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MESH GENERATION AND OPTIMAL TRIANGULATIONMARSHALL BERNXerox Palo Alto Research Center, Palo Alto, California 94304, U.S.A.andDAVID EPPSTEINDept. of Information and Computer Science, University of CaliforniaIrvine, California 92717-3425, U.S.A.ABSTRACTWe survey the computational geometry relevant to �nite element meshgeneration. We especially focus on optimal triangulations of geometric do-mains in two- and three-dimensions. An optimal triangulation is a partitionof the domain into triangles or tetrahedra, that is best according to somecriterion that measures the size, shape, or number of triangles. We discussalgorithms both for the optimization of triangulations on a �xed set of verticesand for the placement of new vertices (Steiner points). We briey survey theheuristic algorithms used in some practical mesh generators.1. IntroductionComputational geometry claims the two aims of solving practical problems andproducing beautiful mathematics. There is a natural tension between these goals:the most elegant formulation of a problem rarely occurs in practice. But surprisinglyoften the aims complement each other. This chapter discusses the interplay betweenan important practical problem|�nite element mesh generation, and a ourishingtheoretical area|optimal triangulation algorithms.Finite element methods have proved indispensable for physical simulation.These methods discretize the simulated domain|for example, the air around awing|by dividing it into many small \elements", typically triangles or quadrilat-erals in two dimensions and tetrahedra or hexahedra in three. The complex ofelements is the mesh.A triangulation is a partition of a geometric input, typically the regionde�ned by a point set or a polytope, into simplices that meet only at shared faces.So in two dimensions, a triangulation consists of triangles that intersect only at1



shared edges and vertices. An optimal triangulation is one that is best accordingto some criterion that measures the size, shape, or number of simplices.An example illustrates the complementary relationship of mesh generationand optimal triangulation. Numerical-analysis folklore had long held that �niteelement meshes should avoid elements with sharp angles. Remarkably, Lawsonfound that the Delaunay triangulation, a geometric construction with a long his-tory, maximizes the minimum angle in a two-dimensional mesh [128]. At aboutthe same time, work by other numerical analysts implicated the attest|not thesharpest|angle as the critical factor in convergence [5, 112]. This problem did nothave a solution waiting for it, and in developing an algorithm to minimize the max-imum angle [78], computational geometers discovered a very interesting algorithmicparadigm (discussed in Section 2.2.2).1.1. BackgroundThe di�erential equations arising in physical simulation require numerical solution.Most numerical methods|there are exceptions|assume that the domain of inter-est is divided into a mesh of small, simple elements. There are two major typesof meshes: structured and unstructured. This chapter studies only unstructuredmeshes, but here we briey sketch the larger context.A structured mesh in two dimensions is most often simply a square griddeformed by some coordinate transformation. Each vertex of the mesh, exceptat the boundaries, has an isomorphic local neighborhood. In three dimensions, astructured mesh is usually a deformed cubical grid. An unstructured mesh is mostoften a triangulation with arbitrarily varying local neighborhoods.Structured meshes o�er certain advantages over unstructured. They aresimpler, and also more convenient for use in the simpler �nite di�erence methods.They require less computer memory, as their coordinates can be calculated, ratherthan explicitly stored. Finally, structured meshes o�er more direct control over thesizes and shapes of elements.The big disadvantage of a structured mesh is its lack of exibility in �t-ting a domain with a complicated shape. A number of techniques have been de-veloped to �nd appropriate coordinate transformations: conformal mapping, al-gebraic methods, and numerical methods that themselves solve di�erential equa-tions [39, 213, 214]. Even armed with these techniques, it may be impossible to �nda transformation that �ts a complicated domain acceptably well. Faced with thisproblem, some practitioners cut out a region of the grid, without any transforma-tion, to give a \stair-case approximation" to the domain. But then the computedsolution will be quite inaccurate near the boundary of the domain, an area thatis often of special interest. Other practitioners break up the domain into simplerregions, perhaps overlapping, each of which can be more nearly matched by a de-2



formed grid. This method and its associated numerical analysis make up \domaindecomposition", a large area of study in its own right.Because of the need to �t complicated domains, such as aircraft and ma-chine parts, the trend in simulation has been towards unstructured meshes [8, 144,212], although both types of meshes will continue to be important for some time tocome. Indeed, there are methods that combine many small structured meshes intoan overall unstructured mesh [221].As we shall see in this chapter, unstructured meshes can �t arbitrarilycomplicated domains. Simply �tting the domain, however, is not enough. A �niteelement mesh must also use elements of appropriate size and shape, and these quan-tities may vary over the domain. Multiple requirements lead to many interestingand di�cult triangulation problems; these computational geometry problems de�nethe subject of this chapter.1.2. Formulating the problemsIn the formulation of triangulation problems, we see the tension between applica-bility and elegance. This tension pervades the major choices in the formulation:the type of input assumed, the type of triangulation desired, and the optimalitycriteria. The most theoretically attractive inputs are polygonal regions in two dimen-sions and polyhedral regions in three, without any auxiliary information. Curveddomains occur in practice, but usually the assumption of a at-sided domain is nottoo limiting. The more severe restriction is the assumption of no auxiliary infor-mation. In practical mesh generation, some foreknowledge of the solution to the�nite element computation usually guides the choice of element size, shape, andorientation.A major binary choice arises in determining the type of triangulation. Thevertices of the triangulation may be exactly the vertices of the input, or extravertices|called Steiner points|may be allowed. In practice, mesh generation in-variably allows Steiner points, although the placement of Steiner points is oftenseparate from the subsequent triangulation process. Computational geometers havetraditionally disallowed Steiner points, and thus their theorems have relevance onlyfor the second stage of practical mesh generation, but recently a small number ofgeometers (especially ourselves) have considered problems allowing Steiner points.Steiner points change the character of optimal triangulation problems. Where pre-viously the goal was an exact algorithm, it now must be an approximation algorithmthat uses a modest number of Steiner points.For practitioners, the ultimate optimality criteria are speed and accuracy ofthe �nite element computation. These in turn impose a number of somewhat con-icting criteria on the mesh: element shape (such as bounds on angles), reasonable3



complexity (not too many elements), and element orientation (such as aligned withuid ow). Computational geometers usually work on only one or two optimiza-tion criteria at a time, although certain triangulation algorithms such as Delaunaytriangulation and quadtree triangulation optimize several criteria simultaneously.A typical computational geometry problem disallowing Steiner points is one men-tioned above: triangulate a point set while minimizing the maximum angle [78](Section 2.2.2). A typical problem allowing Steiner points is: triangulate an n-vertex polygonal domain using no angles larger than 90� and only a polynomial (inn) number of Steiner points [24, 29] (Section 2.3.2).In the optimal triangulation algorithms we present, watch for a recurringtheme: local versus global optimization. For many problems that disallow Steinerpoints, local optimizations can lead to global solutions (Sections 2.2.1 and 2.2.2).For problems that allow Steiner points, a typical approximation algorithm performssome initial global steps, such as de�ning a grid on the input, followed by some localoptimizations (Sections 2.3.1, 2.3.2, and 2.3.4).1.3. OrganizationWe organized this chapter at the topmost level into sections on two- and three-dimensional problems, with Section 2.5 serving as a bridge. The major sectionsare then subdivided by the type of output desired: triangulation without any opti-mization criteria, optimal triangulation without Steiner points, and �nally optimaltriangulation with Steiner points. To keep ourselves honest, we include sectionssurveying the heuristics devised by practitioners.1. Introduction1.1. Background1.2. Formulating the problems1.3. Organization2. Two-dimensional Triangulations2.1. Triangulation without optimization2.2. Optimal triangulationDelaunay triangulation, ip, edge insertion, dynamic programming.2.3. Steiner triangulationNo small or large angles, maxmin height, min weight, conforming DT.2.4. Heuristically generated meshesMesh improvement, quadtrees, polygon decomposition, advancing front.2.5. Two-and-a-half-dimensional problemsInterpolation, surfaces for three-dimensional models.3. Three-dimensional Triangulations3.1. Tetrahedralization without optimization3.2. Optimal tetrahedralization 4



3.3. Steiner tetrahedralizationReducing Delaunay, nonobtuse dihedrals, bounded aspect ratio.3.4. Heuristically generated three-dimensional meshesMesh improvement, octrees, polyhedron decomposition, advancing front.4. Conclusions2. Two-dimensional TriangulationsIn this section, we consider triangular meshes in two dimensions. We distinguishfour types of input domains, all of which can be viewed as polygonal regions ofthe plane, because their boundaries consist of straight (perhaps degenerate) linesegments. The task is to partition the domain into triangles, that meet edge toedge, and that may be required to satisfy some other optimality properties. Forall four types of domains, a single parameter n, the number of vertices, su�ces tomeasure the input complexity.� Simple polygon. The domain is a polygonal region of the plane, and itsboundary forms a simple, polygonal, closed curve. The triangulation mustuse the edges of the boundary as edges in the triangulation. In a Steinertriangulation problem, extra vertices may be added to the interior or on thepolygon; hence, the edges of the boundary may be subdivided to form severalcollinear edges in the triangulation.� Polygon with holes. This di�ers from the previous case in that the bound-ary may form several disjoint polygonal Jordan curves. These curves surroundholes within the polygon.� Point set. The input is a set of points in the plane. Without Steiner points,the vertices of the triangulation are exactly the input points, and the boundaryof the triangulation is the convex hull. With Steiner points, the vertices ofthe triangulation are a superset of the input points, and the boundary of thetriangulation is a convex region that may be larger than the convex hull.� Planar straight line graph (PSLG). The input is a set of vertices and non-crossing (that is, intersecting only at endpoints) line segments in the plane,which must be used as edges (or for Steiner problems, unions of edges) in thetriangulation. This most general input occurs in practice for \multiple do-mains", that is, domains that include boundaries between di�erent materials.One could imagine the segments as holes in a polygon, and for non-Steinertriangulation this is a correct view of the problem. For Steiner triangulations,however, the Steiner points must be identical on both sides of a segment, whichwould not necessarily happen if we treated each segment as a degenerate hole.5



Figure 1. Triangulations with (below) and without Steiner points (above) of a polygon,a polygon with holes, a point set, and a PSLG. Solid lines show input; dotted showtriangulation.2.1. Triangulation without OptimizationIn this section we review triangulation without Steiner points and without optimal-ity criteria. The most basic question about polygon triangulation asks whether atriangulation always exists. A diagonal of a simple polygon is a line segment be-tween two vertices, that lies inside the polygon and does not intersect the polygon'sboundary except at its endpoints.Lemma 1. Every polygon with more than three sides has a diagonal.Proof: Let b be the vertex with minimum x-coordinate and ab and bc be its twoincident edges. If ac is not cut by the polygon, then ac is a diagonal. Otherwisethere must be at least one polygon vertex inside triangle abc, as in Figure 2. Letd be the vertex inside abc furthest from the line through a and c. Now segment bdcannot be cut by the polygon, since any edge intersecting bdmust have one endpointfurther from line ac.Once we have found a single diagonal, we can split the polygon in two,and recursively triangulate each part. The proof of the lemma implies a linear-timealgorithm for �nding a diagonal, so a triangulation can be found in time O(n2).Now the following question arises: how quickly can we compute a triangu-lation? This problem attracted more than a decade of intensive research. It is notdi�cult to improve the running time to O(n logn) [93, 174]. For many geometricproblems there are matching 
(n logn) lower bounds, but none was known in thiscase. There were also many faster special case algorithms [45, 93, 108]. After Tarjanand Van Wyk [211] broke through to O(n log logn), Chazelle [43] ended the questby announcing a linear-time triangulation algorithm for simple polygons.6



d

c

a

bFigure 2. Finding a single diagonal.We now discuss the other types of input domains. It turns out that anypoint set can be triangulated in time O(n logn), and conversely a point set triangu-lation algorithm can sort real numbers, so there is a matching lower bound in thealgebraic decision tree model of computation (see [174]).Lemma 1 applies to any polygon with holes, and hence to each face in aPSLG. (A face is a connected component of the plane minus the PSLG.) Hence everyPSLG can be triangulated. It is easy to show by induction that every triangulationof a given PSLG has the same linear number of triangles, n � 2 in the case of asimple polygon. Triangulating a PSLG can be accomplished in time O(n logn).Using Chazelle's algorithm, the time for polygons with holes can be improved toO(n log h), where h is the number of holes.In contrast to these positive results, determining whether a straight linegraph (with crossing edges) contains a triangulation is NP-complete [140]. AlsoNP-complete is the problem of determining whether a given collection of trianglesincludes a triangulation of the triangles' vertex set. (These results tend to rule outgreedy algorithms for optimal triangulation.)2.2. Optimal TriangulationWe have seen that quite e�cient algorithms exist for constructing a triangularmesh that covers a given domain. There may, however, be exponentially manytriangulations with widely varying appearance. We now turn to the harder task of�nding a triangulation that optimizes some measure of quality.Since all non-Steiner triangulations of a two-dimensional input have thesame number of triangles, reasonable quality measures depend upon the shape oftriangles. Typical measures examine the angles, edge lengths, height, and area ofa triangle. The measure of a triangulation is then taken to be the sum, maximum,or minimum of the measure over all triangles.A number of quality measures �nd motivation in �nite element methods.The numerical condition of matrices in a �nite element computation is related to theminimum angle in the triangulation. The error of a �nite element approximation is7



also related to the minimum angle [91, 209], and even more closely related to themaximum angle [5, 112]. The minimum height of a triangle relates to the quality ofa curved-surface approximation [98], and to a key step in a new three-dimensionalmesh generation algorithm [157]. Several other optimization criteria �nd applicationin interpolation [69, 178].For a given element shape, approximation error grows with element size,which can be measured simply by maximum edge length [209] or by more compli-cated metrics. For some applications|such as modeling di�usion in a nonisotropicmedium|size is appropriately measured by the area of the \min-containment cir-cle", after the domain has been transformed by an appropriate a�ne map [55].(Sizes of elements are typically used to weight �nite element residuals in a-posteriorierror estimates, in order to �nd regions of the mesh in need of re�nement [6, 37].)2.2.1. Delaunay Triangulation and the Flip AlgorithmA well-known construction, called the Delaunay triangulation, simultaneously op-timizes several of the quality measures mentioned above: maxmin angle, minmaxcircumcircle, and minmax min-containment circle.The Delaunay triangulation (DT) of a point set is the planar dual of thefamous Voronoi diagram. The Voronoi diagram is a partition of the plane intopolygonal cells, one for each input point, so that the cell for input point a consistsof the region of the plane closer to a than to any other input point. So long asno four points lie on a common circle, then each vertex of the Voronoi diagramhas degree three, and the DT, which has a bounded face for each Voronoi vertexand vice versa, will indeed be a triangulation. If four or more points do lie on acommon circle, then these points will be the vertices of a larger face, that may thenbe triangulated to give a triangulation containing the DT.Voronoi diagrams and Delaunay triangulations have been generalized innumerous directions. One important generalization, known as power diagrams andregular triangulations , replaces the distance to an input point by the squared dis-tance minus a real-valued weight. For more information on Delaunay triangulationsand Voronoi diagrams, see the surveys by Fortune [88] and Aurenhammer [3].There is a nice relationship between Delaunay triangulation and three-dimensional convex hulls [34, 70]. Lift each point of the input to a paraboloid inthree-space by mapping the point with coordinates (x; y) to the point (x; y; x2+y2).The convex hull of the lifted points can be divided into lower and upper parts; aface belongs to the lower convex hull if it is supported by a plane that separates thepoint set from (0; 0;�1). It can be shown that the DT of the input points is theprojection of the lower convex hull onto the xy-plane, as depicted in Figure 3.Finally, a direct characterization: if a and b are input points, the DTcontains the edge fa; bg if and only if there is a circle through a and b that intersects8
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Figure 3. The lifting transformation maps the DT to the lower convex hull.no other input points and contains no input points in its interior. Moreover, eachcircumscribing circle (circumcircle) of a DT triangle contains no input points in itsinterior.Many O(n logn)-time algorithms are known for computing the DT of apoint set, the �rst being Shamos and Hoey's divide-and-conquer algorithm [200].The relation between Delaunay triangulation and convex hulls allows the use of anyO(n logn)-time three-dimensional convex hull algorithm, such as that of Preparataand Hong [173]. Fortune [87, 88] invented an elegant sweepline algorithm. Guibas,Knuth, and Sharir [101] gave a simple, randomized incremental algorithm. (For asimpler analysis of this algorithm see [162, 199].) Maus [149] gave an algorithm forrandom points with expected linear running time; see also [27, 68, 152] for expectedcase analyses.The typical domain for mesh generation, however, is not a point set, but apolygonal region. In some cases the DT of a nonconvex region's vertices containsa triangulation of the region, but in general DT edges cross the region's boundary,creating an invalid mesh. One approach to this problem adds more vertices to theboundary, so that the boundary edges are covered by the DT of the augmented pointset. We consider this conforming Delaunay triangulation problem in Section 2.3.5.The alternative approach generalizes the de�nition of the DT in order to forcecertain edges (the boundary) into the triangulation. Such a triangulation is knownas a constrained Delaunay triangulation (CDT) [49, 54, 56, 129, 131, 198].For generality, we allow the domain to be a planar straight line graph. TheCDT of a polygonal region may be obtained by treating the polygon as a PSLG,and then removing all CDT edges exterior to the polygon. We �rst de�ne the notionof visibility . Given a PSLG, we say that point a is visible to point b if line segmentab does not cross any edge of the graph (ab may intersect an edge without crossingit). Point a is visible to line segment bc if it is visible to some point on bc.9



