Project

General

Profile

Download (11.2 KB) Statistics
| Branch: | Revision:

distorted-objectlib / src / main / java / org / distorted / objectlib / touchcontrol / TouchControlBall.java @ 93dc5a55

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2022 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is proprietary software licensed under an EULA which you should have received      //
7
// along with the code. If not, check https://distorted.org/magic/License-Magic-Cube.html        //
8
///////////////////////////////////////////////////////////////////////////////////////////////////
9

    
10
package org.distorted.objectlib.touchcontrol;
11

    
12
import org.distorted.library.helpers.QuatHelper;
13
import org.distorted.library.type.Static3D;
14
import org.distorted.library.type.Static4D;
15
import org.distorted.objectlib.main.TwistyObject;
16

    
17
import static org.distorted.objectlib.main.TwistyObject.SQ2;
18

    
19
///////////////////////////////////////////////////////////////////////////////////////////////////
20
// Ball-shaped objects: map the 2D swipes of user's fingers to 3D rotations
21

    
22
public class TouchControlBall extends TouchControl
23
{
24
  private static final float MIN_LEN = 0.35f;
25
  private static final float[] mTmp = new float[4];
26

    
27
  private final Static3D[] mRotAxis;
28
  private final float[] mPoint, mCamera, mTouch;
29
  private final int[] mEnabledRotAxis;
30
  private final int[][][] mEnabled;
31
  private final float[] mMove2D;
32
  private final float[][] mCastedRotAxis;
33
  private float[][] mTouchBorders;
34
  private int mGhostAxisEnabled;
35

    
36
  private float mLongitude, mLatitude;
37
  private float mX, mY, mZ;
38

    
39
  private static final float X = (float)Math.sqrt( (2-SQ2)/(6+SQ2) );
40
  private static final float Y = (float)Math.sqrt( (2+SQ2)/(6+SQ2) );
41

    
42
  public static final Static3D[] FACE_AXIS = new Static3D[]
43
        {
44
          new Static3D( X, Y, Y),
45
          new Static3D( X,-Y, Y),
46
          new Static3D( Y, Y, X),
47
          new Static3D( Y,-Y, X),
48
          new Static3D( Y, Y,-X),
49
          new Static3D( Y,-Y,-X),
50
          new Static3D( X, Y,-Y),
51
          new Static3D( X,-Y,-Y),
52
          new Static3D(-X, Y,-Y),
53
          new Static3D(-X,-Y,-Y),
54
          new Static3D(-Y, Y,-X),
55
          new Static3D(-Y,-Y,-X),
56
          new Static3D(-Y, Y, X),
57
          new Static3D(-Y,-Y, X),
58
          new Static3D(-X, Y, Y),
59
          new Static3D(-X,-Y, Y),
60
        };
61

    
62
///////////////////////////////////////////////////////////////////////////////////////////////////
63

    
64
  public TouchControlBall(TwistyObject object)
65
    {
66
    super(object);
67

    
68
    int[] numLayers       = object.getNumLayers();
69
    float[][] cuts        = object.getCuts(numLayers);
70
    boolean[][] rotatable = object.getLayerRotatable(numLayers);
71
    float size            = object.getSize();
72
    mRotAxis = object.getRotationAxis();
73
    mEnabled = object.getEnabled();
74

    
75
    mMove2D  = new float[2];
76

    
77
    mPoint = new float[3];
78
    mCamera= new float[3];
79
    mTouch = new float[3];
80

    
81
    int numRotAxis = mRotAxis.length;
82
    mEnabledRotAxis = new int[numRotAxis+1];
83
    mCastedRotAxis = new float[numRotAxis][2];
84

    
85
    mGhostAxisEnabled = -1;
86

    
87
    computeBorders(cuts,rotatable,size);
88
    }
89

    
90
///////////////////////////////////////////////////////////////////////////////////////////////////
91

    
92
  private float[] computeBorder(float[] cuts, boolean[] rotatable, float size)
93
    {
94
    if( cuts==null ) return null;
95

    
96
    int len = cuts.length;
97
    float[] border = new float[len];
98

    
99
    for(int i=0; i<len; i++)
100
      {
101
      if( !rotatable[i] )
102
        {
103
        border[i] = i>0 ? border[i-1] : -Float.MAX_VALUE;
104
        }
105
      else
106
        {
107
        if( rotatable[i+1] ) border[i] = cuts[i]/size;
108
        else
109
          {
110
          int found = -1;
111

    
112
          for(int j=i+2; j<=len; j++)
113
            {
114
            if( rotatable[j] )
115
              {
116
              found=j;
117
              break;
118
              }
119
            }
120

    
121
          border[i] = found>0 ? (cuts[i]+cuts[found-1])/(2*size) : Float.MAX_VALUE;
122
          }
123
        }
124
      }
125

