Project

General

Profile

Download (25.7 KB) Statistics
| Branch: | Revision:

library / src / main / res / raw / main_vertex_shader.glsl @ 5e58293a

1
//////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                          //
3
//                                                                                          //
4
// This file is part of Distorted.                                                          //
5
//                                                                                          //
6
// Distorted is free software: you can redistribute it and/or modify                        //
7
// it under the terms of the GNU General Public License as published by                     //
8
// the Free Software Foundation, either version 2 of the License, or                        //
9
// (at your option) any later version.                                                      //
10
//                                                                                          //
11
// Distorted is distributed in the hope that it will be useful,                             //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                           //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                            //
14
// GNU General Public License for more details.                                             //
15
//                                                                                          //
16
// You should have received a copy of the GNU General Public License                        // 
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                       //
18
//////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
precision lowp float;
21

    
22
uniform vec3 u_objD;                 // half of object width x half of object height X half the depth;
23
                                     // point (0,0,0) is the center of the object
24

    
25
uniform float u_Depth;               // max absolute value of v.z ; beyond that the vertex would be culled by the near or far planes.
26
                                     // I read OpenGL ES has a built-in uniform variable gl_DepthRange.near = n,
27
                                     // .far = f, .diff = f-n so maybe u_Depth is redundant
28
                                     // Update: this struct is only available in fragment shaders
29
                                
30
uniform mat4 u_MVPMatrix;            // the combined model/view/projection matrix.
31
uniform mat4 u_MVMatrix;             // the combined model/view matrix.
32
		 
33
attribute vec3 a_Position;           // Per-vertex position.
34
attribute vec3 a_Normal;             // Per-vertex normal vector.
35
attribute vec2 a_TexCoordinate;      // Per-vertex texture coordinate.
36
		  
37
varying vec3 v_Position;             //
38
varying vec3 v_Normal;               //
39
varying vec2 v_TexCoordinate;        //
40

    
41
uniform int vNumEffects;             // total number of vertex effects
42

    
43
#if NUM_VERTEX>0
44
uniform int vType[NUM_VERTEX];       // their types.
45
uniform vec4 vUniforms[3*NUM_VERTEX];// i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
46
                                     // The first vec4 is the Interpolated values,
47
                                     // next is half cache half Center, the third -  the Region.
48
#endif
49

    
50
#if NUM_VERTEX>0
51

    
52
//////////////////////////////////////////////////////////////////////////////////////////////
53
// HELPER FUNCTIONS
54
//////////////////////////////////////////////////////////////////////////////////////////////
55
// The trick below is the if-less version of the
56
//
57
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
58
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
59
// d = min(t,h);
60
//
61
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
62
//
63
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
64
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
65
//
66
//////////////////////////////////////////////////////////////////////////////////////////////
67
// return degree of the point as defined by the bitmap rectangle
68

    
69
float degree_bitmap(in vec2 S, in vec2 PS)
70
  {
71
  vec2 A = sign(PS)*u_objD.xy + S;
72

    
73
  vec2 signA = sign(A);                           //
74
  vec2 signA_SQ = signA*signA;                    // div = PS/A if A!=0, 0 otherwise.
75
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));//
76

    
77
  return 1.0-max(div.x,div.y);
78
  }
79

    
80
//////////////////////////////////////////////////////////////////////////////////////////////
81
// Return degree of the point as defined by the Region. Currently only supports circular regions.
82
//
83
// Let us first introduce some notation.
84
// Let 'PS' be the vector from point P (the current vertex) to point S (the center of the effect).
85
// Let region.xy be the vector from point S to point O (the center point of the region circle)
86
// Let region.z be the radius of the region circle.
87
// (This all should work regardless if S is inside or outside of the circle).
88
//
89
// Then, the degree of a point with respect to a given (circular!) Region is defined by:
90
//
91
// If P is outside the circle, return 0.
92
// Otherwise, let X be the point where the halfline SP meets the region circle - then return |PX|/||SX|,
93
// aka the 'degree' of point P.
94
//
95
// We solve the triangle OPX.
96
// We know the lengths |PO|, |OX| and the angle OPX, because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
97
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so PX = -a + sqrt(a^2 + OX^2 - PO^2)
98
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
99
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
100