b
aFigure 4. The CDT of a planar straight line graph.De�nition 1. The constrained Delaunay triangulation (CDT) contains theedge fa; bg between two input vertices, if and only if a is visible to b, and somecircle through a and b contains no input point c visible to segment ab.For point sets, this de�nition reduces to the direct characterization of theDT given above. De�nition 1 also implies that the circumcircle of a triangle abc inthe CDT cannot contain an input point|other than a, b, or c|that is visible fromthe interior of abc. We now justify De�nition 1 by showing that|like the DT|theCDT actually gives a triangulation for inputs in general position. We call the newedges, de�ned by the empty circle condition above, Delaunay edges.Lemma 2. If no four input vertices lie on a common circle, the CDT of a PSLGwill be a triangulation.Proof: By assumption input edges intersect only at endpoints, and since endpointsof a Delaunay edge must be mutually visible, no Delaunay edge can cross an inputedge. Suppose two Delaunay edges cross. But then all four endpoints are visiblefrom the crossing point, and it is easy to show that two distinct circles satisfyingthe de�nition cannot exist. Therefore the CDT is a PSLG.We now show that the CDT contains no face with more than three sides.Suppose that ab and ac are edges in the CDT, but that bc is not. Then the circum-circle of triangle abc must contain some other input point visible to bc.Suppose there is an input point inside triangle abc. Such a point is visibleto a unless blocked from view by an edge with an endpoint \closer" to a, meaningcloser when projected onto a line perpendicular to bc. Thus the closest input pointd to a (again measuring distance from bc) must be visible to a. Pass a circle througha and d, parallel to bc at d. Any input points contained in this circle cannot bevisible to segment ad because they are blocked by ab and ac; hence ad is a Delaunayedge. Suppose instead that there is an input point on the other side of bc from a,visible to bc and lying inside circle abc. Imagine a shrinking circle, that startsas circle abc, and then shrinks in a way that keeps it tangent to circle abc at a.10



Figure 5. The CDT (dashed) is not the exact dual of the bounded Voronoi diagram.Ultimately, only a single input point d visible to bc will lie in the shrunken circle,and so d must be visible to a. There can be no other input points in the circle thatare visible to ad, so ad is a Delaunay edge.By these two cases, we have shown that bac cannot be an untriangulatedcorner. This proves that every connected component is a triangulation. We nowshow by contradiction that the CDT is connected. Let a and b be nearest-neighborinput points from two di�erent connected components. The diameter circle of abcannot contain any other input points, so ab must be a Delaunay edge, giving acontradiction.If the input is not in general position, some faces of the CDT may havemore than three vertices, all on a common circle. To avoid this situation, theinput can be slightly perturbed before computing the triangulation; Edelsbrunnerand M�ucke propose symbolic perturbations [72]. Alternatively, the triangulationmay be completed after the computation. Mount and Saalfeld [159] show how toquickly complete a special-position DT or CDT to maintain the lexicographicallymaximum angle property. Dillencourt and Smith [63] prove that most completionscan be realized as the DT of a small perturbation of the input. Unfortunately it ispossible for the angle-maximizing completion to be one of the exceptions.Just as the DT is dual to the Voronoi diagram, the CDT is related to thebounded Voronoi diagram [138, 198, 218], a division of the plane into cells, one foreach input vertex, so that the cell for vertex a consists of the region of the planefor which a is the nearest visible input point. Contrary to several claims in theliterature, the relation is not exact duality: the CDT may have an edge between apair of vertices with bounded Voronoi cells that do not meet, but would meet if notcut o� by an input edge (Figure 5).The CDT can be computed directly from De�nition 1 by directly testingeach candidate edge, but such an algorithm is very ine�cient. We now describe theip algorithm, which computes the CDT of a PSLG using a simple local optimizationtechnique; it is derived from a similar algorithm for the DT [128]. The worst-caserunning time of this algorithm, O(n2), is not optimal, but its ease of programmingmakes it quite practical for medium-sized input. Moreover, the algorithm is useful11



for proving a number of optimality properties.The ip algorithm starts with any triangulation. For an edge e, not an inputedge and not on the convex hull, we denote by Qe the quadrilateral formed by thetwo triangles on each side of e. We say that Qe is reversed if e is not in the CDT ofthe four outside edges of the quadrilateral. Equivalently, Qe is reversed if the anglesat its uncut corners sum to more than 180�, or if e forms a smaller minimum anglewith the outside edges than the other diagonal does. If Qe is reversed, trivially thetriangulation cannot be the CDT, because edge e violates the circle condition. Theconverse is also true, giving an example of a local optimization leading to globaloptimality.Lemma 3. If no quadrilaterals are reversed, the triangulation is the CDT.Proof: The idea behind this proof can be traced back to Delaunay [58]. We showthat the circumcircle of each triangle abc contains no vertex d. Therefore each edgeis a correct Delaunay edge. Suppose such a point d does exist for some triangle abc.The proof of Lemma 2 shows that we may choose d visible to a.For a circle C with center at coordinates (x; y) and radius r, de�ne thepower distance of point s = (x0; y0) to C, pC(s), to be (x0 � x)2 + (y0 � y)2 � r2.Then pC(s) is positive, negative, or zero exactly when s is outside, inside, or on theboundary of C.Now consider the sequence of triangles t1, t2, : : :, tk crossing line segmentad, where t1 = abc and tk includes d as a vertex. Construct a corresponding sequenceof circumcircles C1, C2, : : :, Ck. By assumption, each pair titi+1 forms a non-reversed quadrilateral. From this, it can be shown that for each i, pCi(d) > pCi+1(d),and therefore that pC1(d) > pCk(d) = 0. But this contradicts the assumption thatd lies inside circle C1.The ip algorithmmaintains a queue of edges whose quadrilaterals might bereversed. In the initial triangulation, the quadrilateral of any non-input edge mightbe reversed, so the queue initially contains all such edges. Then we repeatedlyremove the �rst edge e from the queue. If Qe is not reversed, we simply continue tothe next edge. But if Qe is reversed, we remove e from the triangulation, replacingit with the other diagonal of Qe. This ip might change the status of some of thefour outside edges of the quadrilateral, so we add the changed ones to the queue ifnot there already. When the queue is empty, we stop.Lemma 4. The ip algorithm terminates after O(n2) ips.Proof: We use the lifting relation between DTs and convex hulls. Under themapping that takes (x; y) to (x; y; x2+ y2), the DT of the input vertices lifts to thelower convex hull, and|due to the input edges|the CDT lifts to a surface abovethe lower convex hull. An arbitrary triangulation including the input edges lifts to12



a surface above the CDT surface. Each ip of a reversed quadrilateral correspondsto gluing a tetrahedron over a reex edge in this surface. That tetrahedron is neverremoved, so the reex edge never returns. After O(n2) ips, all non-CDT edges willbe eliminated.Coupled with an O(n2)-time algorithm for constructing an initial triangu-lation (see Section 2.1), we obtain an O(n2)-time algorithm for constructing theCDT. The ip algorithm also gives a number of useful optimality properties of theCDT. The min-containment circle of a triangle t is the smallest circle containing t.Theorem 1. Of all triangulations of a PSLG, the CDT (1) minimizes the largestcircumcircle; (2) minimizes the largest min-containment circle [55, 176]; and (3)maximizes the minimum angle in the triangulation [128].Proof: Each of these properties is improved by ipping a reversed quadrilateral.The optimal triangulation cannot be improved, so it has no reversed quadrilaterals,and hence by Lemma 3 must be the CDT.Result (3) is sometimes called \equiangularity" and, in fact, a strongerform holds: the CDT lexicographically maximizes the list of angles, from smallestto largest [129, 131]. An optimal interpolation property of the CDT appears inSection 2.5; there the input vertices include elevations. (The DT of a point set hassome further properties. The DT contains the minimum spanning tree; the distancebetween vertices in the DT is O(1) times their distance in the plane [48, 65, 122];and, from any viewpoint, DT triangles are acyclically ordered by distance [57, 71].)For very complex domains, an O(n2)-time algorithm for computing theCDT may be too slow. Chew [49] and others [198, 218] have improved this boundto O(n logn).Theorem 2 (Chew [49]). The CDT can be constructed in time O(n logn).Proof Sketch: Chew gives a divide-and-conquer algorithm. Line segment end-points are sorted by x-coordinates, and split by a vertical line into two subsets, eachwith at most dn=2e endpoints. CDTs are computed recursively for each subset andthen merged.In order to achieve the O(n logn) bound, the work at each level of thecomputation tree should be only O(n). Hence the work in a single strip, boundedby two vertical lines, must be proportional to the number of endpoints in the strip,rather than to the number of line segments cutting the strip. To achieve this, thealgorithm further divides a strip into regions bounded by segments that cut all theway across it. The algorithm computes the CDT only for those regions containingat least one endpoint.The major remaining di�culty is merging two adjacent strips. This problemcan be reduced to merging adjacent regions. As in some DT algorithms [200], the13



Figure 6. A local optimum for total edge length may be 
(n) times the global optimum.merger is performed by sweeping a circle along the boundary between the tworegions. The work is proportional to the number of old edges removed and newones added; since the sizes of the old and new triangulations are linear, so is thetime bound.The CDT of a simple polygon, though not of a PSLG, can be constructedeven more quickly. Aggarwal et al. [1] showed that, if the input is a convex polygon,the DT (which is also the CDT) can be found in linear time. The algorithm is basedon the lifting transformation, and it also solves the problem for certain other typesof point sets. In particular, it can update the DT after the removal of a vertexor edge. Djidjev and Lingas [64] devised a linear-time algorithm to compute theDT of a more general special case called a \monotone histogram". Finally, Kleinand Lingas [126] gave a linear-time randomized algorithm for the CDT of a simplepolygon.2.2.2. Edge InsertionThe ip algorithm described above provides our �rst example of a local improvementalgorithm. As we showed, the ip algorithm in fact produces a global optimum: theresulting triangulation maximizes the minimum angle, and optimizes several othercriteria as well. The success of the ip algorithm for Delaunay triangulation has ledto the use of edge ipping (with the appropriate de�nitions of reversed quadrilateral)for �nding triangulations that approximately optimize other criteria, such as vertexdegree [90], maximum angle [104], total edge length [220], or the ratio of the areas ofinscribed circle and triangle [16]. Edge ipping to improve these criteria, however,will not usually compute a global optimum.The problem is that the algorithm can get stuck in a local optimum, inwhich no ip improves the triangulation. A local optimum can be very far froma global optimum; for example, it may have total edge length 
(n) times the trueoptimal length; see Figure 6.One way to escape local optima is to allow local moves that do not improvethe triangulation, as in simulated annealing [125, 216]. A di�erent approach is togeneralize the local improvement procedure. This reduces the number of local op-tima, as a triangulation without an edge to ip may still admit the generalized move.14



This section describes one such generalization, called edge insertion, introduced byEdelsbrunner, Tan, and Waupotitsch [78] for the minmax angle problem.Consider adding a new edge e to some existing triangulation T of a PSLG.Edge e crosses other edges in T , causing them to be removed. At this point therewill be two simple polygons without diagonals, one on each side of e. Optimaltriangulation problems on simple polygons tend to be tractable; for now we mayassume that these polygons are triangulated optimally using dynamic programming,as in Section 2.2.3. Edge insertion is the process of adding a candidate edge,incident to a vertex of a worst triangle (and cutting across that triangle); removingthe crossed edges; and retriangulating the remaining regions. The added edge isrejected and the triangulation is returned to its previous state if the triangulationgets worse. Below we explain how to eliminate a possible edge on each insertion, sothat the process terminates.Notice that an edge insertion is more general than an edge ip, as a ipinserts a diagonal of a convex quadrilateral and removes the single edge it crosses.In fact, edge insertion is a signi�cant generalization, as there may be 
(n) edgesthat can be inserted to break a worst triangle, but only one ip. Because of theincreased number of possibilities, intuitively edge insertion should reach better localoptima than edge ipping, but take longer to do so.Edelsbrunner et al. [78] showed that edge insertion can in fact compute aglobal optimum that edge ipping cannot: the triangulation minimizing the max-imum angle. The correctness of edge insertion for this problem follows from anabstract property of the maximum angle measure, that also holds for several othernatural quality measures, as shown in a subsequent paper by Bern, Edelsbrunner,Eppstein, Mitchell, and Tan [23]. Let f be a function measuring the badness oftriangles, and assume that the quality of a triangulation T is de�ned to be themaximum (that is, worst) value of f over all triangles in T , denoted f(T ).De�nition 2. Let a, b, and c be vertices in some PSLG G. We say that a is ananchor vertex of triangle abc, if in any triangulation T of G, with f(T ) < f(abc),there is an edge ad crossing bc. In other words, one cannot improve a triangulationcontaining triangle abc without cutting abc by an edge incident to the anchor a.For example, let f(abc) be the measure of the largest angle in triangle abc. Thenif the largest angle is 6 bac, a is an anchor vertex, because in any triangulation ofquality better than f(abc), there must be an edge subdividing 6 bac and crossing bc.A triangle may have more than one anchor vertex, and all vertices in an optimaltriangulation are anchors.De�nition 3. Quality measure f has the weak anchor property if, for eachtriangulation T , and each triangle abc in T with f(abc) = f(T ), there is an anchorvertex of abc. Similarly, f has the strong anchor property if all triangles of T(not just worst triangles) have anchors. 15
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eFigure 7. The ear triangle cut by e� can be no worse than abc.Lemma 5 (Bern et al. [23]). Let f be a function with the weak anchor property.Then edge insertion �nds a triangulation minimizing f .Proof Sketch: Assume T does not optimize f , abc is a worst triangle in T , andabc has anchor vertex a. Let T � denote a triangulation optimizing f ; then someedge e of T � is incident to a cutting bc. We show that inserting e cannot make Tworse, and hence the edge insertion algorithm cannot get stuck. This follows if thesimple polygons on each side of e can be triangulated with triangles of quality noworse than f(abc). See Figure 7.Call one of the simple polygons P . If P has more than three sides, someedges of T � cut across P . It is not hard to see that an edge e� of T � that is\maximally far" from e must cut o� a corner of P ; that is, the side of e� away frome supports a triangle in the union of P and T �. We now reduce P by removing theear at that corner (the triangle de�ned by the endpoints of the sides of P incidentto the corner). If this ear is worst in a new (nonoptimal) triangulation, its anchorcannot be the corner vertex, because there is no edge in triangulation T � cuttingfrom this vertex through the opposite edge. So its anchor must be one of the twoside vertices. But there is no edge in T cutting from such an anchor through theopposite edge. Hence the ear triangle is either not a worst triangle or it has qualityno worse than f(T ). Continuing the process of removing ears triangulates P .A successful insertion eliminates the crossed edge of the worst triangle in T(that is, the weak anchor property implies that the crossed edge need not be in anoptimal triangulation); an unsuccessful insertion eliminates the edge inserted. Thusthere are O(n2) insertions. Retriangulating by repeatedly removing ears at least asgood as the worst triangle, rather than by dynamic programming, gives time O(n)for each insertion. Thus the total time is O(n3). If the strong anchor propertyholds and insertions are performed in a certain order, then all crossed edges|notjust the one in the worst triangle|can be eliminated in a successful insertion; thenthe running time can be improved to O(n2 logn) [23, 78].Theorem 3 (Edelsbrunner et al. [78], Bern et al. [23]). A triangulation min-imizing the maximum angle, or maximizing the minimum height, can be computed16



