Project

General

Profile

Download (16.5 KB) Statistics
| Branch: | Revision:

distorted-objectlib / src / main / java / org / distorted / objectlib / main / Movement.java @ a135652b

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.objectlib.main;
21

    
22
import org.distorted.library.type.Static2D;
23
import org.distorted.library.type.Static3D;
24
import org.distorted.library.type.Static4D;
25

    
26
///////////////////////////////////////////////////////////////////////////////////////////////////
27

    
28
public abstract class Movement
29
  {
30
  // it doesn't matter where we touch a face - the list of enabled rotAxis will always be the same
31
  public static final int TYPE_NOT_SPLIT    = 0;
32
  // each face is split into several parts by lines coming from its center to the midpoints of each edge
33
  public static final int TYPE_SPLIT_EDGE   = 1;
34
  // each face is split into several parts by lines coming from its center to the vertices
35
  public static final int TYPE_SPLIT_CORNER = 2;
36

    
37
  static final float SQ3 = (float)Math.sqrt(3);
38
  static final float SQ6 = (float)Math.sqrt(6);
39

    
40
  private final int mNumFaceAxis;
41
  private final float[] mPoint, mCamera, mTouch;
42
  private final float[] mPoint2D, mMove2D;
43
  private final int[] mEnabledRotAxis;
44
  private final float mDistanceCenterFace3D;
45
  private final Static3D[] mFaceAxis;
46

    
47
  private int mLastTouchedFace;
48
  private float[][][] mCastedRotAxis;
49
  private Static4D[][] mCastedRotAxis4D;
50
  private float[][] mTouchBorders, mA, mB;
51

    
52
  private final int mType;
53
  private final int[][][] mEnabled;
54

    
55
///////////////////////////////////////////////////////////////////////////////////////////////////
56

    
57
  abstract int returnPart(int type, int face, float[] touchPoint);
58
  abstract boolean isInsideFace(int face, float[] point);
59
  public abstract float returnRotationFactor(int[] numLayers, int row);
60

    
61
///////////////////////////////////////////////////////////////////////////////////////////////////
62

    
63
  Movement(Static3D[] rotAxis, Static3D[] faceAxis, float[][] cuts, boolean[][] rotatable,
64
           float distance3D, int size, int type, int[][][] enabled)
65
    {
66
    mPoint = new float[3];
67
    mCamera= new float[3];
68
    mTouch = new float[3];
69

    
70
    mPoint2D = new float[2];
71
    mMove2D  = new float[2];
72

    
73
    mType = type;
74
    mEnabled = enabled;
75

    
76
    mFaceAxis   = faceAxis;
77
    mNumFaceAxis= mFaceAxis.length;
78

    
79
    mEnabledRotAxis = new int[rotAxis.length+1];
80

    
81
    mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces
82

    
83
    computeCastedAxis(rotAxis);
84
    computeBorders(cuts,rotatable,size);
85
    computeLinear(distance3D,rotAxis,faceAxis);
86
    }
87

    
88
///////////////////////////////////////////////////////////////////////////////////////////////////
89
// mCastedRotAxis[1][2]{0,1} are the 2D coords of the 2nd rotAxis cast onto the face defined by the
90
// 1st faceAxis.
91

    
92
  private void computeCastedAxis(Static3D[] rotAxis)
93
    {
94
    mCastedRotAxis   = new float[mNumFaceAxis][rotAxis.length][2];
95
    mCastedRotAxis4D = new Static4D[mNumFaceAxis][rotAxis.length];
96

    
97
    float fx,fy,fz,f;
98

    
99
    for( int casted=0; casted<rotAxis.length; casted++)
100
      {
101
      Static3D a = rotAxis[casted];
102
      mPoint[0]= a.get0();
103
      mPoint[1]= a.get1();
104
      mPoint[2]= a.get2();
105

    
106
      for( int face=0; face<mNumFaceAxis; face++)
107
        {
108
        convertTo2Dcoords( mPoint, face, mCastedRotAxis[face][casted]);
109
        normalize2D(mCastedRotAxis[face][casted]);
110

    
111
        fx = mFaceAxis[face].get0();
112
        fy = mFaceAxis[face].get1();
113
        fz = mFaceAxis[face].get2();
114
        f  = mPoint[0]*fx + mPoint[1]*fy + mPoint[2]*fz;
115
        mCastedRotAxis4D[face][casted] = new Static4D( mPoint[0]-f*fx, mPoint[1]-f*fy, mPoint[2]-f*fz, 0);
116
        }
117
      }
118
    }
119

    
120
///////////////////////////////////////////////////////////////////////////////////////////////////
121

