hull edges is O(log n) [22]. The graph shows that the number of points

Points
P e r Site

19.8

19.6

19.4

19.2

19

18.8

18.6

18.4

18.2

(a) Points Tested

I'i ,)i
i

i i i i i i i

210 211 212 213 214 215 216 217

Number of Sites

(c) Points Tested: Unit Circle

23.5

23

B o x e s _ _ .

P e r Site 2z.a

22

21.5

(b) Boxes Examined

, I

I
i ! I I

!
I

i i i i i i i

21o 2]] 212 213 214 215 216 217

Number of Sites

(d) Boxes Examined: Unit Circle

Points
Per Site

22.5 -

22-

21.5 -

21

20.5

I
I T

T

I
i i i

I)1 I
I T) .

21o 211 212 213 214 215 216 217

Number of Sites

B o x e s

Per Site

45-

40-

35-

30-

25-

Fig. 5. Performance of Giftwrapping.

I
, i
T

I

I:T
I

I
I T i

i i i i i i I

2]o 211 212 213 214 215 216 217

Number of Sites

372 P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

tested per site stays constant over our test range, while the number of buckets examined actually
decreases. This reflects the fact that the number of edges on or near the convex hull of such point sets
is relatively small, and that the algorithm only examines a large number of useless buckets on site
searches near the convex hull.

However, it is apparent that this is not the case when the sites are distributed in the unit circle, where
the expected size of the convex hull is O(n 1/3) [22]. Here, there are a larger number of edges on or
near the convex hull, and this is reflected by the fact that the number of buckets that the algorithm
examines increases dramatically when compared to the earlier case. This sensitivity to the distribution
of the input is an important feature of the algorithm. If the algorithm is to be used for a variety of
input distributions a more adaptive data structure is needed to support the S i t e - s e a r c h routine.

Pre-computing the convex hull of the sites and searching from hull edges inward may help to
minimize the effect of this problem. But the bucket-based data structure will still be sensitive to
clustering of the sites. The best way to fix these problems may be to replace the buckets with a
nearest-neighbor search structure that is less sensitive to the distribution of sites, so that it can perform
non-local searches more efficiently. Bentley's adaptive k-d tree [3] is a good example of such a data
structure.

2.3. Performance of Fortune

The run time of Fortune is proportional to the cost of searching and updating the data structures
representing the event queue and the state of the sweepline. Fortune's implementation uses bucketing
for this purpose. We would expect that these data structures would perform well on uniform inputs.
In fact, for small input sets the algorithm seems to run in linear time.

Fig. 6 shows the performance of the sweepline and priority queue data structures in Fortune's
implementation. With sites that are uniformly distributed in the x direction, the bucket structure
representing the frontier performs exactly as we would expect. Fig. 6(a) indicates that the search

(a) Sweepline Maintenance (b) Priority Queue Maintenance

Tests
Per
Site

12
11.8
11.6
11.4
11.2

11
10.8
10.6
10.4
10.2

I
I I

• 1 r T

l I I I

21o 211 212 213 214 215 216 217

Number of Sites

= . .25 x / ~ ~

I I l I l I I I

21o 211 212 213 214 215 216 217

Number of Sites

2 7

2 6

Comps
2 5 Per

Site

2 4

Fig. 6. Cost of Fortune. The two main factors determining the performance of the algorithm are the work needed to maintain
the heap and sweepline data structures.

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385 373

procedure performs around 11.5 tests per site, on average. (Here we are testing whether the new site
should be connected to a given site on the frontier by a Delaunay edge. This test can be done in
constant time.)

The main bottleneck in Fortune ends up being the maintenance of the priority queue. The priority
queue is represented using a uniform array of buckets in the y direction. Events are bucketed according
to their y-coordinate. In addition, it is important to realize that only circle events are explicitly placed
in the event queue. The O(n) site events are stored implicitly by initially sorting the sites.