in time O(n2 logn). A triangulation minimizing the maximum distance of a trianglefrom its circumcenter can be found in time O(n3).The minmax angle triangulation has direct relevance to mesh generationdue to the error estimate of Babu�ska and Aziz [5]. The distance from the circum-center, or \eccentricity", is a measure of obtuseness, with larger triangles weightedmore heavily. In Section 2.5, we show that edge insertion also �nds an interpolatingsurface with minimum slope. All of these criteria are mentioned in [220].2.2.3. Dynamic ProgrammingWe have seen that a number of optimal triangulation problems admit e�cient so-lutions for PSLGs (including polygons as a special case). We next show that manymore such problems can be solved in polynomial time, for simple polygons only,using a dynamic programming approach usually attributed to Klincsek [127].Let f be a quality measure of triangulations of simple polygons, that is amapping from triangulations to the real numbers. Let P be a simple polygon. Anarbitrary diagonal fa; bg splits P into two simple polygons, P1 and P2. Let T1 andT2 be triangulations of P1 and P2, and let T be the triangulation of P that is theunion of T1, T2, and edge fa; bg.De�nition 4. We say f is decomposable if it meets the following conditions:(1) there is a \combining" function g such that f(T ) = g (f(T1); f(T2); a; b), forall choices of polygon P , diagonal fa; bg, and triangulations T1 and T2; (2) g iscomputable in time O(1) and monotonic in its �rst two arguments; and (3) if T isa single triangle, then f(T ) is computable in time O(1).In other words, the measure of the entire triangulation can be computedquickly from the measures of the two pieces, together with the knowledge of howthe pieces are glued together.Lemma 6. The following are decomposable measures: the minimum (maximum)angle in the triangulation, the minimum (maximum) circumcircle of a triangle,the minimum (maximum) length of an edge in the triangulation, the minimum(maximum) area of a triangle, and the sum of edge lengths in the triangulation.Con�rming this lemma is straightforward. For example, if f(T ) measuresthe minimum angle, then g (f1; f2; a; b) is simply minff1; f2g. For the sum of edgelengths, g(f1; f2; a; b) = f1+ f2�jabj. This last criterion is especially important, asminimizing it for point sets (the well-knownminimum weight triangulation problem)seems to be very di�cult. 17



An example of a nondecomposable measure is the maximum degree of avertex, as the maximum degree in T does not depend only on the maximum de-grees in T1 and T2, but also on the degrees at a and b. A measure that fails themonotonicity requirement is the di�erence in areas between the largest and smallesttriangles. (Incidentally, both of these measures can be optimized by slightly morecomplicated dynamic programming.)Theorem 4 (Klincsek [127]). A triangulation of a simple polygon optimizingany decomposable function can be computed in time O(n3).Proof: Assume we are trying to minimize f(T ). Number the vertices of polygonP by v1, v2, : : :, vn, in order around the perimeter. If vivj is a diagonal of P , wedenote by P (i; j) the polygon formed by points vi, vi+1, : : :, vj . Let F (i; j) be theminimum value of f on a triangulation of P (i; j). If vivj is not a diagonal, de�neF (i; j) = +1. We would like to compute F (1; n).Note that in any triangulation of P (i; j), vivj must be a side of a triangle,say vivjvk, with i < k < j. Using the assumption that f is decomposable, we cancompute the measure of the optimal triangulation of P (i; j) by trying all choicesfor k. F (i; j) = mini<k<j g (g(f(vivjvk); F (i; k); vi; vk); F (k; j); vk; vj):We compute these values in increasing order of i, and for each i in increasing orderof j; then each value of F will be computed before it is needed. This computes themeasure of the triangulation; to compute the triangulation itself we maintain backpointers for each pair (i; j) to the k that supplied the minimum.Each computation of the recurrence takes constant time per possible valueof k, or O(n) total. Testing whether a pair (i; j) forms a diagonal also takes O(n)time. There are O(n2) such computations, for a time bound of O(n3).In general this is the best time bound known. But the bulk of the workis done for pairs (i; j) that form a diagonal|the other pairs can be quickly ruledout. A sharper time bound is \input-sensitive", depending only on the number ofdiagonals in the polygon.De�nition 5. The visibility graph of a polygon P has vertex set consisting ofthe vertices of P , and an edge between vertices a and b if a is visible to b in P .Let E be the number of edges in the visibility graph. The visibility graphcan be computed in time O(n2) by traversing the boundary of the polygon once pervertex, performing a simple stack algorithm in each traversal [79, 116, 120, 130]. Amore complicated algorithm reduces the time to O(n logn+E) [106].We can easily improve the dynamic programming algorithm from O(n3) toO(En), but we can even do a little better. The time bound depends on the number18



of triangles in the polygon; below we show that few edges imply few triangles, afact previously observed by Chiba and Nishizeki [52].Lemma 7. A graph with E edges has at most O(E3=2) triangles.Proof: Divide the vertices into two classes: heavy vertices with degree at leastpE, and light vertices with smaller degree. If b is light we enumerate the trianglescontaining b by examining each pair of edges ab, bc, and testing if ac is also an edge.Each edge belongs to O(pE) pairs at its two endpoints, so this produces O(E3=2)triangles overall. If b is heavy we enumerate triangles containing b by examining alledges ac, and testing if ab and bc are edges. There are O(pE) heavy vertices, soagain the total is O(E3=2) triangles.Theorem 5. A triangulation of a simple polygon optimizing any decomposablefunction can be computed in time O(n2 + E3=2), where E is the number of edgesin the visibility graph.Proof: Recall that the dynamic programming algorithm tests diagonals (i; j) inorder by i, and then for each i in order by j. When we start a new value of i, weenumerate the triangles containing vi as in Lemma 7, and store for each j the listof k's that form triangles vivjvk. When we compute F (i; j), we minimize only overthe k's stored on this list.It is curious that the worst case of this algorithm occurs when the polygon isconvex (so that the visibility graph contains all possible edges). Typically, convexitymakes optimization problems easier. Examples include geometric matching [147]and greedy triangulation (see below) [134, 135].In the matching problem, one must connect the vertices in pairs by diago-nals, minimizing the total edge length. The resulting graph has no crossings, and inthis sense resembles the minimum weight triangulation. Matching can be solved bythe same dynamic programming techniques as above; however, for convex polygonsthis can be improved to O(n logn) [147]. Another problem, construction of optimalbinary trees, is also related to triangulation of convex polygons [205], and againthe O(n3) dynamic program solves this problem. Yao [223] improved this to O(n2)using the quadrangle inequality, a relation that also holds for diagonal lengths ina convex polygon. In some cases this can be further improved to O(n logn) [110].These results suggest that, at least for minimum weight triangulation of convexpolygons, O(n3) is too slow.Open Problem 1. Can the minimum weight triangulation of a convex polygonbe constructed in time o(n3)? 19



2.2.4. Other Optimal TriangulationsA few authors have considered problems of optimizing combinatorial properties oftriangulations such as their degree [113] or connectivity [61]. Most of the remainingwork on optimal triangulation has used edge length as a quality measure. As men-tioned above, edge length can be used as a simple measure of triangle size, whichin turn a�ects �nite element approximation error.Edelsbrunner and Tan [75] considered the triangulation minimizing themaximum edge length. They showed that this triangulation (like the DT) con-tains the edges of the minimum spanning tree. Therefore it can be found in timeO(n3), by �rst computing the minimum spanning tree and then triangulating eachremaining polygon using dynamic programming. They reduced this time to O(n2).The greedy triangulation [92, 135] can be found by adding edges one at atime, always choosing the shortest edge that is not already crossed. This triangu-lation lexicographically minimizes the sorted vector of edge lengths. For arbitrarypoint sets the greedy triangulation can be computed in time O(n2) by dynamicmaintenance of a CDT [135]. For convex polygons [135] or random point sets [62]the time bound can be improved to O(n).Eppstein [80] obtained another min-min triangulation result: the farthest-point Delaunay triangulation of a convex polygon minimizes the minimum angle.This triangulation can again be constructed in time O(n) [1]. The farthest-pointDT dualizes the farthest-point Voronoi diagram, a data structure for �nding thefarthest input point from a query point. The farthest-point DT can be de�ned forarbitrary point sets, but in general it is not a valid triangulation, as it only hasedges connecting vertices on the convex hull.Perhaps the most longstanding open problem in computational geometryis the complexity of the minimum weight triangulation (MWT) for arbitrary pointsets [67]. (Recall that the MWT asks for the minimum total edge length.) In-deed, early authors called this the \optimal triangulation" problem. Garey andJohnson [92] included MWT in their list of famous problems neither known to beNP-complete nor known to be solvable in polynomial time. If the MWT problem isgeneralized slightly, so that the weight of an edge is an arbitrary function unrelatedto its length, minimum weight triangulation becomes NP-complete [140]. Therefore,authors have concentrated on approximating the MWT.Any triangulation achieves total edge length O(n) times the minimum [124].The DT, once claimed to be the MWT, can be as long as 
(n) times the opti-mum [124, 146]. The same is true of the triangulation computed by edge-ippingfor minimum length. It remains open how well edge insertion approximates theMWT, but it does not provide an exact solution. The greedy triangulation can beas bad as 
(pn) [133, 146]. For convex polygons, however, the greedy triangulationis an O(1) approximation [134, 135]. The simple ring heuristic, that repeatedly con-nects every other vertex, gives a triangulation of length O(logn) times the boundary20



length of a convex polygon [170].Lingas [137] suggested the following approach to MWT: start by addingthe edges of the convex hull and the minimum spanning tree, and then computethe optimal triangulation within each polygonal region. Building on this approach,Plaisted and Hong [170, 165] gave what is currently the best MWT approximation.Instead of starting with the minimum spanning tree, they partition the convexhull into convex polygons. Then the optimal triangulation, greedy triangulation,or ring heuristic can be used to triangulate these polygons, achieving an O(logn)approximation. The Plaisted-Hong algorithm has recently been implemented witha running time of O(n2 logn) [207].Open Problem 2. Is it possible to �nd the MWT (or an O(1) approximation tothe MWT) of a point set in polynomial time? Or is this problem NP-complete?2.3. Steiner TriangulationIn this section we discuss triangulations using Steiner points. As shown in Figure 1,a Steiner triangulation of a point set may add points outside the convex hull ofthe input. In a Steiner triangulation of a polygonal region or a PSLG, edges maybe subdivided, but they must be covered , that is, each original edge must be aunion of triangulation edges. Input vertices must be covered by triangle vertices;the remaining triangle vertices are the Steiner points .Any two-dimensional input can be triangulated without Steiner points, soSteiner triangulation only makes sense in the context of some optimality criterion.We consider the following criteria: maxmin angle, minmax angle, maxmin height,and minimum total edge length. Finally, we discuss the conforming Delaunay tri-angulation problem.We must exercise a little care in formulating Steiner versions of optimaltriangulation problems. For both theoretical and practical reasons, we must concernourselves with the number of Steiner points. Without any bound on the number ofSteiner points, there may be no optimal triangulation|for example, the minimumangle in a triangulation of a point set can be brought arbitrarily close to 60�. Andin practice, the number of Steiner points in a mesh directly a�ects the time to solvea �nite element computation.One might specify the desired number of Steiner points, and then �nd theoptimal triangulation with that many points. Alternatively, one might specify thedesired quality measure, and then minimize the number of Steiner points. Eitherof these formulations, however, results in seemingly intractable problems.For these reasons, we turn to approximation algorithms. The algorithms wedescribe achieve quality that is within a constant of the best possible, while usinga modest number of Steiner points. In some cases, the algorithms actually use anumber of Steiner points that is within a constant factor of the minimum needed21



for the quality achieved. Allowing approximate optimality o�ers the additionalbene�t that we can sometimes simultaneously guarantee bounds on several di�erentmeasures in the same triangulation.2.3.1. No Small AnglesThe �rst problem we consider is maximizing the minimum angle, solved in the non-Steiner case by Delaunay triangulation. In the Steiner version of this problem, wedemand no small angles: every angle must be greater than some �xed bound.The smallest angle of a triangle is related to two other quality measures:aspect ratio and height. If the smallest angle in a triangle is �, the aspect ratio isbetween 1= sin � and 2= sin �.De�nition 6. The height of a triangle is the minimum distance from a vertex toa side. The aspect ratio is the ratio of the length of the longest side to the height.If there is any lower bound on the angles, the complexity of a triangulationof a polygonal domain may be nonpolynomial; indeed, inputs of constant complexitymay need an unbounded number of triangles. Consider a rectangle with shortside length one and long side length A. Then any bounded-aspect-ratio trianglecontained in the rectangle has area O(1); hence 
(A) triangles are necessary totriangulate the rectangle with no small angles.This lower bound holds in a di�erent form for point set input. Considera bounded-aspect-ratio Steiner triangulation of the vertices of the same rectangle.There must be an edge incident to the upper left corner of the rectangle that haslength at most one. Now imagine walking from this corner to the most distantcorner along edges of the triangulation. Each successive edge can be only a constantmultiple longer than the previous edge, and the �rst edge must have length O(1).Therefore there must be 
(logA) edges in the walk.We now turn to upper bounds, meaning algorithms. Baker, Grosse, andRa�erty [12] �rst solved the problem of computing no-small-angle triangulationsof polygonal regions and PSLGs. Their algorithm uses only triangles with anglesbetween 13� and 90�, thereby also solving the nonobtuse triangulation problemdescribed in the next section. They place a uniform square mesh over the input,�ne enough that input vertices are several squares apart in the mesh. Using anumber of special cases, they show how input edges may be incorporated into themesh, by retriangulating the squares within a small distance of the edges. They alsoprovide a similar set of special cases to handle the triangulation near each vertex.Bern, Eppstein, and Gilbert [25] combined a similar approach to meshgeneration with an innovative optimality analysis. Their algorithms use quadtrees ,which had been used in heuristics since the early 80's [224] and suggested by Bakeret al. [12] as a natural enhancement to their algorithm. Unlike a uniform mesh, a22



Figure 8. Balanced and unbalanced quadtrees.quadtree can produce elements of widely varying sizes, resulting in greater accuracyand e�ciency. For example, in uid ow simulations small triangles can be used inturbulent regions for accuracy, and large triangles in smooth regions for e�ciency.De�nition 7. A quadtree [86, 187, 188] is a recursive partition of a region of theplane into axis-aligned squares. One square, the root, covers the entire region. Asquare can be divided into four child squares, by splitting it with horizontal andvertical line segments through its center. The collection of squares then forms atree, with smaller squares at lower levels of the tree.Bern et al. also maintain a balance condition in their quadtrees: the squaressharing a portion of a side with a minimal (\leaf") square B must be at most twicethe size (side length) of B. Equivalently, each side of a leaf square is subdividedinto at most two parts by neighboring squares. See Figure 8.For simplicity, �rst assume that the input is just a point set. The triangu-lation algorithm builds a quadtree covering the set of input points. The quadtreesquares are divided into smaller squares, until each input point is well separatedfrom the other points: it must be in the center of a �ve by �ve grid of squares, allthe same size, none containing another input point. Next the algorithm warps thequadtree to conform to the input. Each input point chooses its nearest quadtreevertex. No vertex can be chosen twice, because of the separation of input points. Achosen vertex is removed from the quadtree, and its incident edges are reconnectedto the input point.Finally, the quadtree is triangulated. Because of the balance condition, anunwarped (hence square) region in the quadtree has at most one subdivision pointper side; it is easy to con�rm that such a region can be triangulated into O(1)triangles with no angles smaller than arctan(:5) � 26:5�. A warped region is aquadrilateral, with no subdivisions. Three quadrilateral vertices are corners of asquare, and the fourth must be fairly near a corner. A case analysis proves thatsuch a quadrilateral can be triangulated with no angles smaller than 20� by addinga single diagonal. See Figure 9.Along with this angle bound, Bern et al. prove that the number of Steinerpoints is small, using the following lemma.23



