Revision 69061d6e
Added by Leszek Koltunski almost 2 years ago
src/main/java/org/distorted/objectlib/helpers/FactoryMirror.java | ||
---|---|---|
1 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
2 |
// Copyright 2023 Leszek Koltunski // |
|
3 |
// // |
|
4 |
// This file is part of Magic Cube. // |
|
5 |
// // |
|
6 |
// Magic Cube is proprietary software licensed under an EULA which you should have received // |
|
7 |
// along with the code. If not, check https://distorted.org/magic/License-Magic-Cube.html // |
|
8 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
9 |
|
|
10 |
package org.distorted.objectlib.helpers; |
|
11 |
|
|
12 |
import org.distorted.library.type.Static3D; |
|
13 |
|
|
14 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
15 |
// 1. for every potentialVertex, if it is on the same side of every plane present as the |
|
16 |
// 'internalPoint', it must be one of the vertices of the ObjectShape. Remember which planes it |
|
17 |
// belongs to and add it to the list of vertices. |
|
18 |
// 2. Having complete list of vertices and a bitmap of which planes each vertex belongs to, for each |
|
19 |
// plane: |
|
20 |
// a) assemble the list of vertices that belong to this plane |
|
21 |
// b) compute their center of mass and using this as a pivot, arrange the list into CCW order |
|
22 |
// c) out of the vertices and the CCW'd indices, construct an ObjectShape. |
|
23 |
|
|
24 |
public class FactoryMirror |
|
25 |
{ |
|
26 |
public static ObjectShape createShape(float[][] cutPlanes, float[][] potentialVertices, float[] position, float[] internalPoint) |
|
27 |
{ |
|
28 |
int numV = potentialVertices.length; |
|
29 |
float[][] tmp = new float[numV][]; |
|
30 |
int numVertices = 0; |
|
31 |
|
|
32 |
android.util.Log.e("d","numPotential="+numV+" internal: "+internalPoint[0]+" "+internalPoint[1]+" "+internalPoint[2]); |
|
33 |
|
|
34 |
for( float[] vert : potentialVertices ) |
|
35 |
{ |
|
36 |
boolean ok = true; |
|
37 |
|
|
38 |
for(float[] cutPlane : cutPlanes) |
|
39 |
{ |
|
40 |
if( isOnDifferentSides(internalPoint, vert, cutPlane) ) |
|
41 |
{ |
|
42 |
ok = false; |
|
43 |
break; |
|
44 |
} |
|
45 |
} |
|
46 |
|
|
47 |
if( ok ) |
|
48 |
{ |
|
49 |
android.util.Log.d("d","adding vert "+vert[0]+" "+vert[1]+" "+vert[2]); |
|
50 |
tmp[numVertices] = vert; |
|
51 |
numVertices++; |
|
52 |
} |
|
53 |
} |
|
54 |
|
|
55 |
float[][] vertices = new float[numVertices][]; |
|
56 |
|
|
57 |
for(int v=0; v<numVertices; v++) |
|
58 |
{ |
|
59 |
float[] t = tmp[v]; |
|
60 |
vertices[v] = new float[] { t[0],t[1],t[2] }; |
|
61 |
} |
|
62 |
|
|
63 |
android.util.Log.d("d","added "+numVertices+" verts"); |
|
64 |
|
|
65 |
int numP = cutPlanes.length; |
|
66 |
int[] numVerticesOnPlane = new int[numP]; |
|
67 |
int[][] verticesOnPlane = new int[numP][numVertices]; |
|
68 |
|
|
69 |
for(int p=0; p<numP; p++) |
|
70 |
{ |
|
71 |
float[] plane = cutPlanes[p]; |
|
72 |
|
|
73 |
for(int v=0; v<numVertices; v++) |
|
74 |
{ |
|
75 |
float[] vert = vertices[v]; |
|
76 |
|
|
77 |
if( vertexOnPlane(vert,plane) ) |
|
78 |
{ |
|
79 |
verticesOnPlane[p][numVerticesOnPlane[p]] = v; |
|
80 |
numVerticesOnPlane[p]++; |
|
81 |
} |
|
82 |
} |
|
83 |
} |
|
84 |
|
|
85 |
int numFaces = 0; |
|
86 |
for(int p=0; p<numP; p++) |
|
87 |
if( numVerticesOnPlane[p]>=3 ) numFaces++; |
|
88 |
|
|
89 |
int[][] indices = new int[numFaces][]; |
|
90 |
int index = 0; |
|
91 |
|
|
92 |
for(int p=0; p<numP; p++ ) |
|
93 |
if( numVerticesOnPlane[p]>=3 ) |
|
94 |
{ |
|
95 |
float[] center = computeCenterOfMass(vertices,numVerticesOnPlane[p],verticesOnPlane[p]); |
|
96 |
indices[index] = arrangeCCW(center,cutPlanes[p],vertices,numVerticesOnPlane[p],verticesOnPlane[p]); |
|
97 |
index++; |
|
98 |
} |
|
99 |
|
|
100 |
for( float[] v: vertices ) |
|
101 |
{ |
|
102 |
v[0] -= position[0]; |
|
103 |
v[1] -= position[1]; |
|
104 |
v[2] -= position[2]; |
|
105 |
} |
|
106 |
|
|
107 |
return new ObjectShape(vertices,indices); |
|
108 |
} |
|
109 |
|
|
110 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
111 |
// return arithmetic average of the vertices. |
|
112 |
|
|
113 |
private static float[] computeCenterOfMass(float[][] vertices, int num, int[] indices) |
|
114 |
{ |
|
115 |
float[] ret = new float[3]; |
|
116 |
|
|
117 |
for( int i : indices ) |
|
118 |
{ |
|
119 |
float[] v = vertices[i]; |
|
120 |
|
|
121 |
ret[0] += v[0]; |
|
122 |
ret[1] += v[1]; |
|
123 |
ret[2] += v[2]; |
|
124 |
} |
|
125 |
|
|
126 |
ret[0] /= num; |
|
127 |
ret[1] /= num; |
|
128 |
ret[2] /= num; |
|
129 |
|
|
130 |
return ret; |
|
131 |
} |
|
132 |
|
|
133 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
134 |
// Return true iff 'vertex' lies in the plane 'plane' |
|
135 |
|
|
136 |
private static boolean vertexOnPlane(float[] vertex, float[] plane) |
|
137 |
{ |
|
138 |
final float MAXERROR = 0.01f; |
|
139 |
float d = vertex[0]*plane[0] + vertex[1]*plane[1] + vertex[2]*plane[2] - plane[3]; |
|
140 |
return (d>=-MAXERROR && d<=MAXERROR); |
|
141 |