The problem here is that while the sites are uniformly distributed, the resulting priorities are not.
Circle events tend to cluster close to the current position of the sweepline. This clustering increases
the cost of inserting or deleting events into Fortune's bucket structure. Each operation requires a
linear time search through the list of events in a particular bucket. With large buckets, this becomes
expensive. Regression analysis shows that the number of comparisons per site grows as 9.95 +0.25x/~
(see Fig. 6(b)).

Watching animations of large runs of Fortune provides a heuristic explanation for this behavior.
Since the sites are uniformly distributed, new site events tend to occur close to the frontier. If the
new site causes a circle event to be added to the priority queue, chances are that the circle will not
be large. Thus the y-coordinate of the top of the circle, which is the priority of the new event, will
be close to the current position of the sweepline. If the circle is large, so the priority of the resulting
event is far above the sweepline, it is likely that the event is invalid since large circles are likely to
contain sites. Eventually some site or circle event will invalidate the large circle and replace it with a
smaller one that lies closer to the sweepline. The result is the clustering that is clearly observable in
the animations (Fig. 7).

Given the behavior of the bucket data structure, it is natural to speculate as to whether a different
data structure would provide better performance for larger problems. To investigate this possibility,
we re-implemented Fortune using an array-based heap to represent the priority queue. This guarantees
that each operation on the priority queue costs O(log n) time in the worst case, and using the array
representation minimizes additional overhead.

P T .
I

..' ".. .W..."-... :....." "i .'; " ".'-: ". -; .'. I ..-L:.--.....' , " ."'. ". : ..

.i" ;. i ?. :! I.. " '"" • . . , . ' •

" i :"" • - I "

,+ -2 ;7. ,;: + . ' '~.: .:i.....

L

. . I

I
I
I
I
I
I

I ' I
I I
I I

I I
I I
I I

. L _1

Fig. 7. Circle events cluster close to the sweepline in Fortune. The first frame is early on one run in the algorithm, the second
frame is later in the same run. Note how the "cloud" of circle events (+ signs) moves with the sweepline.

374 P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

(a) Cost of Heap (b) Comparison of Heap to Buckets

Comps
Per
Site

40

35

30

25

20

15

10

Extract Min

|

" " ;i.:
: 0

" i: . : • : ' l : ;
• " ; 8 • : oOO o, o
• ,• |

• • ,o••

• I
)o •

Insert
I ! I f I I I I I I I I I I I I

2n0 2 n 212 213 214 2x5 216 217 210 2In 212 213 214 215 216 217

Number of Sites Number of Sites

1.15

1.1
1.05

1

0.95
0.9
0.85
0.8
0.75

Time w. Buckets /
Time w. Heap

Fig. 8. Cost of Fortune using a heap. Part (a) shows a breakdown of the cost of using a heap to represent the event queue.
Part (b) plots the ratio of the run time of the old algorithm to the new.

To test the effectiveness of the new implementation, we performed a more extensive experiment.
Each algorithm was tested on uniform inputs with sizes ranging from 1,024 to 131,072 sites. Fig. 8(a)
shows the performance of the heap data structure in the experiment. The line 2 lg n + 11 shows that
the number of comparisons used to maintain the heap is growing logarithmically in n, rather than as
x/~. The plot also shows a more detailed profile of these comparisons. This profile indicates that most
of the work is performed by the extract-min routine. By comparison, insert and delete are
relatively cheap.

In actual use, the heap does not significantly improve the run time of the algorithm for data sets of
the sizes that we considered. Fig. 8(b) compares the run times of the two algorithms over the same
range of inputs. In this graph, each data point is the ratio of the run time of the bucketing algorithm
to the run time of the heap-based algorithm. The graph shows five trials for input sizes of between
2 l° and 217 sites at evenly spaced intervals.

The timings were taken using the machine and configuration described in Section 2.5. The plot
shows that bucketing tends to be faster until 216 sites, when the heap version starts to dominate.
At 217 sites, the heap version is roughly 10% better. The main reason that the improvement is not
greater is that maintaining the heap seems to incur more data movement overhead than maintaining
the bucket structure. The bucket structure appears to use the workstafion's cache more effectively, and
stays competitive, even though it is doing much more "work".