Figure 9. A quadtree triangulation of a point set.Lemma 8. The number of squares produced by the algorithm above is O(n logA),where A is the maximum aspect ratio of a triangle in the DT of the input point set.Proof Sketch: The only nonlinear behavior occurs when a quadtree square B issplit into children, and no input point becomes well separated by this split. In thiscase we can �nd a Delaunay triangle t connecting the input points in B to the restof the DT, and charge the splits of B and its descendants to t. Since a balancedquadtree successively doubles square sizes, the number of splits charged to a singletriangle is proportional to the logarithm of its aspect ratio.Theorem 6 (Bern et al. [25]). The quadtree algorithm above uses O(k) trian-gles, where k is the minimum number of triangles in a triangulation of the inputwith no angle smaller than 20�.Proof Sketch: Let S be the set of input points along with the Steiner pointsused in an optimal triangulation with no angle smaller than 20�. The DT of S hasno angle smaller than 20�, and hence no aspect ratio larger than 6. Then by thelemma above, the quadtree triangulation of S uses O(k) Steiner points. AddingSteiner points to the input set only increases the complexity of the quadtree, so thetriangulation of the original point set also has no more than O(k) Steiner points.This theorem holds no matter what smaller constant replaces 20�, butthe constant hidden in the big-O notation increases as the angle bound decreases.By strengthening the balance condition in the quadtrees, and replacing quadtreesquares by tiles with projections and indentations (Figure 10), Bern et al. can guar-antee that all angles measure between 36� and 80�. Perhaps bounds of 51� and 72�are achievable, but any further improvement would force the triangulation to betopologically equivalent to a mesh of equilateral triangles, which seems to require amuch larger number of Steiner points. 24



Figure 10. (a) Tiles for all acute triangulation. (b) Example triangulation.A similar, more complicated, algorithm gives a triangulation of a polygonwith holes with no new angles smaller than arctan(1=3) � 18:4�. (A sharp inputangle cannot be erased.) The complications arise primarily in the warping steps.See Figure 24 in Section 2.4 for an example. Theorem 6 extends to polygon input,guaranteeing mesh size within a constant of optimality, only the analog of Lemma 8necessarily becomes slightly weaker, guaranteeing O(nA) quadtree squares where Ais now the maximum aspect ratio in the CDT.Though not included in the original paper [25], this quadtree-based algo-rithm can be further extended to PSLGs. For this extension, an idea due to Mitchelland Vavasis [157] proves useful: duplicate each quadtree square that contains morethan one face of the domain. Melissaratos and Souvaine [151] combine the algo-rithms of Baker et al. and Bern et al. to guarantee no obtuse angles as well. Bern,Eppstein, and Teng [26] consider parallel algorithms for quadtree-based meshes.The algorithms just described are grid-based algorithms. Chew [50, 51]found a quite di�erent, circle-based approach to no-small-angle triangulation ofPSLGs. The following de�nition facilitates description of the algorithm.De�nition 8. The input feature size of a point set is the minimum distancebetween input points. The input feature size of a PSLG is the minimum distancebetween a vertex and an edge not incident to that vertex. For a polygon or apolygon with holes, we only consider distances interior to the polygon.In a version of his algorithm that produces uniform meshes, Chew [50]assumes that all boundary edges have lengths between s and p3s, where s is theinput feature size. This condition can be enforced by subdividing edges. Chewstarts with the constrained Delaunay triangulation of the input, since it maximizesthe minimum angle. Then, while there is a triangle with circumcircle of radiusgreater than s, he adds a Steiner point at the center of the circle, and recomputesthe CDT. See Figure 11 for an example.25



Figure 11. A uniform mesh computed by Chew's algorithm (Chew).Theorem 7 (Chew [50]). The circle-based algorithm computes a Steiner trian-gulation in which all angles are between 30� and 120�.Proof Sketch: No point is ever added closer than s to another point. Hence theprocedure terminates, as only a �nite number of points can �t into the polygonalregion. At the end of this procedure, all Delaunay circles have radius at most s,and all edge lengths are between s and 2s. No triangle with edge lengths in thisrange can be more acute than 30� or more obtuse than 120�, without having acircumcircle radius larger than s.Recently, Ruppert [183] built upon Chew's approach to give a remarkablysimple PSLG triangulation algorithm with the theoretical guarantee of Theorem 6.This algorithm starts|as does the polygon algorithm of Bern et al.|by cutting o�acute vertices of the input with isosceles triangles, to be patched in after the restof the triangulation is complete. Then the domain is triangulated by the followingloop: split an arbitrarily chosen skinny triangle (say one with an angle less than 20�)by adding its circumcenter c, unless c lies within the diameter circle of a boundaryedge e, in which case split e instead by adding its midpoint. Halt when all newangles are acceptable.2.3.2. No Large AnglesMany practitioners have suggested largest angle as an important quality measurefor both mesh generation [17, 104] and surface interpolation [98, 100]. Babu�skaand Aziz [5] (see also [112]) provide theoretical justi�cation by proving convergenceof the �nite element method as triangle sizes diminish, so long as the maximumangle is bounded away from 180�; they also give an example in which convergencefails when angles grow arbitrarily at. An elementary example in which large anglesspoil convergence is Schwarz's paradox [175]. A bound on the smallest angle impliesa bound on the largest angle, but as we have seen, the elimination of small angles26



Figure 12. A mesh computed by Ruppert's algorithm (Ruppert).requires a triangulation with complexity dependent not only on the number of inputvertices n, but also on the geometry of the input. In this section, we allow smallangles and achieve polynomial bounds on the number of triangles in a no-large-angletriangulation.If the largest angle in a triangle is 90���, then the smallest must be at least�=2. Thus the strongest bound on the largest angle, that does not imply a boundon the smallest angle, is 90�; in other words, the triangulation must be nonobtuse.Nonobtuse triangulation claims a number of motivations. A nonobtuse mesh guar-antees some desirable numerical properties related to diagonal dominance [12, 217].Vavasis [217] recently proved that for problems with physical characteristics thatvary enormously over the domain, a nonobtuse mesh implies faster convergence ofa certain numerical method. A second motivation involves planar duality. Each(closed) triangle in a triangulation contains its circumcenter exactly when all an-gles measure at most 90�. The planar dual of such a triangulation can be formedby simply adding perpendicular bisectors of edges (see [28] for more on construct-ing planar duals). Practitioners use dual meshes in the \�nite volume" method inwhich each mesh vertex has an associated control volume; a perpendicular planardual de�nes especially convenient control volumes, simplifying the calculation ofow or forces across element boundaries. Third, nonobtuse triangulation has appli-cation to computational learning theory [186]. Fourth, a nonobtuse triangulationsimultaneously guarantees some optimality properties, as shown by the followinglemma.Lemma 9. Any triangulation in which no triangle is obtuse must be a Delau-nay triangulation or constrained DT. A nonobtuse triangulation also minimizes themaximum angle, and maximizes the minimum height.Proof Sketch: By Lemma 3, if a triangulation is not the CDT then some two27



Figure 13. A polygon cut for nonobtuse triangulation.adjacent triangles form a reversed quadrilateral. But no quadrilateral in which bothtriangles are nonobtuse can be reversed. Nonobtuse triangulations are unique, upto the choice of diagonal for points forming a rectangle. Any other triangulationwould have to have an obtuse angle, and so could not minimize the maximumangle. The maxmin height triangulation is discussed below. An examination ofcases shows that, if the triangle with minimum height is nonobtuse, then in anyother triangulation there is an equal or smaller height triangle involving one of thesame three vertices.As noted above, Baker et al. [12] give an algorithm for nonobtuse triangu-lation of polygons. Their algorithm also avoids small angles, and hence must havecomplexity that depends on geometry, as well as on n. There are also heuristic al-gorithms of this type [13, 161]. Is it possible to eliminate dependence on geometry?Bern and Eppstein [24] devised the �rst polynomially bounded algorithm.The �rst step dices the polygon into rectangles, with nonrectangular portions leftover at the boundaries. Start by passing a vertical line through each input vertex,stopping the line at the polyon boundary. Add a Steiner point at all intersec-tions of input edges and vertical lines. This step divides the polygons into slabs|quadrilaterals with two vertical sides, possibly having subdivision points on thevertical sides. Next, draw a horizontal line segment through each vertex (input orSteiner), extending the line segment to the last possible vertical segment. In otherwords, each endpoint of a horizontal segment should lie either on a vertical segment,or on the vertex inducing the horizontal, and each horizontal segment should be aslong as possible with this property. A polygon divided as above by horizontal andvertical lines is shown in Figure 13.At this point, the polygon is divided into O(n2) regions of four types:(1) rectangles with unsubdivided sides; (2) right triangles with hypotenuse on theboundary of the polygon and vertical leg possibly subdivided; (3) obtuse triangleswith two sides on the boundary of the polygon, and one leg vertical and possi-bly subdivided; (4) slabs with two sides on the boundary of the polygon, and twopossibly-subdivided vertical sides, that cannot be simultaneously crossed by a hor-izontal line. The slabs can be divided by a diagonal into two obtuse triangles. The28
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a Figure 14. Reduction steps for nonobtuse triangulation of an obtuse triangle.nonobtuse triangulation problem has now been reduced to triangulating right andobtuse triangles, that have subdivision points on one vertical side, while introducingnew subdivisions only on the triangles' longest sides, which lie along the polygonboundary.Lemma 10. A right or obtuse triangle withm subdivision points on its two shortersides can be triangulated into O(m2) nonobtuse triangles, without adding any newSteiner points to its shorter sides.Proof: The basic strategy is to replace the shorter sides by sides that form sharperangles with the long side. The region between the old and new sides is triangulatedto reduce the number of subdivision points by one.We prove the lemma inductively, while also showing that the number ofSteiner points added to the base is at most m + 1. An obtuse triangle withoutsubdivision points can be triangulated simply by dropping a perpendicular to itshypotenuse. Obtuse triangles with subdivision points are triangulated in two casesas shown in Figure 14. In the �rst case, the apex c of the triangle (that is, thevertex with the obtuse angle) has been \merged" with the �rst subdivision point bby drawing perpendiculars to cd and ab. In the second case, if the meeting pointc0 does not lie inside acd, we split acd by adding a point e to ad, taking carethat triangle bce is nonobtuse. These reduction steps are due to Chew (personalcommunication); the original paper included a couple more cases.Theorem 8 (Bern and Eppstein [24]). The grid-based algorithm above trian-gulates an n-vertex polygon (with holes) with O(n2) nonobtuse triangles.Recently, Bern, Mitchell, and Ruppert [29] improved the bound on nonob-tuse triangulation to O(n) by inventing a more intricate, circle-based, algorithm.This algorithm packs the domain with O(n) non-overlapping disks, until each re-gion not covered has at most four sides (line segments or arcs), as shown on theleft in Figure 15. The �rst disks to be added connect holes to the outer boundary,so that each uncovered region is simply connected, and each generalized Voronoidiagram de�ned by proximity to sides of an uncovered region has the topology of29



Figure 15. Steps in the circle-based nonobtuse triangulation algorithm.a tree. Later disks are centered at vertices of these generalized Voronoi diagrams,contacting three sides and breaking uncovered regions into three simpler ones.The disks themselves do not appear in the triangulation, but rather act asguides for the placement of Steiner points and edges. After the disk-packing stage,the algorithm adds edges (radii) between centers of disks and points of tangency,dividing the domain into small polygons as shown in the middle in Figure 15.Finally, the algorithm triangulates the small polygons using Steiner pointslocated only interior to the polygons or on the domain boundary, thereby ensuringthat triangulated small polygons �t together, as shown in the rightmost �gure. Thetriangulation step depends critically on two properties of tangent disks: (1) a three-sided uncovered region induces a triangular polygon, whose inscribed circle passesthrough the points of tangency, and (2) a four-sided uncovered region induces aquadrangular polygon that similarly admits a circle passing through the four tan-gencies. Figure 16 shows two of the patterns used to triangulate small polygons.There are also patterns for small polygons bounded by sides of the domain. Certainmisshapen four-sided regions|for example, one in which the \inscribed" circle cen-ter falls on the wrong side of a chord|present more di�cult cases. Luckily thesecan be reduced to the illustrated cases by packing in a few more disks, such as thesecond disk along the bottom in Figure 15 (middle).Theorem 9 (Bern et al. [29]). The circle-based algorithm just sketched trian-gulates an n-vertex polygon (with holes) with O(n) nonobtuse triangles.We now turn to nonobtuse triangulation of more complicated domains.Nonobtuse triangulations of PSLGs have application to mesh generation for multipledomains, such as a domain composed of more than one material. Bern and Eppstein30
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Figure 16. Triangulating the induced small polygons.extend the grid-based algorithm described above to solve a special case of thisproblem; they show how to compute an O(n4)-complexity nonobtuse re�nement ofa given triangulation of a simple polygon. It is currently unknown how to extendthe circle-based algorithm.An example due to M.S. Paterson (personal communication) shows that
(n2) is a lower bound for this problem. From any vertex in a nonobtuse triangu-lation, there must be a downwards edge with slope at least 45� from the horizontal(unless the vertex lies on the bottom boundary of the domain). In Figure 17 thevertices on top are su�ciently far apart that their downwards paths remain disjointthrough all 
(n) skinny triangles. Notice that this example works for any constantmaximum angle bound smaller than 180�.
Figure 17. An 
(n2) example for no-large-angle triangulation.Apparently, neither the grid- nor circle-based algorithms solves a more dif-�cult special case: nonobtuse triangulation of both the interior and exterior (upto the convex hull) of a polygon. This problem arises in computational learningtheory [186]. Due to Lemma 9, a solution to this problem would also solve theconforming Delaunay triangulation problem described below. The hard part of theproblem is getting \exterior" and \interior" Steiner points to match at the polygon31



