Project

General

Profile

Download (16.8 KB) Statistics
| Branch: | Revision:

distorted-objectlib / src / main / java / org / distorted / objectlib / touchcontrol / TouchControlShapeConstant.java @ 57ef6378

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.objectlib.touchcontrol;
21

    
22
import org.distorted.library.main.QuatHelper;
23
import org.distorted.library.type.Static3D;
24
import org.distorted.library.type.Static4D;
25
import org.distorted.objectlib.main.TwistyObject;
26

    
27
///////////////////////////////////////////////////////////////////////////////////////////////////
28

    
29
public abstract class TouchControlShapeConstant extends TouchControl
30
  {
31
  static final float SQ3 = (float)Math.sqrt(3);
32
  static final float SQ6 = (float)Math.sqrt(6);
33

    
34
  private final int mNumFaceAxis;
35
  private final float[] mPoint, mCamera, mTouch;
36
  private final float[] mPoint2D, mMove2D;
37
  private final int[] mEnabledRotAxis;
38
  private final float[] mDistanceCenterFace3D;
39
  private final Static3D[] mFaceAxis;
40

    
41
  private int mLastTouchedFace;
42
  private float[][][] mCastedRotAxis;
43
  private Static4D[][] mCastedRotAxis4D;
44
  private float[][] mTouchBorders, mA, mB;
45

    
46
  private final int mSplit;
47
  private final int[][][] mEnabled;
48

    
49
///////////////////////////////////////////////////////////////////////////////////////////////////
50

    
51
  abstract int returnPart(int type, int face, float[] touchPoint);
52
  abstract boolean isInsideFace(int face, float[] point);
53

    
54
///////////////////////////////////////////////////////////////////////////////////////////////////
55

    
56
  TouchControlShapeConstant(TwistyObject object, float[] distance3D, Static3D[] faceAxis)
57
    {
58
    int[] numLayers       = object.getNumLayers();
59
    float[][] cuts        = object.getCuts(numLayers);
60
    boolean[][] rotatable = object.getLayerRotatable(numLayers);
61
    float size            = object.getSize();
62
    Static3D[] rotAxis    = object.getRotationAxis();
63

    
64
    mPoint = new float[3];
65
    mCamera= new float[3];
66
    mTouch = new float[3];
67

    
68
    mPoint2D = new float[2];
69
    mMove2D  = new float[2];
70

    
71
    mSplit      = object.getMovementSplit();
72
    mEnabled    = object.getEnabled();
73
    mFaceAxis   = faceAxis;
74
    mNumFaceAxis= mFaceAxis.length;
75

    
76
    mEnabledRotAxis = new int[rotAxis.length+1];
77

    
78
    mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces
79

    
80
    computeCastedAxis(rotAxis);
81
    computeBorders(cuts,rotatable,size);
82
    computeLinear(rotAxis,faceAxis);
83
    }
84

    
85
///////////////////////////////////////////////////////////////////////////////////////////////////
86
// mCastedRotAxis[1][2]{0,1} are the 2D coords of the 2nd rotAxis cast onto the face defined by the
87
// 1st faceAxis.
88

    
89
  private void computeCastedAxis(Static3D[] rotAxis)
90
    {
91
    mCastedRotAxis   = new float[mNumFaceAxis][rotAxis.length][2];
92
    mCastedRotAxis4D = new Static4D[mNumFaceAxis][rotAxis.length];
93

    
94
    float fx,fy,fz,f;
95

    
96
    for( int casted=0; casted<rotAxis.length; casted++)
97
      {
98
      Static3D a = rotAxis[casted];
99
      mPoint[0]= a.get0();
100
      mPoint[1]= a.get1();
101
      mPoint[2]= a.get2();
102

    
103
      for( int face=0; face<mNumFaceAxis; face++)
104
        {
105
        convertTo2Dcoords( mPoint, face, mCastedRotAxis[face][casted]);
106
        normalize2D(mCastedRotAxis[face][casted]);
107

    
108
        fx = mFaceAxis[face].get0();
109
        fy = mFaceAxis[face].get1();
110
        fz = mFaceAxis[face].get2();
111
        f  = mPoint[0]*fx + mPoint[1]*fy + mPoint[2]*fz;
112
        mCastedRotAxis4D[face][casted] = new Static4D( mPoint[0]-f*fx, mPoint[1]-f*fy, mPoint[2]-f*fz, 0);
113
        }
114
      }
115
    }
116

    
117
///////////////////////////////////////////////////////////////////////////////////////////////////
118

    
119
  private void normalize2D(float[] vect)
120
    {
121
    float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]);
122
    vect[0] /= len;
123
    vect[1] /= len;
124
    }
125