    
101
float degree_region(in vec4 region, in vec2 PS)
102
  {
103
  vec2 PO  = PS + region.xy;
104
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
105

    
106
  if( D<=0.0 ) return 0.0;
107

    
108
  float ps_sq = dot(PS,PS);
109
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
110
                                                         // Important: if we want to write
111
                                                         // b = 1/a if a!=0, b=1 otherwise
112
                                                         // we need to write that as
113
                                                         // b = 1 / ( a-(sign(a)-1) )
114
                                                         // [ and NOT 1 / ( a + 1 - sign(a) ) ]
115
                                                         // because the latter, if 0<a<2^-24,
116
                                                         // will suffer from round-off error and in this case
117
                                                         // a + 1.0 = 1.0 !! so 1 / (a+1-sign(a)) = 1/0 !
118
  float DOT  = dot(PS,PO)*one_over_ps_sq;
119

    
120
  return 1.0 / (1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
121
  }
122

    
123
//////////////////////////////////////////////////////////////////////////////////////////////
124
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
125

    
126
float degree(in vec4 region, in vec2 S, in vec2 PS)
127
  {
128
  vec2 PO  = PS + region.xy;
129
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
130

    
131
  if( D<=0.0 ) return 0.0;
132

    
133
  vec2 A = sign(PS)*u_objD.xy + S;
134
  vec2 signA = sign(A);
135
  vec2 signA_SQ = signA*signA;
136
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));
137
  float E = 1.0-max(div.x,div.y);
138

    
139
  float ps_sq = dot(PS,PS);
140
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
141
  float DOT  = dot(PS,PO)*one_over_ps_sq;
142

    
143
  return min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT)),E);
144
  }
145

    
146
//////////////////////////////////////////////////////////////////////////////////////////////
147
// Clamp v.z to (-u_Depth,u_Depth) with the following function:
148
// define h to be, say, 0.7; let H=u_Depth
149
//      if v.z < -hH then v.z = (-(1-h)^2 * H^2)/(v.z+(2h-1)H) -H   (function satisfying f(-hH)=-hH, f'(-hH)=1, lim f(x) = -H)
150
// else if v.z >  hH then v.z = (-(1-h)^2 * H^2)/(v.z-(2h-1)H) +H   (function satisfying f(+hH)=+hH, f'(+hH)=1, lim f(x) = +H)
151
// else v.z = v.z
152

    
153
void restrictZ(inout float v)
154
  {
155
  const float h = 0.7;
156
  float signV = 2.0*max(0.0,sign(v))-1.0;
157
  float c = ((1.0-h)*(h-1.0)*u_Depth*u_Depth)/(v-signV*(2.0*h-1.0)*u_Depth) +signV*u_Depth;
158
  float b = max(0.0,sign(abs(v)-h*u_Depth));
159

    
160
  v = b*c+(1.0-b)*v; // Avoid branching: if abs(v)>h*u_Depth, then v=c; otherwise v=v.
161
  }
162