Figure 18. The horn of a subdivision point is the union of all possible \curative" paths.boundary. There are however nonpolynomial algorithms [12, 151], and an 
(n2)lower bound [186], similar to Paterson's lower bound example.Open Problem 3. Is there an algorithm for polynomial-complexity nonobtusetriangulation of both the interior and exterior of a polygon? Of a PSLG?It is also natural to ask about no-large-angle requirements less stringentthan nonobtuse triangulation. Bern, Dobkin, and Eppstein [22] gave a grid-basedalgorithm to triangulate simple polygons using O(n logn) triangles|and polygonswith holes using O(n3=2) triangles|so that all angles measure at most 150�; bothof these results are superceded by the linear nonobtuse triangulation result outlinedabove. No-large-angle triangulations, however, are known for some types of inputfor which nonobtuse triangulation remains open.Recently, Mitchell [155] showed how to triangulate any planar straight-linegraph using O(n2 logn) triangles with maximum angle 157:5�. Tan [210] improvedthe maximum angle bound to 132� and the complexity to the optimal O(n2). Thesetwo results use a similar global approach. Starting from any triangulation of thePSLG, Mitchell and Tan split over-large angles by dropping perpendiculars to op-posite sides. This produces a partition into well-shaped triangles, but one in whichtriangles do not meet face to face. To re�ne the partition into a triangulation, theyconceptually extend polygonal paths from each subdivision point to a boundarypoint or interior vertex. Whenever a path crosses the edge of a triangle, it maycontinue at any legal angle away from the edge. The union of all (the in�nite num-ber of) possible paths thus sweeps out a cone-shaped region of the PSLG, called ahorn. The horn of a subdivision point grows one triangle at a time, until it �rstencloses a vertex or boundary point (or, in Mitchell's version, intersects itself oranother horn), and a single path can be chosen. See Figure 18.In Mitchell's version, two intersecting horns produce a new Steiner point,so O(logn) successive phases of horn-growing are required to cure all Steiner points.In Tan's improvement, horns act independently of each other, after a preprocessingstage in which certain obstacles are set up in the PSLG. The obstacles prevent32



spiraling, so that each of the O(n) horns propagates through only O(n) triangles.After growing all the horns, Tan erases the path edges|leaving just the Steinerpoints|and shows that each original triangle can now be retriangulated with nolarge angles.2.3.3. Maxmin HeightWe now consider maximizing the minimum height of a triangle. This problem arisesin Mitchell and Vavasis's three-dimensional mesh generation algorithm [157].As we saw above, a minimum-height triangulation without Steiner pointscan be computed using the edge-insertion paradigm [23]. It is not immediatelyobvious that Steiner points can improve the height. Consider a regular n-gon,however, with sides of unit length. Any triangulation without Steiner points mustcontain an ear, which has height sin(�=n), but a Steiner point at the center allowsall triangles to have nearly unit height. This example is due to Mitchell (personalcommunication).For point set input, the linear-complexity nonobtuse triangulation algo-rithm described above already solves the maxmin height problem. Notice that theminimum distance s between two points, that is, the input feature size de�ned inSection 2.3.1, gives an upper bound on the minimum height achievable. The nonob-tuse triangulation algorithm de�nes quadtree squares of side length 
(s), and eachtriangle has height proportional to the smallest quadtree square it touches.For polygons, the input feature size s again gives an upper bound on theminimum height achievable. The no-small-angle quadtree algorithm produces atriangulation with minimum height 
(s), but with nonpolynomial complexity. Thenonobtuse triangulation algorithms described above do not help, as both the grid-and circle-based algorithms can produce triangles with small height.Theorem 10 (Bern et al. [22]). A polygon with holes can be triangulated intoO(n) triangles of height 
(s).Proof Sketch: We give a very rough sketch. The �rst step starts by cutting o�acute corners of the polygon with isosceles triangles; these triangles are triangulatedat the very end without adding any new Steiner points. Then the remaining polygonP is cut with vertical and horizontal lines. Imagine the plane divided into an in�nitesquare grid with spacing s=3. Now erase all of the grid, except portions of linesbounding squares that either contain|or are adjacent to a square that contains|an input vertex. See Figure 19.The second step carefully warps some segments of the horizontal and ver-tical cutting lines to conform to the boundary of P . A case analysis shows thatall resulting faces can be triangulated with height 
(s). At this point, there areO(n) triangles of height 
(s) along the boundary of P , and O(n2) rectangles of33



Figure 19. A polygon cut for maxmin-height triangulation.height 
(s) interior to P . The third step merges interior rectangles into rectilin-ear polygons to reduce the complexity. Each rectilinear polygon Q will have inputfeature size 
(s) and satisfy a certain matching condition: a horizontal or verticalline extended from a vertex of the polygon across the interior �rst intersects Q atanother vertex.A sweep algorithm now triangulates such a rectilinear polygon with linearcomplexity. First draw in all interior vertical line segments between vertices of Q.Then sweep from left to right, adding Steiner points to vertical segments. The keyidea is to project only every other vertex from the current vertical line onto the nextvertical line. Horizontal edges are added between corresponding points. When theleft-to-right sweep has ended, perform a similar sweep from right to left. After bothsweeps, each newly-created face interior to Q has at most one subdivision pointon each vertical side; such faces can be triangulated into at most four triangles ofheight 
(s). The total number of Steiner points added in the sweeps is O(n), as itis the sum of a geometric series.This result can be combined with a grid-based no-large-angle triangulationalgorithm [22] to triangulate simple polygons with O(n logn) Steiner points, withmaximum angle at most 150� and minimum height 
(s).2.3.4. Minimum WeightAs in maxmin height triangulation, it is not obvious that adding Steiner points canreduce the total edge length of a triangulation of a point set. But it is not hard tomake examples (say, n�1 points on an arc that bows towards one distant point) toshow that the minimum weight Steiner triangulation (MWST) can have total edgelength 
(n) times smaller than the minimum weight triangulation (MWT).Lingas [137] suggested approximating the MWT of a point set by �rstchoosing all edges from a minimum spanning tree. This partitions the plane intopolygons, that can be triangulated optimally using dynamic programming. Lin-gas did not consider using Steiner points, and his algorithm does not yield a good34



approximation to the MWST. Clarkson [53] extended Lingas's approach, and gavethe �rst nontrivial MWST approximation. (It can be shown that any triangulationapproximates the MWST within a factor of O(n).) Clarkson showed that any poly-gon has a Steiner triangulation with total edge length O(logn) times the polygon'sperimeter. (The same result can be seen from the quadtree triangulation describedbelow.) Combining this result with Lingas's use of the minimum spanning treeproduces a Steiner triangulation of a point set with length O(logn) times that ofthe MWST.Clarkson's result was improved by Eppstein [81], who gave a constant-factorapproximation to the MWST. Eppstein showed that the quadtree triangulation al-gorithm of Bern et al. (Section 2.3.1), which was designed for angle bounds, actuallygives such an approximation.Eppstein �rst proves that, if T is any triangulation of the input point set,and B is a quadtree-algorithm square with side length `, then there is an edge in Twith length 
(`), that has an endpoint within distance O(`) of B. Therefore we cancharge the length of the triangles associated with B to an edge in T . Each edge ischarged at most proportionally to its own length, and hence the quadtree triangula-tion approximates the MWT. Then, as in the optimality proof of the no-small-anglequadtree triangulation, Eppstein notes that adding Steiner points only increases thetotal length of the quadtree triangulation. So the quadtree triangulation of the in-put points has length less than the quadtree triangulation of the input along withan optimal set of Steiner points, which in turn approximates the MWST. This ar-gument works both for the no-small-angle quadtree triangulation (Section 2.3.1),and for the linear-size nonobtuse quadtree triangulation (Section 2.3.2).The same techniques can be used to construct an approximate MWST ofconvex polygons. One simply triangulates the vertices, cuts o� the region of thetriangulation outside the polygon, and adds diagonals to retriangulate cut polygons.This reduction requires convexity; otherwise the length of the point set triangulationmay not approximate the MWST.Open Problem 4. Is there an e�cient algorithm for approximating the MWSTof an arbitrary nonconvex polygon?Using his quadtree characterization of the MWST length, Eppstein alsoproves some further properties of the MWST of a point set.� The MWST has total edge length O(logn) times that of the minimum span-ning tree [53]. For any n, there exist point sets for which the MWST has edgelength 
(logn) times the minimum spanning tree length.� For any n, there exist point sets for which the MWT has total length 
(n)times the MWST length. As noted above, this is tight.35



� For any n, there exist convex polygons for which the MWT has total length
(logn) times that of the MWST. Again, this is tight, as both lengths arewithin O(logn) of the polygon's perimeter.� Any convex polygon has a Steiner triangulation in which all Steiner points lieon the polygon boundary, with total length O(1) times that of the MWST.The last item suggests the question of whether Steiner points in the interiorof a polygon really help. For nonconvex polygons, they do; otherwise the weightmay be 
(n= logn) times the MWST length. But for convex polygons this questionremains open. If we can assume that all Steiner points lie on the boundary, thenit seems likely that a dynamic programming algorithm can compute an optimalMWST.2.3.5. Conforming Delaunay TriangulationsIn this section, the input is a PSLG. We consider the problem of �nding a set ofSteiner points inducing a Delaunay triangulation that is a Steiner triangulation ofthe input. In other words, each input edge must be a union of edges in the DTof the input vertices and the Steiner points. We call this the conforming Delau-nay triangulation problem. As noted above, this problem is related to nonobtusetriangulation of the interior and exterior of a polygon. The 
(n2) lower boundfor interior-exterior nonobtuse triangulation can be adapted to the conforming DTproblem.We �rst consider an approach to the conforming DT problem that uses anumber of Steiner points dependent upon the geometry of the input as well as onn. The algorithm is a modi�cation of one due to Saalfeld [185], also related totwo previous algorithms [32, 190]. Start with a triangulation of the input, and let� be the minimum height of any triangle. On each edge, add two Steiner pointsat distances �=3 from the endpoints. The diameter circles for the two segments oflength �=3 on each edge will be empty, and hence these outer segments are nowedges in the DT. Let � be the minimum distance between any pair of points in thenow augmented PSLG. No interior segment of any edge is within distance � of anyother edge. Hence if we partition these segments into subsegments of length lessthan �, each subsegment will have an empty diameter circle, and the result will bea Delaunay triangulation that covers the input (Figure 20).Nackman and Srinivasan [164] describe an alternative for polygons withholes. It is not necessary to subdivide input edges so �nely that each segmenthas an empty diameter circle, as in the previous method; in fact any empty circlethrough the endpoints of a segment su�ces. Thus Nackman and Srinivasan coveredges with a set of disks that do not overlap other edges, and place Steiner pointsat the intersections of circles and edges, as in Figure 21. The assumption that the36



Figure 20. Example of Saalfeld's conforming DT algorithm.input is a polygon implies the existence of a �nite set of suitable disks, and it iseven possible to minimize the number of disks [164]. But this is no guarantee thatthe algorithm uses a minimum number of Steiner points|indeed, Nackman andSrinivasan give an example of constant complexity for which their method requiresa nonconstant number of Steiner points.
Figure 21. Covering each edge by circles not touching any other edges.In a theoretical breakthrough, Edelsbrunner and Tan [76] gave an algorithmthat uses only a polynomial number of Steiner points, regardless of the input geom-etry. Their algorithm places Steiner points in two stages, called the \blocking" and\propagation" phases. The blocking phase computes a set of O(n) non-overlappingdisks whose union is connected and spans the vertices of the input PSLG. A Steinerpoint is added wherever a disk crosses an edge or meets another disk, O(n2) Steinerpoints total. The propagation phase treats the segments of input edges that are notyet covered by empty circles. This phase takes any not-yet-covered segment ab andattempts to add its diameter circle. If the diameter circle encloses another vertexc visible to ab, the orthogonal projection of c is added to ab, forming two shortersegments. See Figure 22.Theorem 11 (Edelsbrunner and Tan [76]). The algorithm just sketched givesa set of O(n3) points for which (a completion of) the Delaunay triangulation con-forms to all input edges.Proof Sketch: Correctness follows from the fact that each segment of an in-put edge has a circle with empty interior passing through its endpoints. For thecomplexity analysis, notice that the propagation phase does not add Steiner points37
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Figure 22. Propagation trails cannot spiral to hit the same edge twice.inside disks, so a line segment connecting two consecutive vertices around the bound-ary of a disk will appear in the DT. These segments divide the plane into simplepolygons|including the outer face|that propagation \trails" cannot cross. Thereare O(n2) trails each of length O(n).2.4. Heuristically Generated MeshesIn this section we describe two-dimensional mesh generation in practice. We donot attempt a thorough literature survey, rather we give informal descriptions ofa few mesh generation approaches, chosen to illustrate some of the main ideas inthe �eld. There are already a number of articles that survey and classify the liter-ature on automatic mesh generation [109, 189, 202, 208, 212, 221], although we arenot aware of a recent survey of two-dimensional mesh generation with an extensivebibliography. Overall, two-dimensional mesh generation seems fairly mature, anda number of di�erent approaches give good results. As we mentioned in the intro-duction, we restrict our discussion to generation of unstructured triangular meshes;for structured meshes, such as quadrilateral meshes given by conformal mappingtechniques, see [39, 213, 214].2.4.1. Mesh Improvement TechniquesBefore describing heuristic mesh generation methods, we mention some mesh im-provement techniques, which can be used as post-processing steps after any of theheuristics.One very useful technique, dating to the 1960s [222], is called Laplaciansmoothing because its repositioning formula can be derived from a �nite di�erenceapproximation of Laplace's equation [105]. In Laplacian smoothing, a vertex v inthe interior of the mesh is moved to the centroid (center of mass) of its neighbors.38



Figure 23. Moving a vertex to its neighbors' center of mass.The vertex should not be moved if the centroid lies outside the polygon formedby its neighbors. This repositioning usually improves the size and shape of thetriangles around v, but it is not guaranteed to do so. A variation weights neighborvertices by the areas of their surrounding elements. Laplacian smoothing is appliedsuccessively to each interior node of the mesh, for several (four or �ve) rounds. SeeFigure 23.A second technique, called mesh relaxation by Frey and Field [90], ipsedges to regularize degrees. Removing high- and low-degree vertices makes subse-quent Laplacian smoothing more e�ective. A quadrilateral diagonal is ipped if thesum of its endpoints' degrees exceeds the opposing diagonal's sum by more thantwo. We may also view the ip algorithm for producing a constrained Delau-nay triangulation (Section 2.2.1) as a mesh improvement technique. Notice thatDelaunay ipping and mesh relaxation may disagree.Finally, the problem of re�ning a given mesh occurs quite often in practice,for example when an initial �nite element computation reveals a region that requiresgreater resolution. Re�nement and its reverse|\dere�nement" or coarsening|assume even greater importance when the solution varies with time, and smallfeatures move across the domain [121]. Bank [13, 14] re�nes by splitting selectedtriangles into four similar copies of themselves, and then splitting neighboring tri-angles into two triangles to correct subdivision points. This algorithm works wellenough in practice{and is especially easy to dere�ne|but obliviously splitting atriangle and its descendants a number of times may make a neighboring triangleunacceptably sharp. Smoothing can �x sharp angles, but the resulting mesh willnot then be a strict re�nement of the original mesh.Addressing this aw, Rivara [179, 180] proposed the following recursivealgorithm: bisect a triangle in need of re�nement by adding a diagonal from theopposite vertex to the midpoint of the longest edge, then re�ne its neighbor thesame way. Bisections may propagate for some way across the triangulation, butthis algorithm|now called Rivara re�nement|always terminates, since each bi-section splits a longer edge. Based on a theorem of Rosenberg and Stenger [182],39



Figure 24. A mesh derived from a quadtree (S. Mitchell).Rivara showed that arbitrary repetition of this algorithm never produces an an-gle smaller than half the minimum original angle. In practice Rivara re�nementtypically improves angles.2.4.2. QuadtreesLong before the theoretically good mesh generation methods described in the lastsection [25], quadtrees had been used in heuristic methods. Yerry and Shep-hard [224] construct a quadtree representation of a polygonal or curved domainby recursively splitting squares intersected by the boundary of the domain, untilsquares reach some minimum size bound. Splits may also result from an upperbound on size (that may vary over the domain) or from a balance condition: noquadtree square is adjacent to one more than twice its size. After the quadtree isconstructed, each square containing a portion of the boundary is replaced with ashape chosen from a �xed set of patterns. Triangulating each face then yields amesh that approximates the domain.A more advanced version of the algorithm uses warping and trimming meth-ods to produce a mesh that does not change the shape of the input [7]. The theoret-ical paper by Bern et al. [25], contributed warping rules guaranteed not to producesmall angles, as well as an analysis of the number of triangles in the mesh. Fig-ure 24 shows an example mesh computed by Mitchell [157], using a modi�cationof the algorithm in [25]. This example demonstrates careful selection of quadtreesquare sizes around holes and \almost holes".Quadtrees are the most convenient way to produce graded meshes, thatis, meshes with small elements near complicated parts of the boundary that gradeup to larger elements elsewhere. Another advantage is that the quadtree itself40
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igure 25. Lake Superior (Joe) (a) input, (b) decomposition, (c) re�nement, (d) mesh.may be computed entirely in integer arithemetic, so that oating-point operationsare carried out only within small squares containing simple parts of the domainboundary.Quadtree methods, however, have been criticized for occasionally producingpoorly-shaped boundary elements, and for introducing arti�cial preferred directions(namely parallel to the x- or y-axes) [208]. The problem of poorly-shaped elementscan be solved by the warping methods of Bern et al. [25]. The second problemmay be more inherent, although non-square quadtree tiles, as used in [25, 158],or some sort of randomization procedure, coupled with Laplacian smoothing, maysu�ciently break up the directionality.2.4.3. Polygon DecompositionThe polygon decomposition approach also initially divides the domain (most gener-ally a PSLG) into simple regions. This approach, however, attempts to �nd intrinsicdividing lines, rather than dividing lines from a rectilinear grid.Joe and Simpson [119, 114] �rst divide the domain into convex polygonsby cutting along lines extending from reex vertices (that is, vertices at which theinterior angle measures more than 180�). The resulting convex polygons are furthersubdivided into convex polygons with boundary edge lengths that do not vary toomuch. Cutting lines are chosen heuristically, attempting to avoid small angles.Finally each convex polygon is triangulated using triangles of approximately equalsize, taking care to match Steiner points at the cutting lines. See Figure 25.41