    
126
    return border;
127
    }
128

    
129
///////////////////////////////////////////////////////////////////////////////////////////////////
130
// size, not numLayers (see Master Skewb where size!=numLayers) - also cuboids.
131

    
132
  void computeBorders(float[][] cuts, boolean[][] rotatable, float size)
133
    {
134
    int numCuts = cuts.length;
135
    mTouchBorders = new float[numCuts][];
136

    
137
    for(int axis=0; axis<numCuts; axis++)
138
      {
139
      mTouchBorders[axis] = computeBorder(cuts[axis],rotatable[axis],size);
140
      }
141
    }
142

    
143
///////////////////////////////////////////////////////////////////////////////////////////////////
144

    
145
  private int computeRowFromOffset(int axisIndex, float offset)
146
    {
147
    float[] borders = mTouchBorders[axisIndex];
148
    if( borders==null ) return 0;
149
    int len = borders.length;
150

    
151
    for(int i=0; i<len; i++)
152
      {
153
      if( offset<borders[i] ) return i;
154
      }
155

    
156
    return len;
157
    }
158

    
159
///////////////////////////////////////////////////////////////////////////////////////////////////
160
// Longitude spans from 0 (at Guinea Bay) increasing to the east all the way to 2PI
161
// Latitude - from -PI/2 (South Pole) to +PI/2 (North Pole)
162

    
163
  private void computeLongitudeAndLatitude(float A, float B, float C)
164
    {
165
    float sqrt = (float)Math.sqrt(B*B - 4*A*C);
166
    float alpha= (-B+sqrt)/(2*A); // this is the closer point
167

    
168
    float cx = mCamera[0];
169
    float cy = mCamera[1];
170
    float cz = mCamera[2];
171

    
172
    float vx = mCamera[0]-mPoint[0];
173
    float vy = mCamera[1]-mPoint[1];
174
    float vz = mCamera[2]-mPoint[2];
175

    
176
    mX = cx + alpha*vx;
177
    mY = cy + alpha*vy;
178
    mZ = cz + alpha*vz;
179

    
180
    mLongitude = mZ==0 ? 0 : (float)Math.atan(mX/mZ);
181
    mLatitude  = (float)Math.asin(2*mY);
182

    
183
    if( mZ<0 ) mLongitude += Math.PI;
184
    else if( mX<0 ) mLongitude += 2*Math.PI;
185
    }
186

    
187
///////////////////////////////////////////////////////////////////////////////////////////////////
188
// this is Masterball-specific. See TwistyMasterball.getEnabled()
189

    
190
  private int returnTouchedFace()
191
    {
192
    float t = (float)(mLongitude + Math.PI/8);
193
    if( t>2*Math.PI ) t-=(2*Math.PI);
194
    int ret = (int)(t/(Math.PI/4));
195
    return ret<8 ? ret : 7;
196
    }
197

    
198
///////////////////////////////////////////////////////////////////////////////////////////////////
199
// this is Masterball-specific. No parts in any faces.
200

    
201
  private int returnTouchedPart()
202
    {
203
    return 0;
204
    }
205

    
206
///////////////////////////////////////////////////////////////////////////////////////////////////
207

    
208
  private float computeOffset(int rotIndex)
209
    {
210
    Static3D axis = mRotAxis[rotIndex];
211
    return mX*axis.get0() + mY*axis.get1() + mZ*axis.get2();
212
    }
213

    
214
///////////////////////////////////////////////////////////////////////////////////////////////////
215

    
216
  private void computeEnabledAxis()
217
    {
218
    if( mGhostAxisEnabled<0 )
219
      {
220
      int face = returnTouchedFace();
221
      int part = returnTouchedPart();
222
      int num = mEnabled[face][0].length;
223
      mEnabledRotAxis[0] = num;
224
      System.arraycopy(mEnabled[face][part], 0, mEnabledRotAxis, 1, num);
225
      }
226
    else
227
      {
228
      mEnabledRotAxis[0] = 1;  // if in 'ghost' mode, only one axis is enabled.
229
      mEnabledRotAxis[1] = mGhostAxisEnabled;
230
      }
231
    }
232

    
233
///////////////////////////////////////////////////////////////////////////////////////////////////
234

    
235
  public int getTouchedCubitFace()
236
    {
237
    return 0;
238
    }
239

    
240
///////////////////////////////////////////////////////////////////////////////////////////////////
241

    
242
  public float[] getTouchedPuzzleCenter()
243
    {
244
    return null;
245
    }
246

    
247
///////////////////////////////////////////////////////////////////////////////////////////////////
248

    
249
  public int getTouchedCubit()
250
    {
251
    return 0;
252
    }
253

    
254
///////////////////////////////////////////////////////////////////////////////////////////////////
255