    
163
//////////////////////////////////////////////////////////////////////////////////////////////
164
// DEFORM EFFECT
165
//
166
// Deform the whole shape of the Object by force V. Algorithm is as follows:
167
//
168
// Suppose we apply force (Vx,Vy) at point (Cx,Cy) (i.e. the center of the effect). Then, first of all,
169
// divide the rectangle into 4 smaller rectangles along the 1 horizontal + 1 vertical lines that pass
170
// through (Cx,Cy). Now suppose we have already understood the following case:
171
//
172
// A vertical (0,Vy) force applied to a rectangle (WxH) in size, at center which is the top-left corner
173
// of the rectangle.  (*)
174
//
175
// If we understand (*), then we understand everything, because in order to compute the movement of the
176
// whole rectangle we can apply (*) 8 times: for each one of the 4 sub-rectangles, apply (*) twice,
177
// once for the vertical component of the force vector, the second time for the horizontal one.
178
//
179
// Let's then compute (*):
180
// 1) the top-left point will move by exactly (0,Vy)
181
// 2) we arbitrarily decide that the top-right point will move by (|Vy|/(|Vy|+A*W))*Vy, where A is some
182
//    arbitrary constant (const float A below). The F(V,W) = (|Vy|/(|Vy|+A*W)) comes from the following:
183
//    a) we want F(V,0) = 1
184
//    b) we want lim V->inf (F) = 1
185
//    c) we actually want F() to only depend on W/V, which we have here.
186
// 3) then the top edge of the rectangle will move along the line Vy*G(x), where G(x) = (1 - (A*W/(|Vy|+A*W))*(x/W)^2)
187
// 4) Now we decide that the left edge of the rectangle will move along Vy*H(y), where H(y) = (1 - |y|/(|Vy|+C*|y|))
188
//    where C is again an arbitrary constant. Again, H(y) comes from the requirement that no matter how
189
//    strong we push the left edge of the rectangle up or down, it can never 'go over itself', but its
190
//    length will approach 0 if squeezed very hard.
191
// 5) The last point we need to compute is the left-right motion of the top-right corner (i.e. if we push
192
//    the top-left corner up very hard, we want to have the top-right corner not only move up, but also to
193
//    the left at least a little bit).
194
//    We arbitrarily decide that, in addition to moving up-down by Vy*F(V,W), the corner will also move
195
//    left-right by I(V,W) = B*W*F(V,W), where B is again an arbitrary constant.
196
// 6) combining 3), 4) and 5) together, we arrive at a movement of an arbitrary point (x,y) away from the
197
//    top-left corner:
198
//    X(x,y) = -B*x * (|Vy|/(|Vy|+A*W)) * (1-(y/H)^2)                               (**)
199
//    Y(x,y) = Vy * (1 - |y|/(|Vy|+C*|y|)) * (1 - (A*W/(|Vy|+A*W))*(x/W)^2)         (**)
200
//
201
// We notice that formulas (**) have been construed so that it is possible to continously mirror them
202
// left-right and up-down (i.e. apply not only to the 'bottom-right' rectangle of the 4 subrectangles
203
// but to all 4 of them!).
204
//
205
// Constants:
206
// a) A : valid values: (0,infinity). 'Bendiness' if the surface - the higher A is, the more the surface
207
//        bends. A<=0 destroys the system.
208
// b) B : valid values: <-1,1>. The amount side edges get 'sucked' inwards when we pull the middle of the
209
//        top edge up. B=0 --> not at all, B=1: a looot. B=-0.5: the edges will actually be pushed outwards
210
//        quite a bit. One can also set it to <-1 or >1, but it will look a bit ridiculous.
211
// c) C : valid values: <1,infinity). The derivative of the H(y) function at 0, i.e. the rate of 'squeeze'
212
//        surface gets along the force line. C=1: our point gets pulled very closely to points above it
213
//        even when we apply only small vertical force to it. The higher C is, the more 'uniform' movement
214
//        along the force line is.
215
//        0<=C<1 looks completely ridiculous and C<0 destroys the system.
216

    
217
void deform(in int effect, inout vec3 v)
218
  {
219
  const vec2 ONE = vec2(1.0,1.0);
220

    
221
  const float A = 0.5;
222
  const float B = 0.2;
223
  const float C = 5.0;
224

    
225
  vec2 center = vUniforms[effect+1].yz;
226
  vec2 ps     = center-v.xy;
227
  vec2 aPS    = abs(ps);
228
  vec2 maxps  = u_objD.xy + abs(center);
229
  float d     = degree_region(vUniforms[effect+2],ps);
230
  vec3 force  = vUniforms[effect].xyz * d;
231
  vec2 aForce = abs(force.xy);
232
  float denom = dot(ps+(1.0-d)*force.xy,ps);
233
  float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));
234
  vec2 Aw = A*maxps;
235
  vec2 quot = ps / maxps;
236
  quot = quot*quot;                          // ( (x/W)^2 , (y/H)^2 ) where x,y are distances from V to center
237

    
238
  float denomV = 1.0 / (aForce.y + Aw.x);
239
  float denomH = 1.0 / (aForce.x + Aw.y);
240