An interesting feature of the graph in Fig. 8(a) is the fact that the number of comparisons periodically
jumps to a new level, stays relatively constant, then jumps again. This is due to the fact that the heap
is represented using an implicit binary tree. Thus, the number of comparisons jumps periodically when
the size of the heap is near powers of two. On the graph, these jumps occur at powers of four, rather
than two, because the average size of the heap over one run of Fortune is O(v/n) rather than O(n).
We can prove that this is the case for uniformly distributed sites using a lemma by Katajainen and
Koppenin [18].

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

Dwyer Bucketlnc

375

Time
Per
Site

270

250

230

210

190

I . l . ' i
T I ,

iT
I I I I I I I I

210 211 21z 213 214 2Is 216 217

Number of Sites

270

250
Time
Per 230
Site

210

190

I :

I ' T ?
T

I I I I I I 1

21o 211 212 213 214 215 216 217

Number of Sites

Fortune Qtreelnc

Timc
Per
Site

270

250

230

210

190

,I
i '

T

I I I I I I I

210 211 212 213 214 21S 216 217

Number of Sites

310

290

270
Time
Per 250
Site 230

210

190

I .I I 1 *, i "
[T '

I I I I I I I I

21o 211 2t2 213 2~4 215 216 217

Number of Sites

Giftwrapping

395
390

Time 385
Per 380
Site 375

370
365

f i
T

I

I I I I l I I

210 211 212 213 214 215 216 217

Number of Sites

Fig. 9. Comparison of the expected run times of different algorithms on sites chosen at random from a uniform distribution
in the unit square. Times are in microseconds.

2.4. Performance of Qhull

Barbe r ' s Qhul l a lgor i thm turned out to be m u c h s lower than the a lgor i thms ana lyzed above. It
also uses different pr imit ives f r o m the a lgor i thms descr ibed above, so it was no t c lear h o w counts o f

376 P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

primitives would aid comparisons between algorithms. We therefore did not analyze it in detail. It will
be discussed further in the next subsection.

2.5. The bottom line

The point of all of this is, of course, to develop an algorithm that has the fastest overall run time. In
the following benchmarks, each algorithm was run on ten sets of sites generated at random from the
uniform distribution in the unit square. Run times were measured on a Sparcstation 2 with a 40 Mhz
clock speed using the g e t r u s a g e () mechanism in UNIX. The graphs show user time, not real time,
and all of the inputs sets fit in main memory, and were generated in main memory so I/O and paging
would not affect the results. Finally, the graph for Fortune shows the version using a heap rather than
buckets, since this algorithm was better on the larger problems, and not much worse on smaller ones.

Fig. 9 shows the results of the timing experiments. The graph shows that Dwyer gives the best
performance overall. BucketInc is a bit faster than Fortune, particularly for larger problems where
the O(log n) growth of the heap data structure overhead is more of a factor. Qtreelnc is somewhat
slower than Bucketlnc. Giftwrapping is not competitive with any of the other four. These results are
consistent with the analysis of primitives in the previous section.

The run times of the three other algorithms (Dtree, LEDA and Qhull) are shown in Fig. 10. These
algorithms proved to be several times slower than the other algorithms that we considered. Part of
this is undoubtedly due to implementation details. (For example, they frequently use malloc where the
faster algorithms tend to allocate large arrays.)

The amount of overhead needed to maintain the Delaunay tree is much higher than that needed for
the bucketing scheme so it seems unlikely to be competitive with the faster incremental algorithms no
matter how it is implemented. (The comparison we made actually favors Dtree and LEDA somewhat,
because Dtree and LEDA use the standard in-circle test that they came with, while the incremental
algorithms and Dwyer use Fortune's stable in-circle test.)