    
256
  public boolean objectTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera)
257
    {
258
    mPoint[0]  = rotatedTouchPoint.get0()/mObjectRatio;
259
    mPoint[1]  = rotatedTouchPoint.get1()/mObjectRatio;
260
    mPoint[2]  = rotatedTouchPoint.get2()/mObjectRatio;
261

    
262
    mCamera[0] = rotatedCamera.get0()/mObjectRatio;
263
    mCamera[1] = rotatedCamera.get1()/mObjectRatio;
264
    mCamera[2] = rotatedCamera.get2()/mObjectRatio;
265

    
266
    float vx = mCamera[0]-mPoint[0];
267
    float vy = mCamera[1]-mPoint[1];
268
    float vz = mCamera[2]-mPoint[2];
269

    
270
    float R = 0.5f;
271
    float A = vx*vx + vy*vy + vz*vz;
272
    float B = 2*(vx*mCamera[0] + vy*mCamera[1] + vz*mCamera[2]);
273
    float C = (mCamera[0]*mCamera[0] + mCamera[1]*mCamera[1] + mCamera[2]*mCamera[2]) - R*R;
274

    
275
    if( B*B >= 4*A*C )
276
      {
277
      computeLongitudeAndLatitude(A,B,C);
278
      return true;
279
      }
280

    
281
    return false;
282
    }
283

    
284
///////////////////////////////////////////////////////////////////////////////////////////////////
285

    
286
  public void newRotation(int[] output, Static4D rotatedTouchPoint, Static4D quat)
287
    {
288
    computeEnabledAxis();
289

    
290
    mTouch[0]  = rotatedTouchPoint.get0()/mObjectRatio;
291
    mTouch[1]  = rotatedTouchPoint.get1()/mObjectRatio;
292
    mTouch[2]  = rotatedTouchPoint.get2()/mObjectRatio;
293

    
294
    float x = mTouch[0]-mPoint[0];
295
    float y = mTouch[1]-mPoint[1];
296
    float z = mTouch[2]-mPoint[2];
297

    
298
    QuatHelper.rotateVectorByQuat(mTmp,x,y,z,0,quat);
299
    mMove2D[0] = mTmp[0];
300
    mMove2D[1] = mTmp[1];
301

    
302
    for(int i=1; i<=mEnabledRotAxis[0]; i++)
303
      {
304
      int enabled = mEnabledRotAxis[i];
305
      Static3D axis = mRotAxis[enabled];
306
      float[] vector = mCastedRotAxis[enabled];
307
      float bx = axis.get0();
308
      float by = axis.get1();
309
      float bz = axis.get2();
310

    
311
      QuatHelper.rotateVectorByQuat(mTmp,bx,by,bz,0,quat);
312
      float len = (float)Math.sqrt(mTmp[0]*mTmp[0] + mTmp[1]*mTmp[1]);
313

    
314
      if( len<MIN_LEN )
315
        {
316
        vector[0] = 1000f;  // switch off the axis because when casted
317
        vector[1] = 1000f;  // onto the screen it is too short
318
        }
319
      else
320
        {
321
        vector[0] = mTmp[0]/len;
322
        vector[1] = mTmp[1]/len;
323
        }
324
      }
325

    
326
    int rotIndex = computeRotationIndex( mCastedRotAxis, mMove2D, mEnabledRotAxis);
327
    float offset = computeOffset(rotIndex);
328
    int row      = computeRowFromOffset(rotIndex,offset);
329

    
330
    output[0] = rotIndex;
331
    output[1] = row;
332
    }
333

    
334
///////////////////////////////////////////////////////////////////////////////////////////////////
335
// simply cast the appropriate rotational axis of the object to the screen surface.
336

    
337
  public void getCastedRotAxis(float[] output, Static4D quat, int axisIndex)
338
    {
339
    Static3D a = mRotAxis[axisIndex];
340
    Static4D result = QuatHelper.rotateVectorByQuat(a.get0(),a.get1(),a.get2(),0,quat);
341

    
342
    float cx = result.get0();
343
    float cy = result.get1();
344
    float len= (float)Math.sqrt(cx*cx+cy*cy);
345

    
346
    if( len!=0 )
347
      {
348
      output[0] = cx/len;
349
      output[1] = cy/len;
350
      }
351
    else
352
      {
353
      output[0] = 1;
354
      output[1] = 0;
355
      }
356
    }
357

    
358
///////////////////////////////////////////////////////////////////////////////////////////////////
359

    
360
  public boolean axisAndFaceAgree(int axisIndex)
361
    {
362
    return false;
363
    }
364

    
365
///////////////////////////////////////////////////////////////////////////////////////////////////
366

    
367
  public void enableGhostAxis(int axNum, boolean enable)
368
    {
369
    mGhostAxisEnabled = enable ? axNum : -1;
370
    }
371
}
(2-2/13)