    
241
  vec2 vertCorr= ONE - aPS / ( aForce+C*aPS + (ONE-sign(aForce)) );  // avoid division by 0 when force and PS both are 0
242

    
243
  float mvXvert = -B * ps.x * aForce.y * (1.0-quot.y) * denomV;      // impact the vertical   component of the force vector has on horizontal movement
244
  float mvYhorz = -B * ps.y * aForce.x * (1.0-quot.x) * denomH;      // impact the horizontal component of the force vector has on vertical   movement
245
  float mvYvert =  force.y * (1.0-quot.x*Aw.x*denomV) * vertCorr.y;  // impact the vertical   component of the force vector has on vertical   movement
246
  float mvXhorz = -force.x * (1.0-quot.y*Aw.y*denomH) * vertCorr.x;  // impact the horizontal component of the force vector has on horizontal movement
247

    
248
  v.x -= (mvXvert+mvXhorz);
249
  v.y -= (mvYvert+mvYhorz);
250
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                          // thick bubble
251
  }
252

    
253
//////////////////////////////////////////////////////////////////////////////////////////////
254
// DISTORT EFFECT
255
//
256
// Point (Px,Py) gets moved by vector (Wx,Wy,Wz) where Wx/Wy = Vx/Vy i.e. Wx=aVx and Wy=aVy where 
257
// a=Py/Sy (N --> when (Px,Py) is above (Sx,Sy)) or a=Px/Sx (W) or a=(w-Px)/(w-Sx) (E) or a=(h-Py)/(h-Sy) (S) 
258
// It remains to be computed which of the N,W,E or S case we have: answer: a = min[ Px/Sx , Py/Sy , (w-Px)/(w-Sx) , (h-Py)/(h-Sy) ]
259
// Computations above are valid for screen (0,0)x(w,h) but here we have (-w/2,-h/2)x(w/2,h/2)
260
//  
261
// the vertical part
262
// Let |(v.x,v.y),(ux,uy)| = |PS|, ux-v.x=dx,uy-v.y=dy, f(x) (0<=x<=|SX|) be the shape of the side of the bubble.
263
// H(v.x,v.y) = |PS|>|SX| ? 0 : f(|PX|)
264
// N(v.x,v.y) = |PS|>|SX| ? (0,0,1) : ( -(dx/|PS|)sin(beta), -(dy/|PS|)sin(beta), cos(beta) ) where tan(beta) is f'(|PX|) 
265
// ( i.e. normalize( dx, dy, -|PS|/f'(|PX|))         
266
//
267
// Now we also have to take into account the effect horizontal move by V=(u_dVx[i],u_dVy[i]) will have on the normal vector.
268
// Solution: 
269
// 1. Decompose the V into two subcomponents, one parallel to SX and another perpendicular.
270
// 2. Convince yourself (draw!) that the perpendicular component has no effect on normals.
271
// 3. The parallel component changes the length of |SX| by the factor of a=(|SX|-|Vpar|)/|SX| (where the length
272
//    can be negative depending on the direction)
273
// 4. that in turn leaves the x and y parts of the normal unchanged and multiplies the z component by a!
274
//
275
// |Vpar| = (u_dVx[i]*dx - u_dVy[i]*dy) / sqrt(ps_sq) = (Vx*dx-Vy*dy)/ sqrt(ps_sq)  (-Vy because y is inverted)
276
// a =  (|SX| - |Vpar|)/|SX| = 1 - |Vpar|/((sqrt(ps_sq)/(1-d)) = 1 - (1-d)*|Vpar|/sqrt(ps_sq) = 1-(1-d)*(Vx*dx-Vy*dy)/ps_sq 
277
//
278
// Side of the bubble
279
// 
280
// choose from one of the three bubble shapes: the cone, the thin bubble and the thick bubble          
281
// Case 1: 
282
// f(t) = t, i.e. f(x) = uz * x/|SX|   (a cone)
283
// -|PS|/f'(|PX|) = -|PS|*|SX|/uz but since ps_sq=|PS|^2 and d=|PX|/|SX| then |PS|*|SX| = ps_sq/(1-d)
284
// so finally -|PS|/f'(|PX|) = -ps_sq/(uz*(1-d))
285
//                    
286
// Case 2: 
287
// f(t) = 3t^2 - 2t^3 --> f(0)=0, f'(0)=0, f'(1)=0, f(1)=1 (the bell curve)
288
// here we have t = x/|SX| which makes f'(|PX|) = 6*uz*|PS|*|PX|/|SX|^3.
289
// so -|PS|/f'(|PX|) = (-|SX|^3)/(6uz|PX|) =  (-|SX|^2) / (6*uz*d) but
290
// d = |PX|/|SX| and ps_sq = |PS|^2 so |SX|^2 = ps_sq/(1-d)^2
291
// so finally -|PS|/f'(|PX|) = -ps_sq/ (6uz*d*(1-d)^2)
292
//                  
293
// Case 3:
294
// f(t) = 3t^4-8t^3+6t^2 would be better as this satisfies f(0)=0, f'(0)=0, f'(1)=0, f(1)=1,
295
// f(0.5)=0.7 and f'(t)= t(t-1)^2 >=0 for t>=0 so this produces a fuller, thicker bubble!
296
// then -|PS|/f'(|PX|) = (-|PS|*|SX)) / (12uz*d*(d-1)^2) but |PS|*|SX| = ps_sq/(1-d) (see above!) 
297
// so finally -|PS|/f'(|PX|) = -ps_sq/ (12uz*d*(1-d)^3)  
298
//
299
// Now, new requirement: we have to be able to add up normal vectors, i.e. distort already distorted surfaces.
300
// If a surface is given by z = f(x,y), then the normal vector at (x0,y0) is given by (-df/dx (x0,y0), -df/dy (x0,y0), 1 ).
301
// so if we have two surfaces defined by f1(x,y) and f2(x,y) with their normals expressed as (f1x,f1y,1) and (f2x,f2y,1) 
302
// then the normal to g = f1+f2 is simply given by (f1x+f2x,f1y+f2y,1), i.e. if the third components are equal, then we
303
// can simply add up the first and second components.
304
//
305
// Thus we actually want to compute N(v.x,v.y) = a*(-(dx/|PS|)*f'(|PX|), -(dy/|PS|)*f'(|PX|), 1) and keep adding
306
// the first two components. (a is the horizontal part)
307
        