Figure 26. The steps in meshing a multiple domain (Srinivasan et al.).In Joe and Simpson's method, two input parameters control the mesh: atarget number of triangles (typically exceeded by a small amount), and a \smooth-ing parameter" that controls the allowable variation in size between two neighboringpolygons. These parameters are combined with something dependent on local fea-ture size to yield a \mesh distribution function", that gives a target triangle size ateach point within the domain.The concept of local feature size recurs in most mesh generation approaches.We may de�ne the local feature size at point a to be the size of the quadtree boxthat contains a, as produced by the polygon version of the algorithm of Bern etal. [25], described in Section 2.3.2. This sets the local feature size at a vertex vof the polygonal boundary P to be proportional to the minimum distance (withinthe domain) to an edge of P not incident to v. Local feature size then variesfairly smoothly between vertices. Most of the mesh generators described in thissection de�ne their own versions of local feature size, but the de�nition just givenis su�cient for understanding. Many of the mesh generators also allow the user tocontrol the local feature size in some way, perhaps through input parameters. Thisextra control is important in applications in which the solution to the �nite elementcomputation is expected to show features smaller than the features of the domain.42



Figure 27. A Delaunay triangulation of points placed in layers (Barth and Jespersen).Srinivasan et al. [208] recently developed an interesting polygon decompo-sition mesh generator, using the symmetric axis transform. The symmetric axis isthe set of all centers of disks contained in P that contact P at two or more points;it consists of straight lines and parabolic arcs.Figure 26 shows the operation of this mesh generator on a multiple domain.The input is shown in (a), with di�erent materials shown by di�erent shades. The�rst step computes the Voronoi diagram of the edges and vertices of the domain;this contains each face's symmetric axis. Parabolic arcs in each symmetric axis arethen replaced by one or two straight edges (chords of the arc), as shown in (b).Each vertex on a symmetric axis is then joined to two or more points on the do-main boundary by the touching radii of the disk centered at the vertex, resultingin a PSLG in which each face is a triangle or trapezoid, as shown in (c). A \sliverprocessing" step then removes or breaks up faces with bad aspect ratio (see (d)).Boundary edges and touching radii are then used to extract local feature size values.These values induce a node spacing at each vertex in the PSLG, and interpolationthen gives a node spacing function over the entire domain. The node spacing func-tion guides an iterative process that adds and deletes more Steiner points. Finaltriangulation is accomplished by the constrained Delaunay triangulation (shown in(e) and in a zoom in (f)).2.4.4. Advancing FrontThe advancing front approach to mesh generation [136, 141] is especially well-suitedto uid dynamics problems. In this approach, the domain's boundary P is �rstsubdivided appropriately, and then Steiner points are placed in successive layersaround each connected component of P . This yields triangles oriented with the ow�eld. Figure 27 shows a mesh computed by Barth and Jespersen [19]; this mesh isthe Delaunay triangulation of vertices placed by the advancing front method.Lo [143] has developed a mesh generator that places Steiner points along43



Figure 28. Input and output of a re�nement-based generator (Shaw).prede�ned contour lines, that need not follow the domain boundary. This gener-alization allows the output of an initial �nite element computation to control thegeneration of the next mesh.Mavriplis [150] has computed meshes for high Reynolds number ows us-ing an idea related to contour lines. His method identi�es \stretching" lines andplaces the �rst Steiner points along these curves. Local, structured meshes gener-ate interior Steiner points. The method then computes Delaunay triangulations inlocally transformed regions in order to generate long, thin|but not overly obtuse|triangles oriented with the ow. Such a triangulation is an especially e�cient meshfor laminar ows. (See [55, 171] for other stretched triangulations.)2.4.5. Mesh Re�nementA number of researchers have taken mesh re�nement as the central step in meshgeneration itself [14, 89, 179]. For example, the algorithms of Chew [49] and Rup-pert [183], discussed in the last section, re�ne the constrained Delaunay triangula-tion by adding centers of circumcircles.An earlier, somewhat related, heuristic method is due to Frey [89]. InFrey's method, Steiner points are initially added to the boundary according to a\spacing function" that approximates local feature size. After this step, for mostpractical inputs, a Delaunay triangulation of the input vertices and the Steinerpoints includes the domain boundary. (Using the recent results of [164, 185], thisstep can be made exact; see Section 2.3.5 above.) Next interior Steiner pointsare added. Satisfactory results were obtained by the following method: (1) �nd atriangle t containing its circumcenter; (2) generate a prospective Steiner point apartway between the incenter and circumcenter of t; (3) if a is not too close to thevertices of t (where close is de�ned by the local feature size), then add a and rebuildthe Delaunay triangulation.Shaw [201] has recently developed a simple, re�nement-based mesh gen-erator. The user inputs a very rough, triangular, initial mesh, with the correctnumber of boundary components in roughly correct locations. The user assigns a44



local feature size to each node of the initial mesh.Triangles larger than their vertices' smallest feature size are then split asin [13, 14] into four similar copies of themselves by adding Steiner points at themidpoints of sides. A midpoint is assigned the average feature size of the end-points. Neighboring faces are split in two to correct subdivision points. Splittingis followed by a few cycles of Delaunay ipping and weighted Laplacian smoothing,and the re�nement cycle repeats. (Field [83] also interleaves Laplacian smoothingand Delaunay ipping.) As the boundary triangles re�ne, they are parametrically\pulled" to the correct geometry (which may include spline curves), thereby com-puting a valid boundary element mesh at the same time as the rest of the mesh.See Figure 28 for an example of an input mesh and the resulting re�ned mesh; thethree nontriangular faces in the input mesh correspond to the holes in the domain.Final aspect ratios are quite insensitive to the quality of the input mesh.2.5. Two-and-a-half-dimensional ProblemsA 2.5-dimensional problem asks for a triangulated surface embedded in three di-mensions. We �rst discuss interpolating surfaces for point set data with elevations,and then triangulated surfaces for three-dimensional models.2.5.1. Interpolation of Bivariate FunctionsThe input is a set of points S in the plane, along with a real-valued elevation f(a) ateach point a 2 S. Any two-dimensional triangulation T of the input points inducesa piecewise-linear function fT de�ned on the region R bounded by the convex hull ofS. For each point d, fT (d) is the weighted average of the elevations at the vertices,a, b, and c, of the triangle abc in T that contains d. Writing d as c1a + c2b+ c3c,with c1 + c2 + c3 = 1 and c1; c2; c3 � 0, we have fT (d) = c1f(a) + c2f(b) + c3f(c).We say that fT interpolates S.The question arises: which triangulations are good for interpolation? Thisquestion has been discussed in the literature [16, 56, 66, 128, 195]. Rippa [177]recently proved a surprising result. Regardless of the input elevations, the Delaunaytriangulation gives an interpolating surface, or elevated triangulation, optimal in acertain least energy sense.Theorem 12 (Rippa [177]). Let fT be a piecewise-linear function interpolatingS induced by a triangulation T . The piecewise-linear function fDT induced by theDelaunay triangulation satis�esZ ZR (rfDT )2 � Z ZR (rfT )2:45



We now explain the integrals above in terms more familiar to computationalgeometers. Let abc be a triangle of triangulation T . Let the plane passing throughf(a), f(b), and f(c) have the equation z = Ax+By + C in Cartesian coordinates.Then over abc, the gradient squared (rfT )2 is simply the constant A2 + B2, andthe contribution of abc is its area times this constant. Rippa's theorem statesthat the sum of these contributions over all triangles is minimized by the Delaunaytriangulation. The proof of Rippa's theorem is an intricate calculation showing thatthe ip procedure cannot increase the integral. Hence the CDT is also an optimalinterpolating surface. (De Floriani et al. [56] had previously proposed the use ofthe CDT for this purpose.)Rippa and Schi� [178] show that the minimization above corresponds tothe energy functional associated with the nonhomogeneous Laplace equation. Wemay think of the DT as giving the stretched membrane (a \drumhead") with leastpotential energy, among all elevated-triangulation membranes. Rippa and Schi� alsodiscuss other energy functionals, and use the ip algorithm as a heuristic for theirminimization. See [16, 69] for heuristic solutions to other interpolation problems.Bern et al. [23] recently considered the problem of �nding the minimumslope interpolating surface for input points with elevations (an optimization criterionmentioned in [220]). The slope of an elevated triangle is the slope in the direction ofsteepest descent, and the slope of an elevated triangulation is the maximum slopeof any of its elevated triangles. Bern et al. showed that this problem can be solvedin time O(n3) using the edge-insertion paradigm, discussed in Section 2.2.2. Thefollowing lemma shows that the \weak anchor property" holds, thus establishingthe applicability of edge insertion.Lemma 11. Assume abc is a maximum-slope triangle in elevated triangulation T .Assume the line of steepest descent on abc passes through a (either ascending ordescending from a). Assume elevated triangulation T 0 has smaller slope than T .Then there is an edge of T 0 incident to a that crosses bc (in the projection onto theplane).Proof: Assume without loss of generality that the line of steepest descent `descends from a to bc. If the lemma is false, then T 0 must contain an elevatedtriangle ade, with de intersecting both ab and ac in the projection onto the planecontaining the input. (Edge de does not necessarily cross both ab and ac, so e couldbe identical to c.) A vertical plane V` through ` must cut de above `, since T 0 hassmaller slope than T . So at least one of d and e, say d, must lie strictly above theplane containing abc. See Figure 29.Now consider the elevated triangle adb (which is not necessarily a triangleof T or T 0). Because d lies above the plane containing abc, the slope of adb must begreater than the slope of abc. (Here notice that V` intersects the plane containingadb in a line with steeper slope than `.) Let `0 be the line of steepest descent on adb.If `0 connects d with ab, we consider the triangles of T that intersect V`0 , a vertical46



l
l’

e

d

c b

a

Figure 29. The weak anchor property holds for minmax slope.plane through `0. These triangles intersect V`0 in a polygonal path from d down toab; at least one edge of this path must have slope at least that of `0, a contradictionto the assumption that abc is a maximum-slope triangle in T . Contradictions alsofollow in the other two cases: when `0 connects b with ad or a with bd.This lemma also holds for constrained triangulations, giving an O(n3) algo-rithm for �nding a least-slope interpolating surface for polygonal inputs with holesand elevations. There are a host of open questions on optimal interpolation; welist three. Many interpolation problems, including the second one listed below, alsomake sense when Steiner points are allowed.Open Problem 5. For point set data with elevations, can a triangulation max-imizing the minimum angle on an elevated triangle be computed in polynomialtime?Open Problem 6. For point set data with elevations, can a triangulation ap-proximately minimizing the total surface area be computed in polynomial time?(An intriguing result [163] shows that for any such point set there exists a \atten-ing coe�cient" � > 0, such that if all z-coordinates are multiplied by �, Delaunaytriangulation minimizes area.)Open Problem 7. For point set data with elevations, can a triangulation withleast-sharp sharpest dihedral angle be computed in polynomial time? (See [69].)2.5.2. Surfaces for three-dimensional modelsHere the input is a \solid model" and the output is a triangulated surface. Thisstep often precedes three-dimensional mesh generation, especially in advancing-frontmesh generators.Solid models take a number of rather varied forms, which complicates eventhe de�nition of problems. Constructive solid geometry (CSG) de�nes a polyhedron47



Figure 30. Surface triangulation of a Boeing 747-200 (Baker).as the intersection and union of primitive polyhedra, such as half-spaces. (One mayalso allow sphere and cylinder primitives, in order to construct curved solids.) Apolyhedron can also be more explicitly de�ned by a \boundary representation".Solids can be approximately de�ned by point sets, either all interior to the solid, orlabeled \interior" and \exterior". Such inputs occur in scienti�c visualization, learn-ing theory, and computer graphics. Inputs in medical and aerospace applicationsoften take the form of regularly spaced planar cross-sections [11, 15, 31]. Finally,curved surfaces in design and graphics may be de�ned by spline patches [18], or by\implicit surfaces"|level sets of functions of three variables.Triangulating the surface of a polyhedron reduces to triangulating a PSLG;Lindholm [136] uses an advancing-front generator within each face. Solids de�nedby point sets, however, present some fresh problems. One may want to representsuch an input with an enclosing or interpolating polyhedron. The convex hull (theintersection of all half-spaces containing the point set) is an enclosing polyhedron,but it does not usually give a good representation of the \shape" of the point set.Roughly speaking, an �-shape generalizes the convex hull by replacing half-spaceswith balls or complements of balls, with radius 1=� [70, 74]. This generalizationallows more faithful shape representation, but may have complexity 
(n2). An-other approach to shape representation, about which little is known, is to �nd anenclosing or interpolating polyhedron (without Steiner points) that is optimal forsome criterion. The following problem is an example.Open Problem 8. For points in three dimensions, can an approximate min-surface-area enclosing polyhedron be found in polynomial time?A number of authors (see [15, 102, 196] for surveys) have considered the48



Figure 31. Surface triangulation of the U.S. Space Shuttle (Baker).problem of computing a triangulated surface interpolating a number of parallel pla-nar cross-sections. Boissonat [31] takes each adjacent pair of cross-sections and usesplanar conforming Delaunay triangulations to help compute a three-dimensionaltetrahedralization spanning the pair. Baker [11] uses a related heuristic to computea surface triangulation of an aircraft. He places points interior to each polygonalcross-section, roughly one point for each of the polygon's vertices, and then com-putes the three-dimensional DT of all input and interior vertices. Each interiortetrahedron has at least two Steiner vertices, so that the union of the tetrahedrawith three or four input vertices contains a surface triangulation of the aircraft. SeeFigures 30 and 31. For this algorithm to succeed, input vertices must be closelyspaced relative to the thickness and separation of aircraft parts.Barequet and Sharir [15] propose a di�erent heuristic for this same problem.They take two adjacent cross-sections and project them onto the same parallelplane. Matching sections of polygons are \stitched" together with a back-and-forth triangulation. Also stitched together are short stretches on either side of eachintersection, where a polygon from one cross-section crosses one from the other. Atthis point, remaining regions in the projection are all bounded by simple polygons;these are �lled in by triangulations minimizing total lifted area (when cross-sectionsare separated again), using dynamic programming as in Section 2.2.3. This last stepmay use triangles contained in the cross-sectional planes; indeed this capability isnecessary in order to form a surface that does not intersect itself [97].A number of researchers [51, 84, 103, 191] have worked on meshing curvedsurfaces. Chew [51] has extended his two-dimensional mesh generator (Section 2.3.1)to curved surfaces by generalizing planar Delaunay triangulation. He de�nes thecircumcircle of a triangle to be the intersection of the curved surface with a spherethat has its center on the surface and passes through the triangle's vertices. If thesurface is not too curved relative to the size of the triangle, there is a unique suchsphere. This de�nition has the advantage that circumcenters lie on the surface,facilitating the extension of the mesh generator. As before, the resulting mesh hasall angles greater than 30�, but now triangle sizes are controlled locally by deviation49