    
126
///////////////////////////////////////////////////////////////////////////////////////////////////
127
// find the casted axis with which our move2D vector forms an angle closest to 90 deg.
128

    
129
  private int computeRotationIndex(int faceAxis, float[] move2D, int[] enabled)
130
    {
131
    float cosAngle, minCosAngle = Float.MAX_VALUE;
132
    int minIndex=0, index;
133
    float m0 = move2D[0];
134
    float m1 = move2D[1];
135
    float len = (float)Math.sqrt(m0*m0 + m1*m1);
136

    
137
    if( len!=0.0f )
138
      {
139
      m0 /= len;
140
      m1 /= len;
141
      }
142
    else
143
      {
144
      m0 = 1.0f;  // arbitrarily
145
      m1 = 0.0f;  //
146
      }
147

    
148
    int numAxis = enabled[0];
149

    
150
    for(int axis=1; axis<=numAxis; axis++)
151
      {
152
      index = enabled[axis];
153
      cosAngle = m0*mCastedRotAxis[faceAxis][index][0] + m1*mCastedRotAxis[faceAxis][index][1];
154
      if( cosAngle<0 ) cosAngle = -cosAngle;
155

    
156
      if( cosAngle<minCosAngle )
157
        {
158
        minCosAngle=cosAngle;
159
        minIndex = index;
160
        }
161
      }
162

    
163
    return minIndex;
164
    }
165

    
166
///////////////////////////////////////////////////////////////////////////////////////////////////
167
// in the center of the face offset is always 0 regardless of the axis
168

    
169
  private float computeOffset(float[] point, float[] axis)
170
    {
171
    return point[0]*axis[0] + point[1]*axis[1];
172
    }
173

    
174
///////////////////////////////////////////////////////////////////////////////////////////////////
175

    
176
  private boolean faceIsVisible(int index)
177
    {
178
    Static3D faceAxis = mFaceAxis[index];
179
    float castCameraOnAxis = mCamera[0]*faceAxis.get0() + mCamera[1]*faceAxis.get1() + mCamera[2]*faceAxis.get2();
180
    return castCameraOnAxis > mDistanceCenterFace3D[index];
181
    }
182

    
183
///////////////////////////////////////////////////////////////////////////////////////////////////
184
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
185
// compute point 'output[]' which:
186
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0))
187
// 2) is co-linear with mCamera and mPoint
188
//
189
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)]
190

    
191
  private void castTouchPointOntoFace(int index, float[] output)
192
    {
193
    Static3D faceAxis = mFaceAxis[index];
194

    
195
    float d0 = mPoint[0]-mCamera[0];
196
    float d1 = mPoint[1]-mCamera[1];
197
    float d2 = mPoint[2]-mCamera[2];
198
    float a0 = faceAxis.get0();
199
    float a1 = faceAxis.get1();
200
    float a2 = faceAxis.get2();
201

    
202
    float denom = a0*d0 + a1*d1 + a2*d2;
203

    
204
    if( denom != 0.0f )
205
      {
206
      float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2];
207
      float alpha = (mDistanceCenterFace3D[index]-axisCam)/denom;
208

    
209
      output[0] = mCamera[0] + d0*alpha;
210
      output[1] = mCamera[1] + d1*alpha;
211
      output[2] = mCamera[2] + d2*alpha;
212
      }
213
    }
214

    
215
///////////////////////////////////////////////////////////////////////////////////////////////////
216
// Convert the 3D point3D into a 2D point on the same face surface, but in a different
217
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects
218
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the
219
// original 3D Y axis and our 2D in-plane origin.
220
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only
221
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to
222
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily
223
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole)
224

    
225
  private void convertTo2Dcoords(float[] point3D, int index , float[] output)
226
    {
227
    Static3D faceAxis = mFaceAxis[index];
228

    
229
    float y0,y1,y2; // base Y vector of the 2D coord system
230
    float a0 = faceAxis.get0();
231
    float a1 = faceAxis.get1();
232
    float a2 = faceAxis.get2();
233

    
234
    if( a0==0.0f && a2==0.0f )
235
      {
236
      y0=0; y1=0; y2=-a1;
237
      }
238
    else if( a1==0.0f )
239
      {
240
      y0=0; y1=1; y2=0;
241
      }
242
    else
243
      {
244
      float norm = (float)(-a1/Math.sqrt(1-a1*a1));
245
      y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2;
246
      }
247

    
248
    float x0 = y1*a2 - y2*a1;  //
249
    float x1 = y2*a0 - y0*a2;  // (2D coord baseY) x (axis) = 2D coord baseX
250
    float x2 = y0*a1 - y1*a0;  //
251

    
252
    float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2;
253

    
254
    float origin0 = originAlpha*a0; // coords of the point where axis
255
    float origin1 = originAlpha*a1; // intersects surface plane i.e.
256
    float origin2 = originAlpha*a2; // the origin of our 2D coord system
257