308
void distort(in int effect, inout vec3 v)
309
  {
310
  vec2 center = vUniforms[effect+1].yz;
311
  vec2 ps = center-v.xy;
312
  vec3 force = vUniforms[effect].xyz;
313
  float d = degree(vUniforms[effect+2],center,ps);
314

    
315
  //v.z += force.z*d;                       // cone
316
  //v.z += force.z*d*d*(3.0-2.0*d);         // thin bubble
317
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0); // thick bubble
318

    
319
  v.xy += d*force.xy;
320
  }
321
 
322
//////////////////////////////////////////////////////////////////////////////////////////////
323
// SINK EFFECT
324
//
325
// Pull P=(v.x,v.y) towards center of the effect with P' = P + (1-h)*dist(S-P)
326
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(S-P)
327
 
328
void sink(in int effect,inout vec3 v)
329
  {
330
  vec2 center = vUniforms[effect+1].yz;
331
  vec2 ps = center-v.xy;
332
  float h = vUniforms[effect].x;
333
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
334
  
335
  v.xy += t*ps;           
336
  }
337

    
338
//////////////////////////////////////////////////////////////////////////////////////////////
339
// PINCH EFFECT
340
//
341
// Pull P=(v.x,v.y) towards the line that
342
// a) passes through the center of the effect
343
// b) forms angle defined in the 2nd interpolated value with the X-axis
344
// with P' = P + (1-h)*dist(line to P)
345
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(line to P)
346

    
347
void pinch(in int effect,inout vec3 v)
348
  {
349
  vec2 center = vUniforms[effect+1].yz;
350
  vec2 ps = center-v.xy;
351
  float h = vUniforms[effect].x;
352
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
353
  float angle = vUniforms[effect].y;
354
  vec2 dir = vec2(sin(angle),-cos(angle));
355