} |
|
142 |
|
|
143 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
144 |
// return true iff points p0 and p1 are on different sides of plane 'plane'. [ i.e. every way from |
|
145 |
// p0 to p1, always has to pass through at least one point from 'plane' ] |
|
146 |
|
|
147 |
private static boolean isOnDifferentSides(float[] p0, float[] p1, float[] plane) |
|
148 |
{ |
|
149 |
final float MAXERROR = 0.01f; |
|
150 |
|
|
151 |
float d0 = p0[0]*plane[0] + p0[1]*plane[1] + p0[2]*plane[2] - plane[3]; |
|
152 |
float d1 = p1[0]*plane[0] + p1[1]*plane[1] + p1[2]*plane[2] - plane[3]; |
|
153 |
|
|
154 |
if( d0>=-MAXERROR && d0<=MAXERROR ) return false; |
|
155 |
if( d0>MAXERROR ) return d1<-MAXERROR; |
|
156 |
return d1>MAXERROR; |
|
157 |
} |
|
158 |
|
|
159 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
160 |
// return indices 'indices', but cut to only 'num' of them [original 'indices' array can be longer] |
|
161 |
// and arranged so that the 'vertices' those indices are indices for are in counter-clockwise order |
|
162 |
// [starting from an arbitrary one]. center is their center of mass. |
|
163 |
// |
|
164 |
// a) for every vertex, compute the angle the vector from 'center' to this vertex forms with an |
|
165 |
// arbitrary line [for example the vector from center to the first vertex] |
|
166 |
// b) sort the vertices by this angle [ascending] |
|
167 |
|
|
168 |
private static int[] arrangeCCW(float[] center, float[] plane, float[][] vertices, int num, int[] indices) |
|
169 |
{ |
|
170 |
float[] angles = new float[num]; |
|
171 |
|
|
172 |
int j= indices[0]; |
|
173 |
float vx = vertices[j][0] - center[0]; |
|
174 |
float vy = vertices[j][1] - center[1]; |
|
175 |
float vz = vertices[j][2] - center[2]; |
|
176 |
|
|
177 |
float len = (float)Math.sqrt(vx*vx + vy*vy + vz*vz); |
|
178 |
|
|
179 |
vx /= len; |
|
180 |
vy /= len; |
|
181 |
vz /= len; |
|
182 |
|
|
183 |
for(int i=0; i<num; i++) |
|
184 |
{ |
|
185 |
int index = indices[i]; |
|
186 |
float[] v = vertices[index]; |
|
187 |
|
|
188 |
float wx = v[0]-center[0]; |
|
189 |
float wy = v[1]-center[1]; |
|
190 |
float wz = v[2]-center[2]; |
|
191 |
|
|
192 |
float l = (float)Math.sqrt(wx*wx + wy*wy + wz*wz); |
|
193 |
|
|
194 |
wx /= l; |
|
195 |
wy /= l; |
|
196 |
wz /= l; |
|
197 |
|
|
198 |
angles[i] = computeAngle(plane,vx,vy,vz,wx,wy,wz); |
|
199 |
} |
|
200 |
|
|
201 |
int[] ret = new int[num]; |
|
202 |
for(int i=0; i<num; i++) ret[i] = indices[i]; |
|
203 |
|
|
204 |
bubbleSort(angles,ret,num); |
|
205 |
|
|
206 |
return ret; |
|
207 |
} |
|
208 |
|
|
209 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
210 |
// strange version of bubbleSort where we sort array 'arr2' according to values of different array |
|
211 |
// 'arr1'. |
|
212 |
|
|
213 |
private static void bubbleSort(float[] arr1, int[] arr2, int n) |
|
214 |
{ |
|
215 |
int i, j, temp; |
|
216 |
boolean swapped; |
|
217 |
float tmp; |
|
218 |
|
|
219 |
for( i=0; i<n-1; i++ ) |
|
220 |
{ |
|
221 |
swapped = false; |
|
222 |
|
|
223 |
for( j=0; j<n-i-1; j++ ) |
|
224 |
{ |
|
225 |
if( arr1[j] > arr1[j+1] ) |
|
226 |
{ |
|
227 |
tmp = arr1[j]; |
|
228 |
arr1[j] = arr1[j+1]; |
|
229 |
arr1[j+1]= tmp; |
|
230 |
|
|
231 |
temp = arr2[j]; |
|
232 |
arr2[j] = arr2[j+1]; |
|
233 |
arr2[j+1]= temp; |
|
234 |
|
|
235 |
swapped = true; |
|
236 |
} |
|
237 |
} |
|
238 |
|
|
239 |
if( !swapped ) break; |
|
240 |
} |
|
241 |
} |
|
242 |
|
|
243 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
244 |
// given a plane with normal vector 'normal', and two in-plane vectors p=(px,py,pz) and |
|
245 |
// r=(rx,ry,rz) [in-plane, i.e. cross(p,r) is parallel to 'normal' ] compute the angle between p and r. |
|
246 |
// |
|
247 |
// the angle belongs to <0,2PI) and goes from p to r counter-clockwise (according to the 'normal' - |
|
248 |
// i.e. look at the situation so that the normal points at you and track the angle from p to r) |
|
249 |
// |
|
250 |
// vectors p and r are guaranteed to be normalized. |
|
251 |
// |
|
252 |
// 1. compute scalar product of p and r |
|
253 |
// 2. result is the cosine of the 'smaller' angle between the two |
|
254 |
// 3. a = compute arc cos of this |
|
255 |
// 4. return a or (2PI-a), depending on if cross(p,r) agrees in direction with the normal, or not. |
|
256 |
|
|
257 |
private static float computeAngle(float[] normal, float px, float py, float pz, float rx, float ry, float rz) |
|
258 |
{ |
|
259 |
float s = px*rx + py*ry + pz*rz; |
|
260 |
float a = (float) Math.acos(s); |
|
261 |
float[] cross = crossProduct(px,py,pz,rx,ry,rz); |
|
262 |
float scalar = cross[0]*normal[0] + cross[1]*normal[1] + cross[2]*normal[2]; |
|
263 |
|
|
264 |
return scalar>0 ? a : (float)(2*Math.PI - a); |
|
265 |
} |
|
266 |
|
|
267 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
268 |
|
|
269 |
private static float[] crossProduct(float a1, float a2, float a3, float b1, float b2, float b3) |
|
270 |
{ |
|
271 |
float[] ret = new float[3]; |
|
272 |
|
|
273 |