    
122
  private void normalize2D(float[] vect)
123
    {
124
    float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]);
125
    vect[0] /= len;
126
    vect[1] /= len;
127
    }
128

    
129
///////////////////////////////////////////////////////////////////////////////////////////////////
130
// find the casted axis with which our move2D vector forms an angle closest to 90 deg.
131

    
132
  private int computeRotationIndex(int faceAxis, float[] move2D, int[] enabled)
133
    {
134
    float cosAngle, minCosAngle = Float.MAX_VALUE;
135
    int minIndex=0, index;
136
    float m0 = move2D[0];
137
    float m1 = move2D[1];
138
    float len = (float)Math.sqrt(m0*m0 + m1*m1);
139

    
140
    if( len!=0.0f )
141
      {
142
      m0 /= len;
143
      m1 /= len;
144
      }
145
    else
146
      {
147
      m0 = 1.0f;  // arbitrarily
148
      m1 = 0.0f;  //
149
      }
150

    
151
    int numAxis = enabled[0];
152

    
153
    for(int axis=1; axis<=numAxis; axis++)
154
      {
155
      index = enabled[axis];
156
      cosAngle = m0*mCastedRotAxis[faceAxis][index][0] + m1*mCastedRotAxis[faceAxis][index][1];
157
      if( cosAngle<0 ) cosAngle = -cosAngle;
158

    
159
      if( cosAngle<minCosAngle )
160
        {
161
        minCosAngle=cosAngle;
162
        minIndex = index;
163
        }
164
      }
165

    
166
    return minIndex;
167
    }
168

    
169
///////////////////////////////////////////////////////////////////////////////////////////////////
170
// in the center of the face offset is always 0 regardless of the axis
171

    
172
  private float computeOffset(float[] point, float[] axis)
173
    {
174
    return point[0]*axis[0] + point[1]*axis[1];
175
    }
176

    
177
///////////////////////////////////////////////////////////////////////////////////////////////////
178

    
179
  private boolean faceIsVisible(int index)
180
    {
181
    Static3D faceAxis = mFaceAxis[index];
182
    float castCameraOnAxis = mCamera[0]*faceAxis.get0() + mCamera[1]*faceAxis.get1() + mCamera[2]*faceAxis.get2();
183
    return castCameraOnAxis > mDistanceCenterFace3D;
184
    }
185

    
186
///////////////////////////////////////////////////////////////////////////////////////////////////
187
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
188
// compute point 'output[]' which:
189
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0))
190
// 2) is co-linear with mCamera and mPoint
191
//
192
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)]
193

    
194
  private void castTouchPointOntoFace(int index, float[] output)
195
    {
196
    Static3D faceAxis = mFaceAxis[index];
197

    
198
    float d0 = mPoint[0]-mCamera[0];
199
    float d1 = mPoint[1]-mCamera[1];
200
    float d2 = mPoint[2]-mCamera[2];
201
    float a0 = faceAxis.get0();
202
    float a1 = faceAxis.get1();
203
    float a2 = faceAxis.get2();
204

    
205
    float denom = a0*d0 + a1*d1 + a2*d2;
206

    
207
    if( denom != 0.0f )
208
      {
209
      float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2];
210
      float alpha = (mDistanceCenterFace3D-axisCam)/denom;
211

    
212
      output[0] = mCamera[0] + d0*alpha;
213
      output[1] = mCamera[1] + d1*alpha;
214
      output[2] = mCamera[2] + d2*alpha;
215
      }
216
    }
217

    
218
///////////////////////////////////////////////////////////////////////////////////////////////////
219
// Convert the 3D point3D into a 2D point on the same face surface, but in a different
220
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects
221
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the
222
// original 3D Y axis and our 2D in-plane origin.
223
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only
224
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to
225
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily
226
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole)
227

    
228
  private void convertTo2Dcoords(float[] point3D, int index , float[] output)
229
    {
230
    Static3D faceAxis = mFaceAxis[index];
231

    
232
    float y0,y1,y2; // base Y vector of the 2D coord system
233
    float a0 = faceAxis.get0();
234
    float a1 = faceAxis.get1();
235
    float a2 = faceAxis.get2();
236

    
237
    if( a0==0.0f && a2==0.0f )
238
      {
239
      y0=0; y1=0; y2=-a1;
240
      }
241
    else if( a1==0.0f )
242
      {
243
      y0=0; y1=1; y2=0;
244
      }
245
    else
246
      {
247
      float norm = (float)(-a1/Math.sqrt(1-a1*a1));
248
      y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2;
249
      }
250