    
356
  v.xy += t*dot(ps,dir)*dir;
357
  }
358

    
359
//////////////////////////////////////////////////////////////////////////////////////////////
360
// SWIRL EFFECT
361
//
362
// Let d be the degree of the current vertex V with respect to center of the effect S and Region vRegion.
363
// This effect rotates the current vertex V by vInterpolated.x radians clockwise around the circle dilated 
364
// by (1-d) around the center of the effect S.
365

    
366
void swirl(in int effect, inout vec3 v)
367
  {
368
  vec2 center  = vUniforms[effect+1].yz;
369
  vec2 PS = center-v.xy;
370
  vec4 SO = vUniforms[effect+2];
371
  float d1_circle = degree_region(SO,PS);
372
  float d1_bitmap = degree_bitmap(center,PS);
373

    
374
  float alpha = vUniforms[effect].x;
375
  float sinA = sin(alpha);
376
  float cosA = cos(alpha);
377

    
378
  vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around center.
379
  vec4 SG = (1.0-d1_circle)*SO;                                // coordinates of the dilated circle P is going to get rotated around
380
  float d2 = max(0.0,degree(SG,center,PS2));                   // make it a max(0,deg) because otherwise when center=left edge of the
381
                                                               // bitmap some points end up with d2<0 and they disappear off view.
382
  v.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2));        // if d2=1 (i.e P=center) we should have P unchanged. How to do it?
383
  }
384

    
385
//////////////////////////////////////////////////////////////////////////////////////////////
386
// WAVE EFFECT
387
//
388
// Directional sinusoidal wave effect.
389
//
390
// This is an effect from a (hopefully!) generic family of effects of the form (vec3 V: |V|=1 , f(x,y) )  (*)
391
// i.e. effects defined by a unit vector and an arbitrary function. Those effects are defined to move each
392
// point (x,y,0) of the XY plane to the point (x,y,0) + V*f(x,y).
393
//
394
// In this case V is defined by angles A and B (sines and cosines of which are precomputed in
395
// EffectQueueVertex and passed in the uniforms).
396
// Let's move V to start at the origin O, let point C be the endpoint of V, and let C' be C's projection
397
// to the XY plane. Then A is defined to be the angle C0C' and angle B is the angle C'O(axisY).
398
//
399
// Also, in this case f(x,y) = amplitude*sin(x/length), with those 2 parameters passed in uniforms.
400
//
401
//////////////////////////////////////////////////////////////////////////////////////////////
402
// How to compute any generic effect of type (*)
403
//////////////////////////////////////////////////////////////////////////////////////////////
404
//
405
// By definition, the vertices move by f(x,y)*V.
406
//
407
// Normals are much more complicated.
408
// Let angle X be the angle (0,Vy,Vz)(0,Vy,0)(Vx,Vy,Vz).
409
// Let angle Y be the angle (Vx,0,Vz)(Vx,0,0)(Vx,Vy,Vz).
410
//
411
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
412
// has 2 tangent vectors given by
413
//
414
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
415
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
416
//
417
// and then obviously the normal N is given by N= SX x SY .
418
//
419
// We still need to remember the note from the distort function about adding up normals:
420
// we first need to 'normalize' the normals to make their third components equal, and then we
421
// simply add up the first and the second component while leaving the third unchanged.
422
//
423
// How to see facts (**) and (***) ? Briefly:
424
// a) compute the 2D analogon and conclude that in this case the tangent SX is given by
425
//    SX = ( cosA*f'(x) +1, sinA*f'(x) )    (where A is the angle vector V makes with X axis )
426
// b) cut the resulting surface with plane P which
427
//    - includes vector V
428
//    - crosses plane XY along line parallel to X axis
429
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
430
//    and our surface (I am talking about the tangent vector which belongs to P) is given by
431
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
432
//
433
//    Matrix of rotation:
434
//
435
//    |sinY|  cosY
436
//    -cosY  |sinY|
437
//
438
// d) compute the above and see that this is equal precisely to SX from (**).
439
// e) repeat points b,c,d in direction Y and come up with (***).
440
//
441
//////////////////////////////////////////////////////////////////////////////////////////////
442
// Note: we should avoid passing certain combinations of parameters to this function. One such known
443
// combination is ( A: small but positive, B: any, amplitude >= length ).
444
// In this case, certain 'unlucky' points have their normals almost horizontal (they got moved by (almost!)
445
// amplitude, and other point length (i.e. <=amplitude) away got moved by 0, so the slope in this point is
446
// very steep). Visual effect is: vast majority of surface pretty much unchanged, but random 'unlucky'
447
// points very dark)
448
//
449
// Generally speaking I'd keep to amplitude < length, as the opposite case has some other problems as well.
450