ret[0] = a2*b3 - a3*b2; |
|
274 |
ret[1] = a3*b1 - a1*b3; |
|
275 |
ret[2] = a1*b2 - a2*b1; |
|
276 |
|
|
277 |
return ret; |
|
278 |
} |
|
279 |
|
|
280 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
281 |
// if normals to planes p1,p2,p3 are linearly independent, than those planes intersect in one point. |
|
282 |
// Return this point. Otherwise, return null. |
|
283 |
|
|
284 |
private static float[] computeCommonPoint(float[] p1, float[] p2, float[] p3) |
|
285 |
{ |
|
286 |
float MAXERROR = 0.01f; |
|
287 |
float det = determinant(p1[0],p1[1],p1[2],p2[0],p2[1],p2[2],p3[0],p3[1],p3[2]); |
|
288 |
|
|
289 |
if( det>=-MAXERROR && det<=MAXERROR ) return null; |
|
290 |
|
|
291 |
float deX = determinant(p1[3],p1[1],p1[2],p2[3],p2[1],p2[2],p3[3],p3[1],p3[2]); |
|
292 |
float deY = determinant(p1[0],p1[3],p1[2],p2[0],p2[3],p2[2],p3[0],p3[3],p3[2]); |
|
293 |
float deZ = determinant(p1[0],p1[1],p1[3],p2[0],p2[1],p2[3],p3[0],p3[1],p3[3]); |
|
294 |
|
|
295 |
return new float[] { deX/det, deY/det, deZ/det }; |
|
296 |
} |
|
297 |
|
|
298 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
299 |
// a1 a2 a3 a1 a2 |
|
300 |
// b1 b2 b3 b1 b2 |
|
301 |
// c1 c2 c3 c1 c2 |
|
302 |
|
|
303 |
private static float determinant(float a1, float a2, float a3, |
|
304 |
float b1, float b2, float b3, |
|
305 |
float c1, float c2, float c3 ) |
|
306 |
{ |
|
307 |
float det = 0; |
|
308 |
|
|
309 |
det += a1*b2*c3; |
|
310 |
det += a2*b3*c1; |
|
311 |
det += a3*b1*c2; |
|
312 |
det -= a3*b2*c1; |
|
313 |
det -= a1*b3*c2; |
|
314 |
det -= a2*b1*c3; |
|
315 |
|
|
316 |
return det; |
|
317 |
} |
|
318 |
|
|
319 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
320 |
|
|
321 |
private static boolean isDifferent(float[][] table, int num, float[] vert) |
|
322 |
{ |
|
323 |
float MAXERROR = 0.01f; |
|
324 |
|
|
325 |
for( int i=0; i<num; i++ ) |
|
326 |
{ |
|
327 |
float[] t = table[i]; |
|
328 |
float dx = t[0]-vert[0]; |
|
329 |
float dy = t[1]-vert[1]; |
|
330 |
float dz = t[2]-vert[2]; |
|
331 |
float dist = dx*dx + dy*dy + dz*dz; |
|
332 |
|
|
333 |
if( dist>=-MAXERROR && dist<=MAXERROR ) return false; |
|
334 |
} |
|
335 |
|
|
336 |
return true; |
|
337 |
} |
|
338 |
|
|
339 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
340 |
|
|
341 |
public static float[][] computePotentialVertices(float[][] cutPlanes) |
|
342 |
{ |
|
343 |
int numPlanes = cutPlanes.length; |
|
344 |
int numRet = numPlanes*(numPlanes-1)*(numPlanes-2)/6; |
|
345 |
float[][] ret = new float[numRet][]; |
|
346 |
int index = 0; |
|
347 |
|
|
348 |
for(int i=0; i<numPlanes; i++) |
|
349 |
for(int j=i+1; j<numPlanes; j++) |
|
350 |
for(int k=j+1; k<numPlanes; k++) |
|
351 |
{ |
|
352 |
float[] vert = computeCommonPoint(cutPlanes[i],cutPlanes[j],cutPlanes[k]); |
|
353 |
|
|
354 |
if( vert!=null && isDifferent(ret,index,vert) ) |
|
355 |
{ |
|
356 |
ret[index] = vert; |
|
357 |
index++; |
|
358 |
} |
|
359 |
} |
|
360 |
|
|
361 |
if( index<numRet ) |
|
362 |
{ |
|
363 |
float[][] ret2 = new float[index][]; |
|
364 |
for(int i=0; i<index; i++) ret2[i] = ret[i]; |
|
365 |
return ret2; |
|
366 |
} |
|
367 |
|
|
368 |
return ret; |
|
369 |
} |
|
370 |
|
|
371 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
372 |
// does the (x,y,z) point belong to the face defined by (faceAxis,dist) ? |
|
373 |
|
|
374 |
private static boolean isInFaces(Static3D[] faceAxis, float[] dist3D, float x, float y, float z) |
|
375 |
{ |
|
376 |
final float MAXERR = 0.01f; |
|
377 |
int numA = faceAxis.length; |
|
378 |
|
|
379 |
for(int a=0; a<numA; a++) |
|
380 |
{ |
|
381 |
Static3D ax = faceAxis[a]; |
|
382 |
float dist = x*ax.get0() + y*ax.get1() + z*ax.get2(); |
|
383 |
float diff = dist-dist3D[a]; |
|
384 |
if( diff>-MAXERR && diff<MAXERR ) return true; |
|
385 |
} |
|
386 |
|
|
387 |
return false; |
|
388 |
} |
|
389 |
|
|
390 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
391 |
// return a table of indices.length ints. |
|
392 |
// Nth int is 0 if the face defined by indices[N] is an external one; 1 otherwise. |
|
393 |
|
|
394 |
public static int[] produceBandIndices(float[][] vertices, int[][] indices, Static3D[] faceAxis, float[] dist3D ) |
|
395 |
{ |
|
396 |
int numF = indices.length; |
|
397 |
int[] ret = new int[numF]; |
|
398 |
float x,y,z; |
|
399 |
|
|
400 |
for(int f=0; f<numF; f++) |
|
401 |
{ |
|
402 |
int[] faceI = indices[f]; |
|
403 |
x = y = z = 0; |
|
404 |
|
|
405 |
for(int i : faceI) |
|
406 |
{ |
|
407 |
float[] vertex = vertices[i]; |
|
408 |
x += vertex[0]; |
|
409 |
y += vertex[1]; |
|
410 |
z += vertex[2]; |
|
411 |
} |
|
412 |
|
|
413 |
int numV = faceI.length; |
|
414 |
x /= numV; |
|
415 |
y /= numV; |
|
416 |
z /= numV; |
|
417 |
|
|
418 |
ret[f] = isInFaces(faceAxis,dist3D, x,y,z) ? 0 : 1; |
|
419 |
} |
|
420 |
|
|
421 |
return ret; |
|
422 |
} |
|
423 |
|
|
424 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
425 |
// how many faces does the point 'vert' belong to? (i.e. 3-->corner, 2-->edge, 1--> face point, |
|