Runtimes for QHulI, Dtree and LEDA

/~soes

Per
Site

1100 -

1000-

9 0 0 -

8 0 0 -

7 0 0 -

6 0 0 -

5 0 0 -

qhull
qhull

qhull qhull
qhull ieda

leda dtree

leda dtree

dtree

leda
dtree

leda

dtree

i i i i
21o 211 212 213 214

Number of Sites

Fig. 10. Comparison of the expected run times of Dtree, LEDA and Qhull on sites chosen at random from a uniform
distribution in the unit square.

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385 377

Qhull is actually a program to compute convex hulls in arbitrary dimensions in a provably stable
way. It therefore has more overhead than would be needed if its only task were to compute planar
Delaunay triangulations, and if it were less concerned about stability.

While substantially different implementations could speed up these programs, it seems unlikely that
they would be competitive. In their current form none of these programs can be recommended for its
speed.

3. Non-uniform point sets

Each of the faster algorithms that we have studied uses a uniform distribution of sites to its advantage
in a slightly different way. Bucketlnc uses the fact that nearest neighbor search is fast on uniformly
distributed sites to speed up point location. Qtreelnc buckets points to get a good insertion order.
Dwyer uses the fact that only sites near the merge boundary tend to be affected by a merge step.
Fortune uses bucketing to search the sweepline. Giftwrapping depends on a uniform bucket grid to
support site searching.

In order to see how each algorithm adapts to its input, we will study further tests using inputs from
very non-uniform distributions. In Table 2 the notation N (# , s) refers to the normal distribution with
mean # and standard deviation s, and U(a, b) is the uniform distribution over the interval [a, b].

The graphs show each algorithm running on five different inputs of 10 K sites from each distribution.
The uniform distribution serves as a benchmark.

Fig. 11 shows the effect of these site distributions on Bucketlnc and Qtreelnc. For these runs we
changed the value of the average bucket density used by Bucketlnc (see Section 2.1). Before we used
a value c = 2, but for these tests we used a value c -- 0.25. This slows down the uniform case
somewhat (Bucketlnc's run time goes from about 240 ~tsecs per site to a bit over 250 ~tsecs) but it
gives better times for the non-uniform distributions.

As expected, site distributions with heavy clustering (such as corn and norm) stress the point location
data structures in each algorithm, increasing the number of CCW orientation tests by up to a factor

Table 2
Non-uniform distributions

Name Description

unif uniform in the unit square

bal l uniform in a unit circle

corn U(0, 0.01) at each corner of the unit square

diam t = U(0, 1), x = t + U(0, 0.01) - 0.005, y = t + U(0, 0.01) - 0.005

cross n/2 sites at (U(0, 1),0.5 + U(-0.005, 0.005));

n/2 at (0.5 + U(-0.005, 0.005), V(0, 1))

norm both dimensions chosen from N(0, 0.01)

clus N(0, 0.01) at 10 points in the unit square

arc in a circular arc of width 0.01

378 P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

1 1 0 -

1 0 0

90
80

CCW Tests 70
Per 60
Site 50

40
30
20
10

Site Location Edge Flipping

X Qtree x

oe Buckets

÷

It
x

+ ÷ +
~ ÷

I I I I I I I I

unif ball corn diamemssnorm clus arc

Qtree

Buckets

I I I I I I I I

unif ball corn diam cross norm clus arc

Fig. 11. Primitive tests for Bucketlnc and Qtreelnc on non-uniform inputs, n is 10 K.

Cost of Spiral Search for Non-Uniform Cases

10

9.5In-circle
T e s t s

Per
- 9 Site

8.5

Steps
Per
Site

2.5

2

1.5

1

0.5

+ ~ ÷ .I.