Figure 32. Surface triangulation of a wing (Chew).from the curved surface. See Figure 32.Edelsbrunner and Shah [74] recently gave a more formal development ofDelaunay triangulation restricted to a subspace such as a curved surface. In theirscheme, the restricted DT is the dual of the diagram obtained by intersecting theVoronoi diagram with the subspace. In general, their method produces a simplicialcomplex rather than a triangulation, meaning that lower-dimensional faces (verticesand edges) need not be contained in triangles. Finally, Bloomenthal [30] uses octreesto polygonize implicit surfaces; these surfaces can then be triangulated if desired.Octrees have been applied to polygonizing spline surfaces as well.3. Three dimensional triangulationsTriangulation in three dimensions is called tetrahedralization (or sometimes tetra-hedrization). A tetrahedralization is a partition of the input domain, point set orpolyhedron, into a collection of tetrahedra, that meet only at shared faces (ver-tices, edges, or triangles). Tetrahedralization turns out to be signi�cantly morecomplicated than triangulation.As in two dimensions, n represents the number of vertices of the inputdomain, and we distinguish several di�erent types of domains.� Simple polyhedron. A simple polyhedron is topologically equivalent to asphere; it does not meet itself in a handle, or touch itself at a point or anedge. The boundary of such a polyhedron forms a connected planar graph.In triangulations without Steiner points, each tetrahedron's vertices must bevertices of the polyhedron.� Nonsimple polyhedron. A nonsimple polyhedron may be multiply con-nected, topologically equivalent to a torus or a higher-genus surface. It mayalso have cavities, meaning that its boundary is not connected.� Point set. As in two dimensions, a triangulation of a point set �lls the convexhull. If Steiner points are allowed, then the boundary of the triangulation maybe a larger convex polytope. 50



Figure 33. Sch�onhardt's untetrahedralizable polyhedron.3.1. Tetrahedralization without OptimizationIn this section, we concentrate on existence and construction of tetrahedralizations,without concern for optimality. Existence and construction are already interesting,since many two-dimensional triangulation properties break down in three dimen-sions. The �rst surprise is that di�erent triangulations of the very same inputmay contain di�erent numbers of tetrahedra. For example, choose n points vi =(i; i2; i3) on the moment curve. It is not hard to show that their convex hull canbe triangulated with the �n�22 � tetrahedra of the form vivi+1vjvj+1. (In fact thisis the Delaunay triangulation of these points.) A generalization of Euler's formulashows that any tetrahedralization of an n-vertex polyhedron has at most this manytetrahedra. If we choose the tetrahedralization carefully, however, we can achievelinear, rather than quadratic, complexity for this same input. In fact, any strictlyconvex polyhedron can be tetrahedralized with at most 2n � 7 tetrahedra: choosea vertex v, triangulate each face of the polyhedron that is not adjacent to v, andthen connect v to each triangle. This bound is within a factor of two of optimal, asany tetrahedralization of a simple polyhedron has at least n� 3 tetrahedra.Edelsbrunner, Preparata, and West [77] show how to construct a linear-complexity tetrahedralization of point sets in general position. After tetrahedraliz-ing the convex hull with only linear complexity as above, interior points are addedone at a time. When a point is added, the tetrahedron containing it is replacedby four smaller tetrahedra. In contrast, linear complexity is not always possible forpoints in special position [4].When we try to extend these results to nonconvex polyhedra, we meeta second surprise: not all polyhedra are tetrahedralizable [132]. The followingcounterexample is due to Sch�onhardt [193]. Start with a triangular prism, andtwist one triangle relative to the other so that each rectangular face of the prismfolds into two triangles with a reex edge between them (Figure 33). Any set offour vertices must include a pair that face each other across such a reex edge. Sothe polyhedron contains no tetrahedron, and tetrahedralization is impossible.51



Figure 34. Chazelle's lower bound example.Sch�onhardt's polyhedron can be tetrahedralized if we add one Steiner point.This leads to the question of how many Steiner points may be required for tetrahe-dralization. Chazelle [42] found a simple polyhedron in which 
(n2) Steiner pointsare needed even to partition the polyhedron into convex regions. Clearly, this isalso a lower bound for tetrahedralization.Chazelle's polyhedron (Figure 34) can be built from a cube by removingnumerous thin wedges. Wedges parallel to the y-axis are removed from the top faceof the cube, and wedges parallel to the x-axis are removed from the bottom face.The reex edges at the tips of the wedges form two sets of lines, that almost meetat the center of the polyhedron, near the hyperbolic surface z = xy. Viewed fromabove, the lines partition this surface into 
(n2) small squares. The centers of thesquares can be connected by lines that lie on the doubly-ruled hyperbolic surface,but by slightly turning the grid of centers we can �nd a set of 
(n2) points, no pair ofwhich are mutually visible. Lines nearly parallel to the x-axis (respectively, y-axis)are blocked from above (below) by wedges. Hence no pair of points can lie in thesame convex region, so there must be 
(n2) regions in any convex decomposition,and a fortiori 
(n2) tetrahedra in any tetrahedralization. As we now show, thisbound is tight.Theorem 13. Any polyhedron can be triangulated with O(n2) Steiner points andO(n2) tetrahedra.Proof: Extend a vertical \wall" from each edge of the polyhedron boundary,up and down from that edge until it reaches some other part of the boundary.These walls divide the polygon into generalized cylinders. Triangulating the topand bottom faces of the cylinders partitions the polygon into O(n2) triangularprisms. Each vertical prism side is crossed at most once by a polyhedron edge,so the prisms are polyhedra with at most twelve vertices. Triangulate the faces ofthese polyhedra, making sure that tetrahedra from di�erent prisms will meet faceto face, and then triangulate each prism with at most 20 tetrahedra incident to asingle interior Steiner point. (We need the Steiner point as the edges crossing thevertical faces make the prisms not strictly convex.)52



Figure 35. Extending a vertical wall from a reex edge.As we have seen, convex polyhedra can be triangulated with only O(n)tetrahedra, while Chazelle's polyhedron requires 
(n2). This suggests the possibil-ity that an appropriate measure of nonconvexity would interpolate these bounds andachieve o(n2) tetrahedra for \slightly nonconvex" polyhedra. One natural measureis r, the number of reex edges. Chazelle and Palios [46] developed a triangulationalgorithm sensitive to this measure.Let N(v) be the set of neighbors of vertex v, and de�ne the cap of v to bethe star-shaped polyhedron formed by removing the convex hull of N(v) from theconvex hull of N(v) [ fvg. See Figure 36. Since the boundary of the polyhedronforms a planar graph, one can always �nd a vertex v with a cap with at most �veother vertices. One would like to remove such a cap from the polyhedron, replacingit with at most three tetrahedra, and continue until the polyhedron is triangulated.This would be analogous to triangulating a polygon in the plane by removing a singleear triangle at a time. Since not all polyhedra are tetrahedralizable, this approachdoes not work|the di�culty is that the rest of the polyhedron might penetrateinto the cap, so that it could not be removed without causing the polyhedron tointersect itself.
v

Figure 36. The cap of vertex v.Lemma 12. Let S be a set of vertices of a simple polyhedron with triangularfaces, such that no vertex of S is adjacent to another vertex of S or to a reexedge. Then at most 2r caps of vertices in S are penetrated by other portions of thepolyhedron. 53



Proof Sketch: Suppose the cap of vertex v is penetrated. The faces touching v areboundaries of the polyhedron, so the penetration must occur through the remainingfaces of the cap. Moreover, since no edge can completely cross the cap withoutcrossing a face adjacent to v, there must be a polyhedron vertex interior to the cap.Project all interior vertices onto a line extending from v through the cap,and let w be the vertex with projection closest to v. Then w cannot be in anyother cap penetrating the cap of v, and|it is not hard to show|w can be chosenas closest by at most two other caps not penetrating the cap of v. Line segmentvw must be entirely contained in the polyhedron; otherwise it would cross a face,one vertex of which would be closer to v. And �nally w must be an endpoint ofat least three reex edges; otherwise, one of the faces incident to w would have avertex closer to v. So we can charge penetrated caps one-for-one to endpoints ofreex edges.Theorem 14 (Chazelle and Palios [46]). Any simple polyhedron with n ver-tices and r reex edges can be partitioned into O(n+r2) tetrahedra using O(n+r2)Steiner points.Proof: Start by triangulating the faces of the polyhedron. As in any planar graph,we can �nd 
(n) nonadjacent vertices, all with degree at most six. By Lemma 12,unless n is O(r), one of these vertices has a low-degree cap that is not penetrated.Remove this cap, leaving a smaller polyhedron. The cap itself can be split into O(1)tetrahedra. After we remove all but O(r) vertices, the remaining polyhedron canbe triangulated by the vertical wall method.The resulting partition is not yet a triangulation, because the vertical wallssubdivide the faces of the reduced polyhedron without matching the caps removedfrom those faces. If m wall edges occur on the faces of the cap of vertex v, thenv's cap can be triangulated with O(m) tetrahedra with apex v, and this subdivi-sion does not propagate into other caps. The complexity of the triangulation maygrow if an edge of the reduced polyhedron is shared by many removed caps. Thiscomplication can be handled by surrounding each such edge with a narrow prism-shaped polyhedron before doing the vertical wall construction. Now vertical wallssubdivide the faces of the prism, rather than the edge itself; the prism can be trian-gulated with a single Steiner point. We omit the details of handling the tips of theprisms where they meet at vertices of the reduced polyhedron. The �nal productis a triangulation with O(n+ r2) tetrahedra, that with careful implementation canbe constructed in time O((n + r2) log r) [46].The algorithm just given does not use the assumption that the polyhedronis simple in any essential way, only in the analysis of the number of tetrahedra.Recently, Chazelle and Shouraboura [47] used the Gauss-Bonnet formula to showthat the genus of a polyhedron is bounded by the number of reex edges, therebyextending the same O(n+ r2) bound to non-simple polyhedra.54



Dey [59] and Hershberger and Snoeyink [107] analyze another algorithm|called notch cutting [42]|for convex partition and tetrahedralization of non-simplepolyhedra. This algorithm incrementally bisects reex dihedrals with planes, ex-tending the plane in all directions away from the reex edge until it �rst hits thepolyhedron boundary. Hershberger and Snoeyink prove a tight worst-case bound ofO(nr + r7=3) tetrahedra.These results reveal that nearly convex polyhedra require few Steiner points.The question arises: can we �nd an e�cient algorithm that uses the minimumnumber of Steiner points? Ruppert and Seidel [184] give a negative answer to thisquestion. They show that testing whether Steiner points are necessary to triangulatea given polyhedron is NP-complete (see [92]), even for star-shaped polyhedra (whichcan trivially be triangulated with a single Steiner point). They similarly prove that,for any k, it is NP-hard to test whether k Steiner points su�ce. The following openquestion asks for an approximation algorithm.Open Problem 9. Is there an e�cient algorithm for triangulating any n-vertexpolyhedron into O(m) tetrahedra, where m is the minimum possible number?Certain very special polyhedra can be triangulated without Steiner points.Goodman and Pach [99] prove that the region between two convex polyhedra (theconvex hull of the union, minus the polyhedra) can be tetrahedralized into O(n2)tetrahedra by lifting the polyhedra onto a folded plane in four dimensions. (This re-sult generalizes to arbitrary dimension.) Bern [20] improves this bound to O(n logn)for the region between two nested convex polyhedra. He also shows that even forgeneral polyhedra, only interior Steiner points are necessary. This result may haveapplication to multiple domains (see also [156]); it follows from \fattening" eachface into a roughly prism-shaped solid. Toussaint et al. [215] prove that the unionof three convex polyhedra can be tetrahedralized without Steiner points.Chazelle and Shouraboura [47] improve Bern's O(n logn) bound to linearby reintroducing Steiner points. They also prove that the region between a convexpolyhedron and a terrain (a polyhedral surface intersected once by each verticalline) can be triangulated with O(n logn) tetrahedra, and|remarkably|this boundis tight. Their �rst result raises the following question.Open Problem 10. Can the region between c convex polyhedra (the convex hullof the union, minus the polyhedra) be triangulated with O(n+ c2) tetrahedra?3.2. Optimal TetrahedralizationIn this section, we consider three-dimensional optimal triangulation without Steinerpoints. Since Steiner points are required simply to tetrahedralize nonconvex poly-hedra, this section treats only point sets (and as a special case, convex polyhedra).Even for point sets very little is known. 55



Since a single input has tetrahedralizations of di�erent complexity, a naturaloptimization question is the following. A more general open question asks for aminimum-complexity tetrahedralization of a point set.Open Problem 11. Is there a polynomial-time algorithm for triangulating anarbitrary convex polyhedron with the minimum number of tetrahedra?The Delaunay triangulation (DT) in IR3 contains each tetrahedron withvertices from the input point set, whose circumsphere contains no other input pointson its surface or in its interior. Assuming general position, no �ve points lie on asingle sphere, so this de�nes a triangulation. The complexity of the DT may be ashigh as 
(n2), as shown by the moment curve example (Section 3.1). There doesnot seem to be a reasonable de�nition of constrained DT in three dimensions.The lifting transformation de�ned in Section 2.2.1 generalizes to three (andhigher) dimensions. We map an input point with Cartesian coordinates (x; y; z) tothe point (x; y; z; x2 + y2 + z2). The image points all lie on a paraboloid in fourdimensions; the projection of the lower convex hull back onto the xyz-hyperplanegives the DT. Coupled with an algorithm for computing four-dimensional convexhulls [197], this gives a worst-case optimal, quadratic-time algorithm to computethe DT.There are also direct algorithms. Bowyer [33] and Watson [219, 82] gaveincremental algorithms that are quite popular in practice. Watson's algorithm in-serts points in sorted order by one coordinate, testing all old circumspheres thatintersect the current sweep plane. Bowyer includes evidence that his algorithm runsin time O(n4=3) for a random point set. Dwyer [68] gives a linear-expected-timealgorithm for random points in the unit ball.Joe [115] and Rajan [176] generalize the ip algorithm for DT construction.In three dimensions, ips involve sets of �ve points, forming a tetrahedral bipyramid.Such a �gure can be tetrahedralized in two ways: either as a pair of tetrahedraseparated by a face, or as three tetrahedra surrounding an interior diagonal. Thusips trade two tetrahedra for three, or vice versa. See Figure 37. Starting froman arbitrary tetrahedralization, however, the ip algorithm can get stuck in a localoptimum and fail to produce the DT [115].Joe [117] showed that, if we start with the DT of some point set, and adda single point (dividing the tetrahedron containing it into four, or if the new pointis outside the convex hull, adding tetrahedra connecting it to the triangles it cansee), then ipping from the resulting triangulation never gets stuck. All tetrahe-dra involved in ips are neighbors of the new vertex, so in some sense this ippingprocedure becomes two- rather than three-dimensional. This result gives anotherO(n2)-time algorithm for computing the DT: add points one by one (say, in sortedorder by x-coordinate) and, after each addition, ip until the DT is reached. Ra-jan [176] described a similar procedure for incrementally adding points and ipping56



Figure 37. Two ways of tetrahedralizing �ve points.tetrahedra to �nd the DT. His procedure ips tetrahedra in the order correspond-ing to the changes in the convex hull of the lifted points as the new point is movedvertically down onto the paraboloid. Thus, Rajan's algorithm generalizes to higher-dimensional DT construction. Edelsbrunner and Shah [73] extended Joe's algorithmto higher dimensions and to regular triangulations of weighted points.Though the worst-case time bound for computing the three-dimensionalDT must be 
(n2), an \output-sensitive" algorithm runs much more quickly onsimple input instances. Techniques recently developed by Matou�sek [148] for half-space range queries give an algorithm with running time O(n4=3+�+ k logn), wherek is the complexity of the DT. See Fortune's survey [88] for more details on three-dimensional DT algorithms, including some important implementation issues.Because the DT possesses so many optimality properties in two dimensions,geometers long suspected that it should optimize something in three dimensions.Recently, Rajan [176] discovered the �rst such result. (His result actually holds inall dimensions.) The min-containment sphere of a simplex t is the smallest spherecontaining t. If t contains its circumcenter, then the min-containment sphere isidentical to the circumsphere. Otherwise, the min-containment sphere circumscribesa lower-dimensional face of t. For example, in two dimensions, the min-containmentsphere is either the circumcircle or the diameter circle of the longest edge. Rajanproved the following, which generalizes a result of D'Azevedo and Simpson for theplanar case [55].Theorem 15 (Rajan [176]). The Delaunay triangulation is the triangulation thatminimizes the maximum radius of a min-containment sphere.Proof Sketch: Lift the points to the paraboloid (x; y; z; x2+y2+z2). Any spherein IR3 corresponds to a hyperplane in four dimensions cutting this paraboloid. LetT be any triangulation, and for any tetrahedron t in T , de�ne H(t) to be the half-space above the hyperplane corresponding to the circumsphere of t. If S is the min-containment sphere of t, the radius of S corresponds to the vertical distance betweenthe lifted center of S and H(t). Now form a polytope P (T ) as the intersectionof all such halfspaces. (This projects to a power diagram|see Section 2.2.1|inthe original space.) Then the largest min-containment sphere corresponds to the57