426 |
// 0 --> internal |
|
427 |
|
|
428 |
private static int numberInFaces(float[] vert, Static3D[] faceAxis, float[] dist3D) |
|
429 |
{ |
|
430 |
final float MAXERR = 0.01f; |
|
431 |
int numA = faceAxis.length; |
|
432 |
int ret = 0; |
|
433 |
float x = vert[0]; |
|
434 |
float y = vert[1]; |
|
435 |
float z = vert[2]; |
|
436 |
|
|
437 |
for(int a=0; a<numA; a++) |
|
438 |
{ |
|
439 |
Static3D ax = faceAxis[a]; |
|
440 |
float dist = x*ax.get0() + y*ax.get1() + z*ax.get2(); |
|
441 |
float diff = dist-dist3D[a]; |
|
442 |
if( diff>-MAXERR && diff<MAXERR ) ret++; |
|
443 |
} |
|
444 |
|
|
445 |
return ret; |
|
446 |
} |
|
447 |
|
|
448 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
449 |
// return a table of vertices.length ints. |
|
450 |
// Nth int is 0 if vertices[N] lies in a corner or edge of the shape; -1 otherwise. |
|
451 |
|
|
452 |
public static int[] computeVertexEffectsIndices(float[][] vertices, Static3D[] faceAxis, float[] dist3D) |
|
453 |
{ |
|
454 |
int numV = vertices.length; |
|
455 |
int[] ret = new int[numV]; |
|
456 |
|
|
457 |
for(int v=0; v<numV; v++) |
|
458 |
{ |
|
459 |
float[] vert = vertices[v]; |
|
460 |
ret[v] = numberInFaces(vert,faceAxis,dist3D)>=2 ? 0 : -1; |
|
461 |
} |
|
462 |
|
|
463 |
return ret; |
|
464 |
} |
|
465 |
} |
src/main/java/org/distorted/objectlib/helpers/FactoryShape.java | ||
---|---|---|
1 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
2 |
// Copyright 2023 Leszek Koltunski // |
|
3 |
// // |
|
4 |
// This file is part of Magic Cube. // |
|
5 |
// // |
|
6 |
// Magic Cube is proprietary software licensed under an EULA which you should have received // |
|
7 |
// along with the code. If not, check https://distorted.org/magic/License-Magic-Cube.html // |
|
8 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
9 |
|
|
10 |
package org.distorted.objectlib.helpers; |
|
11 |
|
|
12 |
import org.distorted.library.type.Static3D; |
|
13 |
|
|
14 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
15 |
|
|
16 |
public class FactoryShape |
|
17 |
{ |
|
18 |
private static final float MAXERROR = 0.0001f; |
|
19 |
|
|
20 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
21 |
// return arithmetic average of the vertices. |
|
22 |
|
|
23 |
private static float[] computeCenterOfMass(float[][] vertices, int num, int[] indices) |
|
24 |
{ |
|
25 |
float[] ret = new float[3]; |
|
26 |
|
|
27 |
for( int i=0; i<num; i++ ) |
|
28 |
{ |
|
29 |
int ind = indices[i]; |
|
30 |
float[] v = vertices[ind]; |
|
31 |
|
|
32 |
ret[0] += v[0]; |
|
33 |
ret[1] += v[1]; |
|
34 |
ret[2] += v[2]; |
|
35 |
} |
|
36 |
|
|
37 |
ret[0] /= num; |
|
38 |
ret[1] /= num; |
|
39 |
ret[2] /= num; |
|
40 |
|
|
41 |
return ret; |
|
42 |
} |
|
43 |
|
|
44 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
45 |
// Return true iff 'vertex' lies in the plane 'plane' |
|
46 |
|
|
47 |
private static boolean vertexOnPlane(float[] vertex, float[] plane) |
|
48 |
{ |
|
49 |
float d = vertex[0]*plane[0] + vertex[1]*plane[1] + vertex[2]*plane[2] - plane[3]; |
|
50 |
return (d>=-MAXERROR && d<=MAXERROR); |
|
51 |
} |
|
52 |
|
|
53 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
54 |
// return true iff points p0 and p1 are on different sides of plane 'plane'. [ i.e. every way from |
|
55 |
// p0 to p1, always has to pass through at least one point from 'plane' ] |
|
56 |
|
|
57 |
private static boolean isOnDifferentSides(float[] p0, float[] p1, float[] plane) |
|
58 |
{ |
|
59 |
float d0 = p0[0]*plane[0] + p0[1]*plane[1] + p0[2]*plane[2] - plane[3]; |
|
60 |
float d1 = p1[0]*plane[0] + p1[1]*plane[1] + p1[2]*plane[2] - plane[3]; |
|
61 |
|
|
62 |
if( d0>=-MAXERROR && d0<=MAXERROR ) return false; |
|
63 |
if( d0>MAXERROR ) return d1<-MAXERROR; |
|
64 |
return d1>MAXERROR; |
|
65 |
} |
|
66 |
|
|
67 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
68 |
// return indices 'indices', but cut to only 'num' of them [original 'indices' array can be longer] |
|
69 |
// and arranged so that the 'vertices' those indices are indices for are in counter-clockwise order |
|
70 |
// [starting from an arbitrary one]. center is their center of mass. |
|
71 |
// |
|
72 |
// a) for every vertex, compute the angle the vector from 'center' to this vertex forms with an |
|
73 |
// arbitrary line [for example the vector from center to the first vertex] |
|
74 |
// b) sort the vertices by this angle [ascending] |
|
75 |
|
|
76 |
private static int[] arrangeCCW(float[] plane, float[][] vertices, int num, int[] indices) |
|
77 |
{ |
|
78 |
float[] angles = new float[num]; |
|
79 |
float[] center = computeCenterOfMass(vertices,num,indices); |
|
80 |
|
|
81 |
int j= indices[0]; |
|
82 |
float vx = vertices[j][0] - center[0]; |
|
83 |
float vy = vertices[j][1] - center[1]; |
|
84 |
float vz = vertices[j][2] - center[2]; |
|
85 |
|
|
86 |
float len = (float)Math.sqrt(vx*vx + vy*vy + vz*vz); |
|
87 |
|
|
88 |
vx /= len; |
|
89 |
vy /= len; |
|
90 |
vz /= len; |
|
91 |
|
|
92 |
for(int i=0; i<num; i++) |
|