$
,b

u u u u i u u I

unif ball corn diam cross norm clus arc

Fig. 12. Buckets examined for Bucketlnc on non-uniform inputs, n is 10 K.

of ten. Qtreelnc degraded more than Bucketlnc. Fig. 12 shows that the average number of buckets
examined during the spiral search in Bucketlnc remains small. It is larger for the uniform distributions
than it was in the uniform distribution tests in the previous section because of the change in c, but this is
a case where the more heavily clustered distributions actually do better than the uniform distributions.
Some isolated sites may have to look at a lot of buckets, but clusters mean that most sites are close
to a lot of other sites. As noted earlier, the cost of bucketing and re-bucketing points depends only on
c and n, and averages between 1.33 and 2.33 bucket insertions per point.

Fig. 11 also shows that the distribution of the input has little effect on the number of in-circle tests
that Bucketlnc performs, as was predicted by the theoretical analysis. Qtreelnc actually uses fewer
in-circle tests on clustered distributions than on uniform ones. This is probably because sites within
a given bucket are inserted in random order, so the clustering of sites in the same bucket makes the
site insertion order more random. Because the CCW orientation tests in the point location routines are
substantially faster than in-circle tests, we will later see that the total run time of the worst cases is

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

(a) Fortune: Buckets (b) Fortune: Heap

379

250 -

200-
Comps

Per
150 -

Site
(buckets) 100 -

50-

I,
÷

÷ ÷ ÷ ÷

÷
4- 4- :~ 4-

4-
I I I I I I I I I I I I I 1 I I

unif ball corn diana cross norm clus are unif ball corn diam cross norm elus arc

Fig. 13. Fortune's priority queue on non-uniform inputs, n is 10 K.

45

40 Comps
Per

35 Site

30 (~ap)

25

In-circle tests in Dwyer

14

13

12

In-circle Testsl 1
Per
Site 10

9

8

7 4, ,I. 4,

I I I I I I I I

unif ball co rn diam cross norm clus arc

Fig. 14. Dwyer in-circle tests on non-uniform inputs, n is 10K.

not m u c h more than a fac tor o f two t imes the best case even though the cos t for the locate por t ion

goes up by a fac tor o f 10.

Fig. 13 summar izes the pe r fo rmance o f For tune in this experiment . The first g raph shows that the

bucke t -based implementa t ion o f the event queue is very sensit ive to site distr ibutions that cause the

dis tr ibut ion o f priorities to b e c o m e ex t remely non-uni form. In the cross distribution, this happens

near the line y = 0.5. At this point, all o f the circle events associa ted with n / 2 sites near the line

cluster in the few bucke ts near this posit ion. The corn distr ibution causes a similar problem, but to
a lesser degree. Here, all o f the events associa ted with the O (x / ~) circles in the event queue tend to

stay c lus tered in one bucke t at y = 0 and another at y --- 1. In bo th o f these cases, the non -un i fo rm

distr ibution o f sites in the x-d i rec t ion also s lows d o w n site searches on the frontier, but this effect is

less p r o n o u n c e d than the bad behav io r o f the event queue.

380

CCW Tests
Per
Site

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

CCW Tests in Dwyer

25-

24-

23-

22-

21-

20-

19-

18-

17-

16-
÷ ÷ +

÷

I I ; I I I I I

unif ball corn diam cross norm clus arc

Fig. 15. Dwyer CCW tests on non-uniform inputs, n is 10K.

Points
Per
Site

900-

800-

700-

600-
500-
400-
300-
200-

100-

Points Tested Boxes Examined

t

,

÷

i

i ÷

I I I I I I I I I I I I I I I

unif ball corn diam cross norm elus arc unif ball corn diana cross norm clus are

Fig. 16. Giftwrapping is very sensitive to bad inputs.

140

120

100

80

60

40

20

Boxes
Per
Site

The second graph shows that the performance of the heap is much less erratic than the buckets.
The small jumps that do appear are due to the fact that the event queue does become larger or smaller
than its expected size on some distributions. However, since the cost of the heap is logarithmic in the
size of the queue, this does not cause a large degradation in performance.