Figure 38. The DT (left) contains a very at \sliver" tetrahedron.largest distance between this polytope and the portion of the paraboloid to whichthe convex hull of the input can be lifted. The DT is the convex hull of the liftedpoints, so it is lower than any other possible polytope P (T ), and hence minimizesthis distance.Dey (personal communication) observed that for cospherical points, all tri-angulations have the same maximum min-containment radius, so any completionof the Delaunay triangulation solves the degenerate case. Figure 38 gives a coun-terexample to the plausible conjecture that the DT also minimizes the radius of thelargest circumsphere.Recently, Schmitt and Spehner [192] proved a second optimality theoremthat holds in arbitrary dimension. We describe the result for IR3. De�ne the co-angle of a triangle in a tetrahedron t to be half the angle of the cone with apexat t's circumcenter and base equal to the triangle's circumcircle. Using a liftingargument as above, Schmitt and Spehner prove that each interior face in a DT hasa sum of co-angles (one from each side) at most 180�, while any other triangulationhas a face that exceeds 180�. This result is the three-dimensional analog of the factthat a reversed quadrilateral has unsplit angles summing to more than 180�.3.3. Steiner TetrahedralizationWe have already touched on the subject of Steiner tetrahedralization in Section 3.1,because tetrahedralizing a nonconvex polyhedron may require Steiner points. Wenow discuss problems in which Steiner points are used to improve the quality of thesolution.3.3.1. Reducing Delaunay TriangulationsThe Delaunay triangulation of a set of n points in IR3 may have 
(n2) tetrahedra,though a \typical" point set has only O(n) [68]. This raises the question of whetherSteiner points can be used to reduce the complexity of the DT.58



Chazelle et al. [44] answered this question a�rmatively by showing that forany point set, there exists a set of O(n1=2 log3 n) points, such that the Delaunaytriangulation of the union of the two point sets has O(n3=2 log3 n) tetrahedra. Theirmethod repeatedly �nds a point that lies inside a large number of Delaunay circum-spheres; the addition of such a point removes all the corresponding tetrahedra andreplaces them by O(n) new tetrahedra.The success of this method follows from a combinatorial lemma of indepen-dent interest that holds in arbitrary �xed dimension d. If there are m spheres, eachpassing through a pair of points, then some point of space (not necessarily one ofthe n input points) is interior to 
(m2=(n2 log2d(n2=m))) spheres. Results strongerby log factors hold for diameter spheres and rectangular boxes.Bern, Eppstein, and Gilbert [25] showed how to use more Steiner points,and reduce the complexity of a Delaunay triangulation to O(n). Their techniqueis completely di�erent, and it works for any �xed dimension. The algorithm �rstcomputes a balanced octree (in general, a 2d-ary tree) such that each point is alonein a cube surrounded by empty cubes the same size. The closest cube vertex toeach input point is then replaced by that input point.To reduce the size of the tree, the algorithm identi�es long chains of cubes,say more than 2d levels, in which each cube has only one nonempty child cube. Nextit removes the middle-sized cubes of these chains, leaving small cubes oating insidelarge cubes; then the algorithm surrounds each small cube with a constant numberof layers of cubes its own size. This guarantees that every d-sphere that containsinput points from both inside and outside a small oating cube, also contains at leastone vertex from these layers. Now every point is incident on O(1) maximal emptyspheres, so using the vertices of cubes as Steiner points gives a linear-size Delaunaytriangulation. As just explained, the running time of this algorithm depends on thesize of the initial tree, but long chains can be identi�ed without actually computingthem to give a time bound of O(n logn).3.3.2. Nonobtuse TriangulationThere is more than one way to generalize nonobtuse triangulation to three di-mensions. For a convergence bound on a certain numerical method, Vavasis [217]assumes that no dihedral angle is obtuse. Nonobtuse dihedrals, however, do notimply that the mesh is a Delaunay triangulation. For this implication we need adi�erent generalization: each tetrahedron is self-centered , meaning that it containsits circumcenter [176]. Finally, in order to generalize perpendicular duals, we need astronger condition than self-centered that we shall call fully self-centered : trianglesand tetrahedra are all self-centered.In a recent paper, Bern, Chew, Eppstein, and Mitchell [21] give an algorithmthat solves all these generalizations for point sets in arbitrary dimension d. They59



show how to Steiner-triangulate n input points with O(ndd=2e) path simplices . Apath simplex contains a path of d pairwise orthogonal edges; it is fully self-centeredand all its dihedral angles (angles between (d�1)-dimensional faces) are nonobtuse.The algorithm successively projects the point set onto two-dimensionalplanes, and solves bd=2c planar problems using a linear-complexity all-right-trianglealgorithm for point sets [25, 29]. Back in IRd, the products of right triangles formsolids|right-triangular prisms in IR3|that can be triangulated with path simplices.Bern et al. [21] also give a lower bound result. To explain this result, werequire some preliminaries. Any set of k < d vertices|a (k � 1)-simplex|in ad-dimensional simplex de�nes a (d + 1 � k)-dimensional angle. The angle can bemeasured by placing a small perpendicular sphere (that is, lying in a perpendicular(d + 1� k)-at) around the (k � 1)-simplex, and determining what fraction of thesphere is subtended by the (d + 1 � k)-simplex opposite the (k � 1)-simplex. Forexample, there are two kinds of angles in three dimensions: solid angles which aremeasured by subtended area on a sphere around a vertex, and dihedral angles whichare measured by subtended arc length on a circle around an edge.We can now de�ne 2(d � 1) di�erent no-bad-angle problems. For each k,we can forbid either small or large (d + 1 � k)-angles. To forbid small angles, werequire that all angles be bounded away from zero; to forbid large angles, we requirethat all angles be bounded away from half a sphere. No-small-angle and no-large-angle problems are each linearly ordered by di�culty. No small d-angles implies nobad angles (small or large) of any kind. No small (d � 1)-angles implies no small(d� 2)-angles, and so forth down to no small 2-angles (dihedrals). For large angles,the dimensions reverse, with no large dihedrals �rst, then no large 3-angles, ondown to no large d-angles. A large solid (that, is d-) angle implies bad angles of alltypes. The hardest problem that can be solved with polynomial complexity is theno-large-dihedral problem, and the most stringent bound on dihedral angles is 90�.Still open is the question of whether O(ndd=2e) is the best possible bound forthe no-large-dihedral problem. And, getting back to more realistic mesh generationquestions, no algorithms are known for nonobtuse tetrahedralization of polyhedra.3.3.3. Bounded-Aspect-Ratio Mesh GenerationThe most commonly used de�nition of the aspect ratio of a simplex is the ratio ofthe radii of the circumscribed sphere to the inscribed sphere [82]. Bounded aspectratio is equivalent to no small d-angles. We now give descriptive names to the sixdi�erent types of three-dimensional simplices, classi�ed according to the types ofbad angles allowed. (See [10, 60] for similar classi�cations.)� Round. A round tetrahedron has no bad angles of any kind.� Needle. A needle has one small solid angle, but no small or large dihedrals.60
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Figure 39. The six types of tetrahedra.� Wedge. A wedge has small but not large dihedrals and no large angles of anykind. An example is a tetrahedron that is the convex hull of two far-apart,short perpendicular edges.� Spindle. A spindle has small but not large solid angles, and large but notsmall dihedrals.� Sliver. A sliver has small and large dihedrals, but no large solid angle. Anexample is a tetrahedron formed by four nearly coplanar points, fairly evenlyspaced around a great circle of the circumsphere. Slivers are distinguishedfrom the other bad tetrahedra by a low ratio of circumsphere radius to shortestedge length.� Cap. A cap has a large|nearly at|solid angle. The circumsphere's radiusis hence much larger than the longest edge.What is known on bounded-aspect-ratio triangulation in three dimensions?Bern et al. [25] use octrees (or in general 2d-ary trees) to triangulate point set input,using only a constant times the minimum number of bounded-aspect-ratio tetrahe-dra. Dey, Bajaj, and Sugihara [60] generalize Chew's mesh generation algorithm tothree dimensions. For point sets or convex polyhedra with point holes, this methodavoids all bad tetrahedra except slivers.Mitchell and Vavasis [157] have recently generalized the quadtree polygonmesh generation of Bern et al. [25] to three dimensions, avoiding all types of badtetrahedra. The generalization is not straightforward, primarily because vertices ofpolyhedra may have arbitrary degree.Their algorithm �rst computes a balanced octree that safely separates|that is, by some constant number of cubes|faces of the input polyhedron D. Theoctree is re�ned in three phases: �rst, vertices are separated from nonincident edgesand faces; second, boxes away from vertices are split to separate edges from otheredges and facets; and �nally, boxes away from both vertices and edges are split to61



separate facets from other facets. Cubes are duplicated in Riemann sheets for facesclose together in space, but far apart by geodesic distance.Next the boxes around vertices are merged in order to approximately centereach vertex in its box. The intersection of the boundary ofD and the surface of a boxmust be triangulated with triangles of height a constant fraction of the maximumpossible (as in Section 2.3.3). A complicated set of warping rules conforms the octreeto the edges and facets of D. Finally, warped boxes are triangulated by addingSteiner points near their centers, with tetrahedra radiating from these points.Let A be the minimum aspect ratio of a Steiner triangulation of domainD. (Here the aspect ratio of a triangulation is the maximum aspect ratio of itstetrahedra.) The algorithm just sketched gives a triangulation with aspect ratioat most cA (where c is a constant), that uses at most a constant factor times theminimum number of tetrahedra needed to achieve cA. The proof of this theoremalso requires a new idea beyond [25]. Because no analog of the CDT is known inthree dimensions, Mitchell and Vavasis must compare their tetrahedralization to anoptimal tetrahedralization, showing that at each point in D the tetrahedron chosenby their algorithm is no more than a constant times smaller than the largest possibletetrahedron at that point.Theorem 16 (Mitchell and Vavasis [157]). There is an algorithm, based onoctrees, that computes an approximate optimal-aspect-ratio tetrahedralization ofan arbitrary polyhedral domain, using no more than a constant times the optimalnumber of tetrahedra.The theorem has special importance because the edge skeleton of a bounded-aspect-ratio tetrahedralization has a \separator" of complexity O(n2=3) [153, 154].(A separator is a set of vertices whose removal disconnects the graph into two piecesof roughly equal size.) Nested dissection then saves a factor of O(n) in the asymp-totic time to solve the linear equations that arise in the �nite element method [139].3.4. Heuristically Generated Three-Dimensional MeshesMost of the techniques for generating and improving two-dimensional meshes canbe generalized to three dimensions, though not without some di�culties. See [9,95, 144] for surveys discussing both structured and unstructured meshes primarilyfor uid ow problems. Overall, three-dimensional unstructured mesh generationis still in its early stages of development.3.4.1. Mesh improvementLaplacian smoothing (see Section 2.4.1) generalizes to three dimensions [41, 225],but the improvement it o�ers may not be as signi�cant as in two dimensions.62



There are local tranformations that trade two tetrahedra for three, andthree tetrahedra for two, as discussed above (Section 3.2.1). These transformationsrepresent the analog of the ip procedure in two dimensions, and may be used toimprove a triangulation according to some criterion, such as the Delaunay emptycircumsphere condition. In three dimensions, however, the ip procedure may getstuck in a local optimum that is not a global optimum [115]. Joe [117], Rajan [176],and Edelsbrunner and Shah [73] have shown that, for the Delaunay criterion, specialstarting triangulations always lead to a global optimum. Joe has also used the ipprocedure to locally maximize the minimum solid angle [118]. Starting from theDelaunay triangulation, he signi�cantly improved aspect ratios, while also slightlydecreasing the number of tetrahedra.Rivara re�nement generalizes as follows: split a tetrahedron by addinga triangle with apex equal to the midpoint of the longest edge and base equalto the opposite edge. Recursively split all tetrahedra sharing the bisected edge.This algorithm performs quite well in practice [181], but the generalization of theminimum angle bound is currently open.Open Problem 12. Does repeated application of three-dimensional Rivara re-�nement keep the minimum solid angle bounded away from zero?3.4.2. OctreesYerry and Shephard generalized their quadtree algorithm to a three-dimensionalalgorithm using balanced octrees [225]. They kept the number of \patterns" forboundary cubes manageable by assuming that each cube was cut by at most threefacets of the input polyhedron. In the �nal steps, patterns are warped to approxi-mate the actual boundary of the input, and Laplacian smoothing is applied. Furtherprogress on their octree algorithm is reported by Shephard et al. [203]. Perucchioet al. [169, 189] have also advanced the octree approach with a di�erent way ofhandling boundary cubes.Buratynski [35] uses rectangular octrees, that is, noncubical boxes, and ahierarchical set of warping rules. Boxes are �rst warped to input corners, then inputedges, and �nally input faces. The rules are somewhat simpli�ed by the fact thatthe octree is initially re�ned so that input edges intersect boxes of only one size.(Hence, this method does not come with the theoretical size guarantee of Mitchelland Vavasis's method [157].) Empirically, Buratynski's method seems to give notetrahedra with bad aspect ratio.Field and Smith [85] and others [158, 166] suggest the use of a tetrahedraloctree, built by recursively cutting a \bcc tetrahedron" (body-centered cubic) intoeight copies of itself. Tetrahedra spawn fewer boundary patterns than hexahedra.63



3.4.3. Polyhedron DecompositionCavendish, Field, and Frey [41] developed one of the �rst three-dimensional meshgenerators. Their approach cuts the polyhedron into polygonal cross-sections, addsrandomly chosen Steiner points with average spacing determined by a measure oflocal feature size [40], and then computes the Delaunay triangulation. (See [27, 152]for analyses of DTs of random points.) If Steiner points are su�ciently closelyspaced on the boundaries of the polygonal cross-sections, the DT will be conforming.A �nal improvement step merges tetrahedra or moves Steiner points to removeslivers (very at tetrahedra). Joe [118] is currently working on a generalization ofhis two-dimensional convex-decomposition generator [119].3.4.4. Advancing FrontL�ohner [144, 145], Baker [8, 9], Jameson et al. [111], Peraire et al. [168], and othershave generated tetrahedral meshes for entire aircraft. Typically, something akin tothe advancing front method places Steiner points in layers around the aircraft.Jameson et al. [111] use a number of overlapping structured grids to placeSteiner points, and then produce an unstructured tetrahedral grid with the Delau-nay triangulation.Baker's method [8] starts with a surface triangulation, as described in Sec-tion 2.5 above. Steiner points are then added exterior to the aircraft. Regularlattices of Steiner points surround the aircraft, with the density of Steiner pointsdecreasing away from the surface. A shell of closer-in Steiner points is created byadding a few points along a normal to each surface point. A Delaunay triangulationis computed incrementally, but with violations allowed where the DT would piercethe surface. A �nal improvement step removes slivers. Empirically, the only re-maining tetrahedra of poor aspect ratio are needles near junctures of aircraft parts,such as where the wing joins the fuselage.4. ConclusionsWe have described work in computational geometry motivated by �nite elementmesh generation. This material spans a spectrum from purely theoretical results (forexample, Chazelle's linear-time triangulation algorithm), through a middle ground(our own work on Steiner triangulations), to practical heuristics devised by numer-ical analysts.We believe that worthwhile research is spread throughout this spectrum.We have attempted to gather together these scattered results, and hope this com-pilation proves useful to both theorists and practitioners.64
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