93 |
{ |
|
94 |
int index = indices[i]; |
|
95 |
float[] v = vertices[index]; |
|
96 |
|
|
97 |
float wx = v[0]-center[0]; |
|
98 |
float wy = v[1]-center[1]; |
|
99 |
float wz = v[2]-center[2]; |
|
100 |
|
|
101 |
float l = (float)Math.sqrt(wx*wx + wy*wy + wz*wz); |
|
102 |
|
|
103 |
wx /= l; |
|
104 |
wy /= l; |
|
105 |
wz /= l; |
|
106 |
|
|
107 |
angles[i] = computeAngle(plane,vx,vy,vz,wx,wy,wz); |
|
108 |
} |
|
109 |
|
|
110 |
int[] ret = new int[num]; |
|
111 |
for(int i=0; i<num; i++) ret[i] = indices[i]; |
|
112 |
|
|
113 |
bubbleSort(angles,ret,num); |
|
114 |
|
|
115 |
return ret; |
|
116 |
} |
|
117 |
|
|
118 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
119 |
// strange version of bubbleSort where we sort array 'arr2' according to values of different array |
|
120 |
// 'arr1'. |
|
121 |
|
|
122 |
private static void bubbleSort(float[] arr1, int[] arr2, int n) |
|
123 |
{ |
|
124 |
int i, j, temp; |
|
125 |
boolean swapped; |
|
126 |
float tmp; |
|
127 |
|
|
128 |
for( i=0; i<n-1; i++ ) |
|
129 |
{ |
|
130 |
swapped = false; |
|
131 |
|
|
132 |
for( j=0; j<n-i-1; j++ ) |
|
133 |
{ |
|
134 |
if( arr1[j] > arr1[j+1] ) |
|
135 |
{ |
|
136 |
tmp = arr1[j]; |
|
137 |
arr1[j] = arr1[j+1]; |
|
138 |
arr1[j+1]= tmp; |
|
139 |
|
|
140 |
temp = arr2[j]; |
|
141 |
arr2[j] = arr2[j+1]; |
|
142 |
arr2[j+1]= temp; |
|
143 |
|
|
144 |
swapped = true; |
|
145 |
} |
|
146 |
} |
|
147 |
|
|
148 |
if( !swapped ) break; |
|
149 |
} |
|
150 |
} |
|
151 |
|
|
152 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
153 |
// given a plane with normal vector 'normal', and two in-plane vectors p=(px,py,pz) and |
|
154 |
// r=(rx,ry,rz) [in-plane, i.e. cross(p,r) is parallel to 'normal' ] compute the angle between p and r. |
|
155 |
// |
|
156 |
// the angle belongs to <0,2PI) and goes from p to r counter-clockwise (according to the 'normal' - |
|
157 |
// i.e. look at the situation so that the normal points at you and track the angle from p to r) |
|
158 |
// |
|
159 |
// vectors p and r are guaranteed to be normalized. |
|
160 |
// |
|
161 |
// 1. compute scalar product of p and r |
|
162 |
// 2. result is the cosine of the 'smaller' angle between the two |
|
163 |
// 3. a = compute arc cos of this |
|
164 |
// 4. return a or (2PI-a), depending on if cross(p,r) agrees in direction with the normal, or not. |
|
165 |
|
|
166 |
private static float computeAngle(float[] normal, float px, float py, float pz, float rx, float ry, float rz) |
|
167 |
{ |
|
168 |
float s = px*rx + py*ry + pz*rz; |
|
169 |
|
|
170 |
if( s> 1 ) s=1; |
|
171 |
if( s<-1 ) s=-1; |
|
172 |
|
|
173 |
float a = (float) Math.acos(s); |
|
174 |
float[] cross = crossProduct(px,py,pz,rx,ry,rz); |
|
175 |
float scalar = cross[0]*normal[0] + cross[1]*normal[1] + cross[2]*normal[2]; |
|
176 |
|
|
177 |
return scalar>=0 ? a : (float)(2*Math.PI - a); |
|
178 |
} |
|
179 |
|
|
180 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
181 |
|
|
182 |
private static float[] crossProduct(float a1, float a2, float a3, float b1, float b2, float b3) |
|
183 |
{ |
|
184 |
float[] ret = new float[3]; |
|
185 |
|
|
186 |
ret[0] = a2*b3 - a3*b2; |
|
187 |
ret[1] = a3*b1 - a1*b3; |
|
188 |
ret[2] = a1*b2 - a2*b1; |
|
189 |
|
|
190 |
return ret; |
|
191 |
} |
|
192 |
|
|
193 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
194 |
// if normals to planes p1,p2,p3 are linearly independent, than those planes intersect in one point. |
|
195 |
// Return this point. Otherwise, return null. |
|
196 |
|
|
197 |
private static float[] computeCommonPoint(float[] p1, float[] p2, float[] p3) |
|
198 |
{ |
|
199 |
float det = determinant(p1[0],p1[1],p1[2],p2[0],p2[1],p2[2],p3[0],p3[1],p3[2]); |
|
200 |
|
|
201 |
if( det>=-MAXERROR && det<=MAXERROR ) return null; |
|
202 |
|
|
203 |
float deX = determinant(p1[3],p1[1],p1[2],p2[3],p2[1],p2[2],p3[3],p3[1],p3[2]); |
|
204 |
float deY = determinant(p1[0],p1[3],p1[2],p2[0],p2[3],p2[2],p3[0],p3[3],p3[2]); |
|
205 |
float deZ = determinant(p1[0],p1[1],p1[3],p2[0],p2[1],p2[3],p3[0],p3[1],p3[3]); |
|
206 |
|
|
207 |
return new float[] { deX/det, deY/det, deZ/det }; |
|
208 |
} |
|
209 |
|
|
210 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
211 |
// a1 a2 a3 a1 a2 |
|
212 |
// b1 b2 b3 b1 b2 |
|
213 |
// c1 c2 c3 c1 c2 |
|
214 |
|
|
215 |
private static float determinant(float a1, float a2, float a3, |
|
216 |
float b1, float b2, float b3, |
|
217 |
float c1, float c2, float c3 ) |
|
218 |
{ |
|
219 |
float det = 0; |
|
220 |
|
|
221 |
det += a1*b2*c3; |
|
222 |
det += a2*b3*c1; |
|
223 |
det += a3*b1*c2; |
|
224 |
det -= a3*b2*c1; |
|
225 |
det -= a1*b3*c2; |
|
226 |
det -= a2*b1*c3; |
|
227 |
|
|
228 |
return det; |
|
229 |
} |
|
230 |
|
|
231 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
232 |
// how many faces does the point (x,y,z) belong to? (i.e. 3-->corner, 2-->edge, 1--> face point, |
|
233 |
// 0 --> internal |
|
234 |
|
|
235 |
private static int numberInFaces(Static3D[] faceAxis, float[] dist3D, float x, float y, float z) |