    
451
void wave(in int effect, inout vec3 v)
452
  {
453
  vec2 center     = vUniforms[effect+1].yz;
454
  float amplitude = vUniforms[effect  ].x;
455
  float length    = vUniforms[effect  ].y;
456

    
457
  vec2 ps = center - v.xy;
458
  float deg = amplitude*degree_region(vUniforms[effect+2],ps);
459

    
460
  if( deg != 0.0 && length != 0.0 )
461
    {
462
    float phase = vUniforms[effect  ].z;
463
    float alpha = vUniforms[effect  ].w;
464
    float beta  = vUniforms[effect+1].x;
465

    
466
    float sinA = sin(alpha);
467
    float cosA = cos(alpha);
468
    float sinB = sin(beta);
469
    float cosB = cos(beta);
470

    
471
    float angle= 1.578*(ps.x*cosB-ps.y*sinB) / length + phase;
472

    
473
    vec3 dir= vec3(sinB*cosA,cosB*cosA,sinA);
474

    
475
    v += sin(angle)*deg*dir;
476
    }
477
  }
478

    
479
#endif
480

    
481
//////////////////////////////////////////////////////////////////////////////////////////////
482
  		  
483
void main()                                                 	
484
  {              
485
  vec3 v = 2.0*u_objD*a_Position;
486
  vec3 n = a_Normal;
487

    
488
#if NUM_VERTEX>0
489

    
490
  vec3 b1;
491
  float len = n.x*n.x+n.y*n.y;
492
  float l = u_objD.x / 2.0;
493

    
494
  if( len>0.0 )
495
    {
496
    len = sqrt(len);
497
    b1 = vec3( n.y/len,-n.x/len,0.0);
498
    }
499
  else
500
    {
501
    b1 = vec3(1.0,0.0,0.0);
502
    }
503

    
504
  vec3 b2 = cross(n,b1);
505
  vec3 v1 = v+b1;
506
  vec3 v2 = v+b2;
507

    
508
  int j=0;
509

    
510
  for(int i=0; i<vNumEffects; i++)
511
    {
512
    if( vType[i]==DISTORT)
513
      {
514
      distort(j,v);
515
      distort(j,v1);
516
      distort(j,v2);
517
      }
518
    else if( vType[i]==DEFORM )
519
      {
520
      deform (j,v);
521
      deform (j,v1);
522
      deform (j,v2);
523
      }
524
    else if( vType[i]==SINK   )
525
      {
526
      sink   (j,v);
527
      sink   (j,v1);
528
      sink   (j,v2);
529
      }
530
    else if( vType[i]==PINCH  )
531
      {
532
      pinch  (j,v);
533
      pinch  (j,v1);
534
      pinch  (j,v2);
535
      }
536
    else if( vType[i]==SWIRL  )
537
      {
538
      swirl  (j,v);
539
      swirl  (j,v1);
540
      swirl  (j,v2);
541
      }
542
    else if( vType[i]==WAVE   )
543
      {
544
      wave   (j,v);
545
      wave   (j,v1);
546
      wave   (j,v2);
547
      }
548

    
549
    j+=3;
550
    }
551

    
552
  n = cross(v1-v,v2-v);
553

    
554
  restrictZ(v.z);
555
#endif
556
   
557
  v_Position      = v;
558
  v_TexCoordinate = a_TexCoordinate;
559
  v_Normal        = normalize(vec3(u_MVMatrix*vec4(n,0.0)));
560
  gl_Position     = u_MVPMatrix*vec4(v,1.0);
561
  }                               
(4-4/6)