Figs. 14 and 15 show the performance of Dwyer in the experiment. Dwyer is slowed down by
distributions that cause the algorithm to create many invalid edges in the subproblems, and then delete
them later in the merge steps. This effect is particularly pronounced with the cross distribution because
the group of sites near the line x -- 0.5 is very tall and skinny, creating a worst case for the merge
routine.

It appears that there are about 9.5 more CCW tests than in-circle tests for every distribution except
cross, where there are about 10 more. Each time through the merge loop the algorithm does two CCW
orientation tests, but can do between 0 and an arbitrarily large number of in-circle tests. Therefore

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385 381

Run
Time
(sees)

2 0 -

15

10

5

norm
!

, l e I "

• " " I I I

5 ~ 1000 15~
Number of SiMs

I

2000

Fig. 17. Giftwrapping for the norm and com distributions.

Runtime Comparison

~sl~:s
Per
Site

6 0 0 .

i

550 '

500

450-

400-

350 -

300-

250 -

200-

quad

inc

forb

quad

inc

forb
forh quad

quad ~ quad

inc
~1[~ ~ /onr~ inc inc
,orb

dw dw
dw dw

i ~ i i 1 i i i

unif ball corn diana cross norm clus arc

Fig. 18. Run times on non-uniform inputs for Dwyer (dw), Fortune with buckets (forb) and heap (forh), BucketInc (inc), and
Qtree (quad). n is l0 K.

there is no reason to assume that the in-circle tests would be a fixed fraction of the CCW tests. We
do not know why the difference between them should remain almost constant.

Fig. 16 shows how the bad inputs affect Giftwrapping. These figures leave out the two worst inputs
for this algorithm: corn and norm, because the algorithm would have taken several hours to finish the
benchmark. T h e ~)(n 2) behavior of the algorithm on these inputs is shown in Fig. 17.

Giftwrapping is easily the most sensitive to the distribution of its input. This is not surprising, since it
depends on essentially the same routine that BucketInc uses for point location, and we have already seen
that the point location subroutine performed badly on bad inputs. This did not handicap to BucketInc

382 P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

to a large degree because the point location routine is not the major bottleneck in that algorithm.
However, the performance of S i t e - s e a r c h largely determines the run time of Giftwrapping.

Finally, to understand how the abstract measures actually affect performance, Fig. 18 shows the
average run time of the five trials with each algorithm except Giftwrapping. Since none of the run
times in the graph are much greater than Giftwrapping's performance even in the uniform case, we
eliminated it from this graph.

4. Timings on a different machine

While the analysis of primitive operations gives some independence from the particular machine
we were running on (a Sparcstation 2), it seemed wise to see whether the run time results held for
another machine. We ported the best three algorithms (Dwyer, Bucketlnc and Fortune using a heap)
to a DEC Alpha 3000 with a clock rate of 125 Mhz and ran the timing suite for uniformly distributed
sites. The results appear in Fig. 19.

The good news is that for both machines Dwyer was fastest, Bucketlnc was second (for all but the
largest case), and Fortune was slowest. However, there are at least two surprising results from these
runs. The first is how much Dwyer improved relative to the other two algorithms. Instead of having
a 10% advantage it takes half the time of the others.

The second is the way that the run times change as the number of sites increase. The "linear" run
time of Bucketlnc is not linear, but grows more rapidly than either of the others. Fortune's run time
grows slowly up to 213 sites and then increases more rapidly.

Profiling shows that in-circle tests now take up only a quarter of the time of Dwyer and Bucketlnc
instead of hal l so data structure manipulation and loop overhead are more significant relative to

Fortune, Dwyer, and Bucketlnc on an Alpha

~secs
Per
Site

120

100.

80.

6 0

40.

f~
for for for

for inc

inc

inc in¢

. , ~ ; ~ d ~

dw dw
dw dw dw

i i i i i i i

21o 2tl 212 213 214 215 216

NumberofSites

Fig. 19. Run times for Dwyer (dw), BucketInc (inc) and Fortune using a heap (for) on a DEC Alpha for uniformly distributed
sites.