|
236 |
{ |
|
237 |
int numA = faceAxis.length; |
|
238 |
int ret = 0; |
|
239 |
|
|
240 |
for(int a=0; a<numA; a++) |
|
241 |
{ |
|
242 |
Static3D ax = faceAxis[a]; |
|
243 |
float dist = x*ax.get0() + y*ax.get1() + z*ax.get2(); |
|
244 |
float diff = dist-dist3D[a]; |
|
245 |
if( diff>-MAXERROR && diff<MAXERROR ) ret++; |
|
246 |
} |
|
247 |
|
|
248 |
return ret; |
|
249 |
} |
|
250 |
|
|
251 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
252 |
// does the (x,y,z) point belong to any of the faces defined by (faceAxis,dist) ? |
|
253 |
|
|
254 |
private static boolean isInFaces(Static3D[] faceAxis, float[] dist3D, float x, float y, float z) |
|
255 |
{ |
|
256 |
int numA = faceAxis.length; |
|
257 |
|
|
258 |
for(int a=0; a<numA; a++) |
|
259 |
{ |
|
260 |
Static3D ax = faceAxis[a]; |
|
261 |
float dist = x*ax.get0() + y*ax.get1() + z*ax.get2(); |
|
262 |
float diff = dist-dist3D[a]; |
|
263 |
if( diff>-MAXERROR && diff<MAXERROR ) return true; |
|
264 |
} |
|
265 |
|
|
266 |
return false; |
|
267 |
} |
|
268 |
|
|
269 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
270 |
|
|
271 |
private static boolean isDifferent(float[][] table, int num, float[] vert) |
|
272 |
{ |
|
273 |
for( int i=0; i<num; i++ ) |
|
274 |
{ |
|
275 |
float[] t = table[i]; |
|
276 |
float dx = t[0]-vert[0]; |
|
277 |
float dy = t[1]-vert[1]; |
|
278 |
float dz = t[2]-vert[2]; |
|
279 |
float dist = dx*dx + dy*dy + dz*dz; |
|
280 |
|
|
281 |
if( dist>=-MAXERROR && dist<=MAXERROR ) return false; |
|
282 |
} |
|
283 |
|
|
284 |
return true; |
|
285 |
} |
|
286 |
|
|
287 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
288 |
// PUBLIC API |
|
289 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
290 |
|
|
291 |
public static float[][] computePotentialVertices(float[][] cutPlanes) |
|
292 |
{ |
|
293 |
int numPlanes = cutPlanes.length; |
|
294 |
int numRet = numPlanes*(numPlanes-1)*(numPlanes-2)/6; |
|
295 |
float[][] ret = new float[numRet][]; |
|
296 |
int index = 0; |
|
297 |
|
|
298 |
for(int i=0; i<numPlanes; i++) |
|
299 |
for(int j=i+1; j<numPlanes; j++) |
|
300 |
for(int k=j+1; k<numPlanes; k++) |
|
301 |
{ |
|
302 |
float[] vert = computeCommonPoint(cutPlanes[i],cutPlanes[j],cutPlanes[k]); |
|
303 |
|
|
304 |
if( vert!=null && isDifferent(ret,index,vert) ) |
|
305 |
{ |
|
306 |
ret[index] = vert; |
|
307 |
index++; |
|
308 |
} |
|
309 |
} |
|
310 |
|
|
311 |
if( index<numRet ) |
|
312 |
{ |
|
313 |
float[][] ret2 = new float[index][]; |
|
314 |
for(int i=0; i<index; i++) ret2[i] = ret[i]; |
|
315 |
return ret2; |
|
316 |
} |
|
317 |
|
|
318 |
return ret; |
|
319 |
} |
|
320 |
|
|
321 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
322 |
// return a table of indices.length ints. |
|
323 |
// Nth int is 0 if the face defined by indices[N] is an external one; 1 otherwise. |
|
324 |
|
|
325 |
public static int[] produceBandIndices(float[][] vertices, float[] position, int[][] indices, Static3D[] faceAxis, float[] dist3D ) |
|
326 |
{ |
|
327 |
int numF = indices.length; |
|
328 |
int[] ret = new int[numF]; |
|
329 |
float x,y,z; |
|
330 |
|
|
331 |
for(int f=0; f<numF; f++) |
|
332 |
{ |
|
333 |
int[] faceI = indices[f]; |
|
334 |
x = y = z = 0; |
|
335 |
|
|
336 |
for(int i : faceI) |
|
337 |
{ |
|
338 |
float[] vertex = vertices[i]; |
|
339 |
x += vertex[0]; |
|
340 |
y += vertex[1]; |
|
341 |
z += vertex[2]; |
|
342 |
} |
|
343 |
|
|
344 |
int numV = faceI.length; |
|
345 |
x /= numV; |
|
346 |
y /= numV; |
|
347 |
z /= numV; |
|
348 |
|
|
349 |
x += position[0]; |
|
350 |
y += position[1]; |
|
351 |
z += position[2]; |
|
352 |
|
|
353 |
ret[f] = isInFaces(faceAxis,dist3D, x,y,z) ? 0 : 1; |
|
354 |
} |
|
355 |
|
|
356 |
return ret; |
|
357 |
} |
|
358 |
|
|
359 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
360 |
// return a table of vertices.length ints. |
|
361 |
// Nth int is 0 if vertices[N] lies in a corner or edge of the shape; -1 otherwise. |
|
362 |
|
|
363 |
public static int[] computeVertexEffectsIndices(float[][] vertices, float[] position, Static3D[] faceAxis, float[] dist3D) |
|
364 |
{ |
|
365 |
int numV = vertices.length; |
|
366 |
int[] ret = new int[numV]; |
|
367 |
|
|
368 |
for(int v=0; v<numV; v++) |
|
369 |
{ |
|
370 |
float[] vert = vertices[v]; |
|
371 |
|
|
372 |
float x = vert[0] + position[0]; |
|
373 |
float y = vert[1] + position[1]; |
|
374 |
float z = vert[2] + position[2]; |
|
375 |
|
|
376 |
ret[v] = numberInFaces(faceAxis,dist3D,x,y,z)>=2 ? 0 : -1; |
|
377 |
} |
|
378 |
|
|
379 |
return ret; |
|
380 |
} |
|
381 |
|
|
382 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
383 |
// 1. for every potentialVertex, if it is on the same side of every plane present as the |
|
384 |
// 'internalPoint', it must be one of the vertices of the ObjectShape. Remember which planes it |
|
385 |
// belongs to and add it to the list of vertices. |
|
386 |
// 2. Having complete list of vertices and a bitmap of which planes each vertex belongs to, for each |
|
387 |