    
251
    float x0 = y1*a2 - y2*a1;  //
252
    float x1 = y2*a0 - y0*a2;  // (2D coord baseY) x (axis) = 2D coord baseX
253
    float x2 = y0*a1 - y1*a0;  //
254

    
255
    float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2;
256

    
257
    float origin0 = originAlpha*a0; // coords of the point where axis
258
    float origin1 = originAlpha*a1; // intersects surface plane i.e.
259
    float origin2 = originAlpha*a2; // the origin of our 2D coord system
260

    
261
    float v0 = point3D[0] - origin0;
262
    float v1 = point3D[1] - origin1;
263
    float v2 = point3D[2] - origin2;
264

    
265
    output[0] = v0*x0 + v1*x1 + v2*x2;
266
    output[1] = v0*y0 + v1*y1 + v2*y2;
267
    }
268

    
269
///////////////////////////////////////////////////////////////////////////////////////////////////
270

    
271
  private float[] computeBorder(float[] cuts, boolean[] rotatable, int size)
272
    {
273
    if( cuts==null ) return null;
274

    
275
    int len = cuts.length;
276
    float[] border = new float[len];
277

    
278
    for(int i=0; i<len; i++)
279
      {
280
      if( !rotatable[i] )
281
        {
282
        border[i] = i>0 ? border[i-1] : -Float.MAX_VALUE;
283
        }
284
      else
285
        {
286
        if( rotatable[i+1] ) border[i] = cuts[i]/size;
287
        else
288
          {
289
          int found = -1;
290

    
291
          for(int j=i+2; j<=len; j++)
292
            {
293
            if( rotatable[j] )
294
              {
295
              found=j;
296
              break;
297
              }
298
            }
299

    
300
          border[i] = found>0 ? (cuts[i]+cuts[found-1])/(2*size) : Float.MAX_VALUE;
301
          }
302
        }
303
      }
304

    
305
    return border;
306
    }
307

    
308
///////////////////////////////////////////////////////////////////////////////////////////////////
309
// size, not numLayers (see Master Skewb where size!=numLayers)
310

    
311
  void computeBorders(float[][] cuts, boolean[][] rotatable, int size)
312
    {
313
    int numCuts = cuts.length;
314
    mTouchBorders = new float[numCuts][];
315

    
316
    for(int i=0; i<numCuts; i++)
317
      {
318
      mTouchBorders[i] = computeBorder(cuts[i],rotatable[i],size);
319
      }
320
    }
321

    
322
///////////////////////////////////////////////////////////////////////////////////////////////////
323

    
324
  private int computeSign(Static3D a, Static3D b)
325
    {
326
    float a1 = a.get0();
327
    float a2 = a.get1();
328
    float a3 = a.get2();
329
    float b1 = b.get0();
330
    float b2 = b.get1();
331
    float b3 = b.get2();
332

    
333
    return a1*b1+a2*b2+a3*b3 < 0 ? 1:-1;
334
    }
335

    
336
///////////////////////////////////////////////////////////////////////////////////////////////////
337

    
338
  private float crossProductLen(Static3D a, Static3D b)
339
    {
340
    float a1 = a.get0();
341
    float a2 = a.get1();
342
    float a3 = a.get2();
343
    float b1 = b.get0();
344
    float b2 = b.get1();
345
    float b3 = b.get2();
346

    
347
    float x1 = a2*b3-a3*b2;
348
    float x2 = a3*b1-a1*b3;
349
    float x3 = a1*b2-a2*b1;
350

    
351
    return (float)Math.sqrt(x1*x1 + x2*x2 + x3*x3);
352
    }
353

    
354
///////////////////////////////////////////////////////////////////////////////////////////////////
355
// compute the array of 'A' and 'B' coeffs of the Ax+B linear function by which we need to multiply
356
// the 3D 'cuts' to translate it from 3D (i.e. with respect to the rotAxis) to 2D in-face (i.e. with
357
// respect to the 2D rotAxis cast into a particular face)
358

    
359
  private void computeLinear(float distance3D, Static3D[] rotAxis, Static3D[] faceAxis)
360
    {
361
    int numFaces = faceAxis.length;
362
    int numRot   = rotAxis.length;
363

    
364
    mA = new float[numFaces][numRot];
365
    mB = new float[numFaces][numRot];
366

    
367
    for(int i=0; i<numFaces; i++)
368
      for(int j=0; j<numRot; j++)
369
        {
370
        mA[i][j] = crossProductLen(faceAxis[i],rotAxis[j]);
371