P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385 383

in-circle testing and CCW testing. This could explain non-uniform speedups, but not the apparent
changes in growth rates. Such a change would favor algorithms using simpler data structures than the
full quad-edge data structure if this reduced the time spent on data-structure manipulation.

Our suspicion is that the ability of the algorithms to efficiently use the cache is also a factor, but
determining exactly what is happening will remain as future work.

5. Notes and discussion

The experiments in this paper led to several important observations about the performance of serial
algorithms for constructing planar Delaunay triangulations. These observations are summarized below.
• Dwyer is the strongest overall for this range of problem sizes. This advantage was small on a

Sparcstation 2, but was a factor of 2 on a DEC Alpha. It is also the most resistant to bad data
distributions, with an O(n log n) worst case. On the other hand, it was not substantially faster than
Bucketlnc and Fortune on the Sparcstation 2. One of these algorithms could prove to be the fastest
on some other system.

• A simple enhancement of the naive incremental algorithm results in an easy to implement algorithm
on-line algorithm that runs in O(n) expected time for uniformly distributed sites. It is faster than
previous incremental variants and competitive with other known algorithms for constructing the
Delaunay triangulation for all but very bad site distributions.

• On uniformly distributed sites circle events in Fortune cluster near, and move with, the sweepline.
Because the frontier and the event queue are expected to be of size O(v/n) this causes his bucketing-
based event queue implementation to perform badly on large inputs. However, for moderate size
data sets (up to 50,000 sites on the Sparcstation that we used for our experiments) the bucketed
event queue is a bit faster than a heap-based event queue.

• Dtree, LEDA and Qhull are several times slower than Dwyer and the other fast algorithms in their
current form.

5.1. Future work

A question first raised by Steve Fortune in a discussion at the conference where this paper was
presented is "How much can you gain by optimizing the best algorithms?" He suggested the idea
of modifying the in-circle test by computing the plane through the lifted versions of the three points
defining the circle. Testing to see if a fourth point lies within the circle then becomes determining
whether the lifted version of that point lies above, below or on the plane. This can be determined by
computing a dot product. For a single test this would not gain, but it would make subsequent tests
against the same circle much faster. Therefore caching this plane with each triangle in an incremental
algorithm could speed things up considerably. Similarly, during the merge step of Dwyer the same
three sites can be tested repeatedly against different fourth points, so Dwyer might also benefit from
this idea. This is only one of many possible optimizations.

Developing such a "best" code and making it available would be a service to the community, but
is beyond the scope of this paper. We hope to work on this in the future.

The timings that appear for the Alpha workstation also bring up many intriguing questions for
future study. As the CPUs in workstations and PCs get faster, the problems facing algorithm designers

384 P. Su, R.L.S. Drysdale / Computational Geometry 7 (1997) 361-385

include the efficient use of the cache and memory system as well as efficient use of the CPU. While
there have been attempts at theoretical analysis of algorithms on complex memory systems, the models
involved are generally complicated and the analysis of even simple algorithms is highly challenging
[1,14,26,27]. Such analysis is also made more difficult by the fact that the "memory system efficiency"
of an algorithm is very dynamic and data dependent. Therefore, finding ways to combine a more
tractable abstract analysis with good tools and methods for experimentally analyzing the behavior of
algorithms on different memory systems should be a fruitful area for future research.

Acknowledgements

We are indebted to Steve Fortune, Rex Dwyer and Olivier Devillers for sharing their code with
us and to Brad Barber for making his code publicly available. Steve Fortune and John Reif made a
number of helpful suggestions along the way. John Reif and the sysadmin staff at Duke let us use
a Sparcstation to run our experiments. Finally, the anonymous referees made many suggestions that
greatly improved the final paper.

References

[1] B. Alpem, L. Carter and E. Feig, Uniform memory hierarchies, in: Proc. ACM Sympos. Theory Comput.
(1990) 600--608.