// plane: |
|
388 |
// a) assemble the list of vertices that belong to this plane |
|
389 |
// b) compute their center of mass and using this as a pivot, arrange the list into CCW order |
|
390 |
// c) out of the vertices and the CCW'd indices, construct an ObjectShape. |
|
391 |
|
|
392 |
public static ObjectShape createShape(float[][] cutPlanes, float[][] potentialVertices, float[] position, float[] internalPoint) |
|
393 |
{ |
|
394 |
int numV = potentialVertices.length; |
|
395 |
float[][] tmp = new float[numV][]; |
|
396 |
int numVertices = 0; |
|
397 |
|
|
398 |
for( float[] vert : potentialVertices ) |
|
399 |
{ |
|
400 |
boolean ok = true; |
|
401 |
|
|
402 |
for(float[] plane : cutPlanes) |
|
403 |
{ |
|
404 |
if( isOnDifferentSides(internalPoint, vert, plane) ) |
|
405 |
{ |
|
406 |
ok = false; |
|
407 |
break; |
|
408 |
} |
|
409 |
} |
|
410 |
|
|
411 |
if( ok ) |
|
412 |
{ |
|
413 |
tmp[numVertices] = vert; |
|
414 |
numVertices++; |
|
415 |
} |
|
416 |
} |
|
417 |
|
|
418 |
float[][] vertices = new float[numVertices][]; |
|
419 |
|
|
420 |
for(int v=0; v<numVertices; v++) |
|
421 |
{ |
|
422 |
float[] t = tmp[v]; |
|
423 |
vertices[v] = new float[] { t[0],t[1],t[2] }; |
|
424 |
} |
|
425 |
|
|
426 |
int numP = cutPlanes.length; |
|
427 |
int[] numVerticesOnPlane = new int[numP]; |
|
428 |
int[][] verticesOnPlane = new int[numP][numVertices]; |
|
429 |
|
|
430 |
for(int p=0; p<numP; p++) |
|
431 |
{ |
|
432 |
float[] plane = cutPlanes[p]; |
|
433 |
|
|
434 |
for(int v=0; v<numVertices; v++) |
|
435 |
{ |
|
436 |
float[] vert = vertices[v]; |
|
437 |
|
|
438 |
if( vertexOnPlane(vert,plane) ) |
|
439 |
{ |
|
440 |
verticesOnPlane[p][numVerticesOnPlane[p]] = v; |
|
441 |
numVerticesOnPlane[p]++; |
|
442 |
} |
|
443 |
} |
|
444 |
} |
|
445 |
|
|
446 |
int numFaces = 0; |
|
447 |
for(int p=0; p<numP; p++) |
|
448 |
if( numVerticesOnPlane[p]>=3 ) numFaces++; |
|
449 |
|
|
450 |
int[][] indices = new int[numFaces][]; |
|
451 |
int index = 0; |
|
452 |
|
|
453 |
for(int p=0; p<numP; p++ ) |
|
454 |
if( numVerticesOnPlane[p]>=3 ) |
|
455 |
{ |
|
456 |
indices[index] = arrangeCCW(cutPlanes[p],vertices,numVerticesOnPlane[p],verticesOnPlane[p]); |
|
457 |
index++; |
|
458 |
} |
|
459 |
|
|
460 |
for( float[] v: vertices ) |
|
461 |
{ |
|
462 |
v[0] -= position[0]; |
|
463 |
v[1] -= position[1]; |
|
464 |
v[2] -= position[2]; |
|
465 |
} |
|
466 |
|
|
467 |
return new ObjectShape(vertices,indices); |
|
468 |
} |
|
469 |
} |
src/main/java/org/distorted/objectlib/objects/TwistyMirrorSkewb.java | ||
---|---|---|
15 | 15 |
import org.distorted.library.type.Static3D; |
16 | 16 |
import org.distorted.library.type.Static4D; |
17 | 17 |
import org.distorted.objectlib.helpers.FactoryCubit; |
18 |
import org.distorted.objectlib.helpers.FactoryMirror;
|
|
18 |
import org.distorted.objectlib.helpers.FactoryShape;
|
|
19 | 19 |
import org.distorted.objectlib.helpers.ObjectFaceShape; |
20 | 20 |
import org.distorted.objectlib.helpers.ObjectShape; |
21 | 21 |
import org.distorted.objectlib.helpers.ObjectVertexEffects; |
... | ... | |
41 | 41 |
}; |
42 | 42 |
|
43 | 43 |
private static final int[] FACE_COLORS = new int[] { COLOR_WHITE }; |
44 |
private static final float[] MIRROR_VEC = {0,0,0};//{ 0.10f, 0.25f, 0.40f };
|
|
44 |
private static final float[] MIRROR_VEC = { 0.10f, 0.15f, 0.20f };
|
|
45 | 45 |
|
46 | 46 |
private int[][] mEdges; |
47 | 47 |
private int[][] mBasicAngle; |
... | ... | |
64 | 64 |
@Override |
65 | 65 |
public int getInternalColor() |
66 | 66 |
{ |
67 |
return 0xff222222;
|
|
67 |
return 0xff333333;
|
|
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
... | ... | |
185 | 185 |
|
186 | 186 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
187 | 187 |
|
188 |
public float[][] getCubitPositions(int[] numLayers)
|
|
188 |
private float[][] getPositions()
|
|
189 | 189 |
{ |
190 | 190 |
if( mPositions==null ) |
191 | 191 |
{ |
192 |
final float COR = 1; |
|
193 |
final float CEN = 1; |
|
192 |
final float COR = 1.0f;
|
|
193 |
final float CEN = 1.0f;
|
|
194 | 194 |
final float X = MIRROR_VEC[0]; |
195 | 195 |
final float Y = MIRROR_VEC[1]; |
196 | 196 |
final float Z = MIRROR_VEC[2]; |
197 | 197 |
|
198 | 198 |
mPositions = new float[8+6][]; |
199 | 199 |
|
200 |
mPositions[0] = new float[]{ COR-X, COR-Y, COR-Z };
|
|
201 |
mPositions[1] = new float[]{ COR-X, COR-Y, -COR-Z };
|
|
202 |
mPositions[2] = new float[]{ COR-X, -COR-Y, COR-Z };
|
|
203 |
mPositions[3] = new float[]{ COR-X, -COR-Y, -COR-Z };
|
|
204 |
mPositions[4] = new float[]{-COR-X, COR-Y, COR-Z };
|
|
205 |
mPositions[5] = new float[]{-COR-X, COR-Y, -COR-Z };
|
|
206 |
mPositions[6] = new float[]{-COR-X, -COR-Y, COR-Z };
|
|
207 |
mPositions[7] = new float[]{-COR-X, -COR-Y, -COR-Z };
|
|
208 |
|
|
209 |
mPositions[ 8] = new float[]{ -X, -Y, CEN-Z };
|
|
210 |
mPositions[ 9] = new float[]{ -X, -Y,-CEN-Z };
|
|
211 |
mPositions[10] = new float[]{ -X, CEN-Y, -Z };
|
|
212 |
mPositions[11] = new float[]{ -X,-CEN-Y, -Z };
|
|
213 |