    
258
    float v0 = point3D[0] - origin0;
259
    float v1 = point3D[1] - origin1;
260
    float v2 = point3D[2] - origin2;
261

    
262
    output[0] = v0*x0 + v1*x1 + v2*x2;
263
    output[1] = v0*y0 + v1*y1 + v2*y2;
264
    }
265

    
266
///////////////////////////////////////////////////////////////////////////////////////////////////
267

    
268
  private float[] computeBorder(float[] cuts, boolean[] rotatable, float size)
269
    {
270
    if( cuts==null ) return null;
271

    
272
    int len = cuts.length;
273
    float[] border = new float[len];
274

    
275
    for(int i=0; i<len; i++)
276
      {
277
      if( !rotatable[i] )
278
        {
279
        border[i] = i>0 ? border[i-1] : -Float.MAX_VALUE;
280
        }
281
      else
282
        {
283
        if( rotatable[i+1] ) border[i] = cuts[i]/size;
284
        else
285
          {
286
          int found = -1;
287

    
288
          for(int j=i+2; j<=len; j++)
289
            {
290
            if( rotatable[j] )
291
              {
292
              found=j;
293
              break;
294
              }
295
            }
296

    
297
          border[i] = found>0 ? (cuts[i]+cuts[found-1])/(2*size) : Float.MAX_VALUE;
298
          }
299
        }
300
      }
301

    
302
    return border;
303
    }
304

    
305
///////////////////////////////////////////////////////////////////////////////////////////////////
306
// size, not numLayers (see Master Skewb where size!=numLayers) - also cuboids.
307

    
308
  void computeBorders(float[][] cuts, boolean[][] rotatable, float size)
309
    {
310
    int numCuts = cuts.length;
311
    mTouchBorders = new float[numCuts][];
312

    
313
    for(int axis=0; axis<numCuts; axis++)
314
      {
315
      mTouchBorders[axis] = computeBorder(cuts[axis],rotatable[axis],size);
316
      }
317
    }
318

    
319
///////////////////////////////////////////////////////////////////////////////////////////////////
320

    
321
  private int computeSign(Static3D a, Static3D b)
322
    {
323
    float a1 = a.get0();
324
    float a2 = a.get1();
325
    float a3 = a.get2();
326
    float b1 = b.get0();
327
    float b2 = b.get1();
328
    float b3 = b.get2();
329

    
330
    return a1*b1+a2*b2+a3*b3 < 0 ? 1:-1;
331
    }
332

    
333
///////////////////////////////////////////////////////////////////////////////////////////////////
334

    
335
  private float crossProductLen(Static3D a, Static3D b)
336
    {
337
    float a1 = a.get0();
338
    float a2 = a.get1();
339
    float a3 = a.get2();
340
    float b1 = b.get0();
341
    float b2 = b.get1();
342
    float b3 = b.get2();
343

    
344
    float x1 = a2*b3-a3*b2;
345
    float x2 = a3*b1-a1*b3;
346
    float x3 = a1*b2-a2*b1;
347

    
348
    return (float)Math.sqrt(x1*x1 + x2*x2 + x3*x3);
349
    }
350

    
351
///////////////////////////////////////////////////////////////////////////////////////////////////
352
// compute the array of 'A' and 'B' coeffs of the Ax+B linear function by which we need to multiply
353
// the 3D 'cuts' to translate it from 3D (i.e. with respect to the rotAxis) to 2D in-face (i.e. with
354
// respect to the 2D rotAxis cast into a particular face)
355

    
356
  private void computeLinear(Static3D[] rotAxis, Static3D[] faceAxis)
357
    {
358
    int numFaces = faceAxis.length;
359
    int numRot   = rotAxis.length;
360

    
361
    mA = new float[numFaces][numRot];
362
    mB = new float[numFaces][numRot];
363

    
364
    for(int i=0; i<numFaces; i++)
365
      for(int j=0; j<numRot; j++)
366
        {
367
        mA[i][j] = crossProductLen(faceAxis[i],rotAxis[j]);
368

    
369
        if( mA[i][j]!=0.0f )
370
          {
371
          float coeff = (float)Math.sqrt(1/(mA[i][j]*mA[i][j]) -1);
372
          int sign = computeSign(faceAxis[i],rotAxis[j]);
373
          mB[i][j] = sign*coeff*mDistanceCenterFace3D[i];
374
          }
375
        else mB[i][j] = 0.0f;
376
        }
377
    }
378

    
379
///////////////////////////////////////////////////////////////////////////////////////////////////
380

    
381
  private int computeRowFromOffset(int face, int axisIndex, float offset)
382
    {
383
    float[] borders = mTouchBorders[axisIndex];
384