[2] C.B. Barber, Computational geometry with imprecise data and arithmetic, Ph.D. Thesis, Princeton (1993).
[3] J.L. Bentley, K-d trees for semidynamic point sets, in: Proc. 6th Ann. ACM Sympos. Comput. Geom. (1990)

187-197.
[4] J.L. Bentley, B.W. Weide and A.C. Yao, Optimal expected time algorithms for closest point problems, ACM

Trans. Math. Software 6 (4) (1980) 563-580.
[5] J.-D. Boissonnat and M. Teillaud, On the randomized construction of the Delaunay tree, Theor. Comput.

Sci. 112 (1993) 339-354.
[6] K. Brown, Voronoi diagrams from convex hulls, IPL (1979) 223-228.
[7] K.L. Clarkson and P.W. Shor, Applications of random sampling in computational geometry II, Discrete

Comput. Geom. 4 (1989) 387-421.
[8] R.A. Dwyer, A faster divide-and-conquer algorithm for constructing Delaunay triangulations, Algorithmica

2 (1987) 137-151.
[9] R.A. Dwyer, Higher-dimensional Voronoi diagrams in linear expected time, Discrete Comput. Geom. 6

(1991) 343-367.
[10] H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Comput. Geom. 1 (1986)

25-44.
[11] S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica 2 (1987) 153-174.
[12] S. Fortune, Stable maintenance of point-set triangulations in two dimensions, in: Proc. IEEE Sympos. Found.

Comput. Sci. (1989) 494 499.
[13] S. Fortune, Numerical stability of algorithms for Delaunay triangulations and Voronoi diagrams, in: Proc.

Ann. ACM Sympos. Comput. Geom. (1992).
[14] M.T. Goodrich, J.-J. Tsay, D.E. Vengroff and J.S. Vitter, External-memory computational geometry, in: Proc.

34th Sympos. Found. Comput. Sci. (1993).
[15] E Green and R. Sibson, Computing Dirichlet tessellations in the plane, Comput. J. 21 (1977) 168-173.

P. Su, R.LS. Drysdale / Computational Geometry 7 (1997) 361-385 385

[16] L. Guibas, D. Knuth and M. Sharir, Randomized incremental construction of Delaunay and Voronoi
diagrams, Algorithmica 7 (1992) 381--413.

[17] L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the computation of
Voronoi diagrams, ACM Trans. Graphics 4 (2) (1985) 75-123.

[18] J. Katajainen and M. Koppinen, Constructing Delaunay triangulations by merging buckets in quad-tree
order, unpublished manuscript (1987).

[19] A. Maus, Delaunay triangulation and the convex hull of n points in expected linear time, BIT 24 (1984)
151-163.

[20] T. Ohya, M. Iri and K. Murota, Improvements of the incremental method for the Voronoi diagram with
computational comparison of various algorithms, J. Oper. Res. Soc. Japan 27 (1984) 306-337.

[21] EP. Preparata and S.J. Hong, Convex hulls of finite sets of points in two and three dimensions, Comm.
ACM 20 (1977) 87-93.

[22] L.A. Santal6, Integral Geometry and Geometric Probability (Addison-Wesley, Reading, MA, 1976).
[23] M. Sharir and E. Yaniv, Randomized incremental construction of Delaunay diagrams: Theory and practice,

in: Proc. Ann. ACM Sympos. Comput. Geom. (1991).
[24] P. Su, Efficient parallel algorithms for closest point problems, Technical Report, Dartmouth College

(November 1994).
[25] M. Tanemura, T. Ogawa and N. Ogita, A new algorithm for three dimensional Voronoi tessellation, J.

Comput. Phys. 51 (1983) 191-207.
[26] J.S. Vitter, Efficient memory access in large-scale computation, in: Proc. Ann. Sympos. Theor. Comput.

Sci. (1991).
[27] J.S. Vitter and E.A.M. Shriver, Optimal algorithms for parallel memory I: Two-level memories, Algorithmica

12 (1994) 110-147.