mPositions[12] = new float[]{ CEN-X, -Y, -Z };
|
|
214 |
mPositions[13] = new float[]{-CEN-X, -Y, -Z };
|
|
200 |
mPositions[0] = new float[]{ COR+X, COR+Y, COR+Z };
|
|
201 |
mPositions[1] = new float[]{ COR+X, COR+Y, -COR+Z };
|
|
202 |
mPositions[2] = new float[]{ COR+X, -COR+Y, COR+Z };
|
|
203 |
mPositions[3] = new float[]{ COR+X, -COR+Y, -COR+Z };
|
|
204 |
mPositions[4] = new float[]{-COR+X, COR+Y, COR+Z };
|
|
205 |
mPositions[5] = new float[]{-COR+X, COR+Y, -COR+Z };
|
|
206 |
mPositions[6] = new float[]{-COR+X, -COR+Y, COR+Z };
|
|
207 |
mPositions[7] = new float[]{-COR+X, -COR+Y, -COR+Z };
|
|
208 |
|
|
209 |
mPositions[ 8] = new float[]{ X, Y, CEN+Z };
|
|
210 |
mPositions[ 9] = new float[]{ X, Y,-CEN+Z };
|
|
211 |
mPositions[10] = new float[]{ X, CEN+Y, Z };
|
|
212 |
mPositions[11] = new float[]{ X,-CEN+Y, Z };
|
|
213 |
mPositions[12] = new float[]{ CEN+X, Y, Z };
|
|
214 |
mPositions[13] = new float[]{-CEN+X, Y, Z };
|
|
215 | 215 |
} |
216 | 216 |
|
217 | 217 |
return mPositions; |
218 | 218 |
} |
219 | 219 |
|
220 |
|
|
221 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
222 |
|
|
223 |
public float[][] getCubitPositions(int[] numLayers) |
|
224 |
{ |
|
225 |
return getPositions(); |
|
226 |
} |
|
227 |
|
|
220 | 228 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
221 | 229 |
|
222 | 230 |
public Static4D getCubitQuats(int cubit, int[] numLayers) |
... | ... | |
250 | 258 |
|
251 | 259 |
private float[] internalPoint(int variant) |
252 | 260 |
{ |
253 |
int[] numLayers = getNumLayers(); |
|
254 |
float[][] pos = getCubitPositions(numLayers); |
|
261 |
float[][] pos = getPositions(); |
|
255 | 262 |
float[] position = pos[variant]; |
256 | 263 |
float[][] center = computeVertexEffectCenter(variant); |
257 | 264 |
float[] cent = center[0]; |
... | ... | |
277 | 284 |
int numV = getNumCubitVariants(numLayers); |
278 | 285 |
mShapes = new ObjectShape[numV]; |
279 | 286 |
createCutPlanes(); |
280 |
mPotentialVertices = FactoryMirror.computePotentialVertices(mCutPlanes);
|
|
287 |
mPotentialVertices = FactoryShape.computePotentialVertices(mCutPlanes);
|
|
281 | 288 |
} |
282 | 289 |
|
283 | 290 |
if( mShapes[variant]==null ) |
284 | 291 |
{ |
285 |
int[] numLayers = getNumLayers(); |
|
286 |
float[][] pos = getCubitPositions(numLayers); |
|
292 |
float[][] pos = getPositions(); |
|
287 | 293 |
float[] point = internalPoint(variant); |
288 |
mShapes[variant] = FactoryMirror.createShape(mCutPlanes,mPotentialVertices,pos[variant],point);
|
|
294 |
mShapes[variant] = FactoryShape.createShape(mCutPlanes,mPotentialVertices,pos[variant],point);
|
|
289 | 295 |
} |
290 | 296 |
|
291 | 297 |
return mShapes[variant]; |
... | ... | |
298 | 304 |
ObjectShape shape = getObjectShape(variant); |
299 | 305 |
int[][] ind = shape.getVertIndices(); |
300 | 306 |
float[][] vert = shape.getVertices(); |
301 |
int[] indices = FactoryMirror.produceBandIndices(vert,ind, getFaceAxis(), getDist() ); |
|
307 |
float[][] pos = getPositions(); |
|
308 |
int[] indices = FactoryShape.produceBandIndices(vert, pos[variant], ind, getFaceAxis(), getDist() ); |
|
302 | 309 |
|
303 | 310 |
if( variant<8 ) |
304 | 311 |
{ |
305 | 312 |
int N = 5; |
306 |
int E1= 3; |
|
307 |
int E2= 1; |
|
308 |
float height = isInIconMode() ? 0.001f : 0.30f; |
|
309 |
float[][] bands = { {height,35,0.16f,0.7f,N,E1,E1}, {0.1f, 35,1.00f,0.0f,3,1,E2} }; |
|
313 |
int E = 2; |
|
314 |
float height = isInIconMode() ? 0.001f : 0.04f; |
|
315 |
float[][] bands = { {height,35,0.16f,0.7f,N,E,E}, {0.001f, 35,1.00f,0.0f,N,E,E} }; |
|
310 | 316 |
return new ObjectFaceShape(bands,indices,null); |
311 | 317 |
} |
312 | 318 |
else |
313 | 319 |
{ |
314 | 320 |
int N = 5; |
315 |
int E = 2;
|
|
316 |
float height = isInIconMode() ? 0.001f : 0.30f;
|
|
317 |
float[][] bands = { {height,35,SQ2/8,0.9f,N,E,E}, {0.1f,35,1,0.0f,3,0,0} }; |
|
321 |
int E = 1;
|
|
322 |
float height = isInIconMode() ? 0.001f : 0.05f;
|
|
323 |
float[][] bands = { {height,35,SQ2/8,0.9f,N,E,E}, {0.001f,35,1,0.0f,3,0,0} };
|
|
318 | 324 |
return new ObjectFaceShape(bands,indices,null); |
319 | 325 |
} |
320 | 326 |
} |
... | ... | |
353 | 359 |
ObjectShape shape = getObjectShape(variant); |
354 | 360 |
float[][] vertices = shape.getVertices(); |
355 | 361 |
float[][] centers = computeVertexEffectCenter(variant); |
356 |
int[] indices = FactoryMirror.computeVertexEffectsIndices(vertices,getFaceAxis(), getDist() ); |
|
357 |
float[][] corners = variant<8 ? new float[][]{{0.04f, 0.20f}} : new float[][]{{0.03f, 0.15f}}; |
|
362 |
float[][] pos = getPositions(); |
|
363 |
int[] indices = FactoryShape.computeVertexEffectsIndices(vertices, pos[variant], getFaceAxis(), getDist() ); |
|
364 |
float[][] corners = variant<8 ? new float[][]{{0.00f, 0.20f}} : new float[][]{{0.00f, 0.15f}}; |
|
358 | 365 |
|
359 | 366 |
return FactoryCubit.generateVertexEffect(vertices,corners,indices,centers,indices); |
360 | 367 |
} |
Also available in: Unified diff
fixes for the generic Mirror mechanism.