    
385
    if( borders==null ) return 0;
386

    
387
    int len = borders.length;
388
    float A = mA[face][axisIndex];
389

    
390
    if( A!=0.0f )
391
      {
392
      float B = mB[face][axisIndex];
393

    
394
      for(int i=0; i<len; i++)
395
        {
396
        float translated = B + borders[i]/A;
397
        if( offset<translated ) return i;
398
        }
399
      }
400

    
401
    return len;
402
    }
403

    
404
///////////////////////////////////////////////////////////////////////////////////////////////////
405

    
406
  void computeEnabledAxis(int face, float[] touchPoint, int[] enabled)
407
    {
408
    int part = returnPart(mSplit,face,touchPoint);
409

    
410
    int num = mEnabled[face][0].length;
411
    enabled[0] = num;
412
    System.arraycopy(mEnabled[face][part], 0, enabled, 1, num);
413
    }
414

    
415
///////////////////////////////////////////////////////////////////////////////////////////////////
416
// PUBLIC API
417
///////////////////////////////////////////////////////////////////////////////////////////////////
418

    
419
  public boolean objectTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera)
420
    {
421
    mPoint[0]  = rotatedTouchPoint.get0()/mObjectRatio;
422
    mPoint[1]  = rotatedTouchPoint.get1()/mObjectRatio;
423
    mPoint[2]  = rotatedTouchPoint.get2()/mObjectRatio;
424

    
425
    mCamera[0] = rotatedCamera.get0()/mObjectRatio;
426
    mCamera[1] = rotatedCamera.get1()/mObjectRatio;
427
    mCamera[2] = rotatedCamera.get2()/mObjectRatio;
428

    
429
    for( mLastTouchedFace=0; mLastTouchedFace<mNumFaceAxis; mLastTouchedFace++)
430
      {
431
      if( faceIsVisible(mLastTouchedFace) )
432
        {
433
        castTouchPointOntoFace(mLastTouchedFace, mTouch);
434
        convertTo2Dcoords(mTouch, mLastTouchedFace, mPoint2D);
435
        if( isInsideFace(mLastTouchedFace,mPoint2D) ) return true;
436
        }
437
      }
438

    
439
    return false;
440
    }
441

    
442
///////////////////////////////////////////////////////////////////////////////////////////////////
443

    
444
  public void newRotation(int[] output, Static4D rotatedTouchPoint)
445
    {
446
    mPoint[0] = rotatedTouchPoint.get0()/mObjectRatio;
447
    mPoint[1] = rotatedTouchPoint.get1()/mObjectRatio;
448
    mPoint[2] = rotatedTouchPoint.get2()/mObjectRatio;
449

    
450
    castTouchPointOntoFace(mLastTouchedFace, mTouch);
451
    convertTo2Dcoords(mTouch, mLastTouchedFace, mMove2D);
452

    
453
    mMove2D[0] -= mPoint2D[0];
454
    mMove2D[1] -= mPoint2D[1];
455

    
456
    computeEnabledAxis(mLastTouchedFace, mPoint2D, mEnabledRotAxis);
457
    int rotIndex = computeRotationIndex(mLastTouchedFace, mMove2D, mEnabledRotAxis);
458
    float offset = computeOffset(mPoint2D, mCastedRotAxis[mLastTouchedFace][rotIndex]);
459
    int row      = computeRowFromOffset(mLastTouchedFace,rotIndex,offset);
460

    
461
    output[0] = rotIndex;
462
    output[1] = row;
463
    }
464

    
465
///////////////////////////////////////////////////////////////////////////////////////////////////
466
// cast the 3D axis we are currently rotating along (which is already casted to the surface of the
467
// currently touched face AND converted into a 4D vector - fourth 0) to a 2D in-screen-surface axis
468

    
469
  public void getCastedRotAxis(float[] output, Static4D quat, int rotIndex)
470
    {
471
    Static4D axis = mCastedRotAxis4D[mLastTouchedFace][rotIndex];
472
    Static4D result = QuatHelper.rotateVectorByQuat(axis, quat);
473

    
474
    output[0] =result.get0();
475
    output[1] =result.get1();
476

    
477
    float len = (float)Math.sqrt(output[0]*output[0] + output[1]*output[1]);
478
    output[0] /= len;
479
    output[1] /= len;
480
    }
481

    
482
///////////////////////////////////////////////////////////////////////////////////////////////////
483

    
484
  public int getTouchedFace()
485
    {
486
    return mLastTouchedFace;
487
    }
488

    
489
///////////////////////////////////////////////////////////////////////////////////////////////////
490

    
491
  public float[] getTouchedPoint3D()
492
    {
493
    return mTouch;
494
    }
495
  }
(7-7/8)