    
372
        if( mA[i][j]!=0.0f )
373
          {
374
          float coeff = (float)Math.sqrt(1/(mA[i][j]*mA[i][j]) -1);
375
          int sign = computeSign(faceAxis[i],rotAxis[j]);
376
          mB[i][j] = sign*distance3D*coeff;
377
          }
378
        else mB[i][j] = 0.0f;
379
        }
380
    }
381

    
382
///////////////////////////////////////////////////////////////////////////////////////////////////
383

    
384
  private int computeRowFromOffset(int face, int axisIndex, float offset)
385
    {
386
    float[] borders = mTouchBorders[axisIndex];
387

    
388
    if( borders==null ) return 0;
389

    
390
    int len = borders.length;
391
    float A = mA[face][axisIndex];
392

    
393
    if( A!=0.0f )
394
      {
395
      float B = mB[face][axisIndex];
396

    
397
      for(int i=0; i<len; i++)
398
        {
399
        float translated = B + borders[i]/A;
400
        if( offset<translated ) return i;
401
        }
402
      }
403

    
404
    return len;
405
    }
406

    
407
///////////////////////////////////////////////////////////////////////////////////////////////////
408

    
409
  void computeEnabledAxis(int face, float[] touchPoint, int[] enabled)
410
    {
411
    int part = returnPart(mType,face,touchPoint);
412

    
413
    int num = mEnabled[face][0].length;
414
    enabled[0] = num;
415
    System.arraycopy(mEnabled[face][part], 0, enabled, 1, num);
416
    }
417

    
418
///////////////////////////////////////////////////////////////////////////////////////////////////
419
// PUBLIC API
420
///////////////////////////////////////////////////////////////////////////////////////////////////
421

    
422
  public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera, float objectRatio)
423
    {
424
    mPoint[0]  = rotatedTouchPoint.get0()/objectRatio;
425
    mPoint[1]  = rotatedTouchPoint.get1()/objectRatio;
426
    mPoint[2]  = rotatedTouchPoint.get2()/objectRatio;
427

    
428
    mCamera[0] = rotatedCamera.get0()/objectRatio;
429
    mCamera[1] = rotatedCamera.get1()/objectRatio;
430
    mCamera[2] = rotatedCamera.get2()/objectRatio;
431

    
432
    for( mLastTouchedFace=0; mLastTouchedFace<mNumFaceAxis; mLastTouchedFace++)
433
      {
434
      if( faceIsVisible(mLastTouchedFace) )
435
        {
436
        castTouchPointOntoFace(mLastTouchedFace, mTouch);
437
        convertTo2Dcoords(mTouch, mLastTouchedFace, mPoint2D);
438
        if( isInsideFace(mLastTouchedFace,mPoint2D) ) return true;
439
        }
440
      }
441

    
442
    return false;
443
    }
444

    
445
///////////////////////////////////////////////////////////////////////////////////////////////////
446

    
447
  public Static2D newRotation(Static4D rotatedTouchPoint, float objectRatio)
448
    {
449
    mPoint[0] = rotatedTouchPoint.get0()/objectRatio;
450
    mPoint[1] = rotatedTouchPoint.get1()/objectRatio;
451
    mPoint[2] = rotatedTouchPoint.get2()/objectRatio;
452

    
453
    castTouchPointOntoFace(mLastTouchedFace, mTouch);
454
    convertTo2Dcoords(mTouch, mLastTouchedFace, mMove2D);
455

    
456
    mMove2D[0] -= mPoint2D[0];
457
    mMove2D[1] -= mPoint2D[1];
458

    
459
    computeEnabledAxis(mLastTouchedFace, mPoint2D, mEnabledRotAxis);
460
    int rotIndex = computeRotationIndex(mLastTouchedFace, mMove2D, mEnabledRotAxis);
461
    float offset = computeOffset(mPoint2D, mCastedRotAxis[mLastTouchedFace][rotIndex]);
462
    int row      = computeRowFromOffset(mLastTouchedFace,rotIndex,offset);
463

    
464
    return new Static2D(rotIndex,row);
465
    }
466

    
467
///////////////////////////////////////////////////////////////////////////////////////////////////
468

    
469
  public Static4D getCastedRotAxis(int rotIndex)
470
    {
471
    return mCastedRotAxis4D[mLastTouchedFace][rotIndex];
472
    }
473

    
474
///////////////////////////////////////////////////////////////////////////////////////////////////
475

    
476
  public int getTouchedFace()
477
    {
478
    return mLastTouchedFace;
479
    }
480

    
481
///////////////////////////////////////////////////////////////////////////////////////////////////
482

    
483
  public float[] getTouchedPoint3D()
484
    {
485
    return mTouch;
486
    }
487
  }
(2-2/15)