Project

General

Profile

Download (18.9 KB) Statistics
| Branch: | Revision:

distorted-objectlib / src / main / java / org / distorted / objectlib / touchcontrol / TouchControlShapeChanging.java @ aacf5e27

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2021 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is proprietary software licensed under an EULA which you should have received      //
7
// along with the code. If not, check https://distorted.org/magic/License-Magic-Cube.html        //
8
///////////////////////////////////////////////////////////////////////////////////////////////////
9

    
10
package org.distorted.objectlib.touchcontrol;
11

    
12
import org.distorted.library.helpers.QuatHelper;
13
import org.distorted.library.type.Static3D;
14
import org.distorted.library.type.Static4D;
15
import org.distorted.objectlib.helpers.ObjectShape;
16
import org.distorted.objectlib.main.TwistyObject;
17

    
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
public class TouchControlShapeChanging extends TouchControl
21
  {
22
  private static final float NOT_TOUCHED = 1000000.0f;
23
  static final float[] mTmp = new float[4];
24

    
25
  static class FaceInfo
26
    {
27
    private final float[] normal;      // vector normal to the surface of the face, pointing outside.
28
    private final float distance;      // distance from (0,0,0) to the surface of the face
29
    private final float[][] vertices;  // vertices of the face. Already rotated by the initQuat and
30
                                       // moved by 'position' (arithmetic average of all positions)
31
    private final float[][] rotated;   // temp array to store vertices times rotation quaternion.
32

    
33
    //////////////////////////////////////////////////////////
34

    
35
    FaceInfo(float[][] verts, float size)
36
      {
37
      int numV = verts.length;
38

    
39
      vertices = new float[numV][];
40
      rotated  = new float[numV][];
41

    
42
      for(int i=0; i<numV; i++)
43
        {
44
        int len = verts[i].length;
45
        vertices[i]= new float[len];
46
        rotated[i] = new float[len];
47

    
48
        for(int j=0; j<len; j++) vertices[i][j] = verts[i][j]/size;
49
        }
50

    
51
      // assuming the first three vertices are linearly independent
52
      float a1 = vertices[0][0] - vertices[1][0];
53
      float a2 = vertices[0][1] - vertices[1][1];
54
      float a3 = vertices[0][2] - vertices[1][2];
55
      float b1 = vertices[1][0] - vertices[2][0];
56
      float b2 = vertices[1][1] - vertices[2][1];
57
      float b3 = vertices[1][2] - vertices[2][2];
58

    
59
      float vx = a2*b3-a3*b2;
60
      float vy = a3*b1-a1*b3;
61
      float vz = a1*b2-a2*b1;
62

    
63
      float len = (float)Math.sqrt(vx*vx+vy*vy+vz*vz);
64

    
65
      vx/=len;
66
      vy/=len;
67
      vz/=len;
68

    
69
      distance = vx*vertices[0][0] + vy*vertices[0][1] + vz*vertices[0][2];
70

    
71
      normal = new float[4];
72
      normal[0] = vx;
73
      normal[1] = vy;
74
      normal[2] = vz;
75
      normal[3] = 0.0f;
76
      }
77

    
78
    //////////////////////////////////////////////////////////
79

    
80
    public float[] getNormal()
81
      {
82
      return normal;
83
      }
84
    }
85

    
86
  private final float[] mTouch;
87
  private final Static4D mTmpAxis;
88
  private int mNumCubits;
89
  private int[] mNumFaces;
90
  private boolean mPreparationDone;
91

    
92
  final float[] mCamera, mPoint;
93
  final Static3D[] mRotAxis;
94
  final TwistyObject mObject;
95
  int mTouchedCubit, mTouchedFace, mNumAxis;
96
  FaceInfo[][] mInfos;
97
  float[][] mQuats;
98

    
99
///////////////////////////////////////////////////////////////////////////////////////////////////
100

    
101
  public TouchControlShapeChanging(TwistyObject object)
102
    {
103
    super( object!=null ? object.getObjectRatio() : 1.0f );
104

    
105
    mPoint = new float[3];
106
    mCamera= new float[3];
107
    mTouch = new float[3];
108
    mObject= object;
109
    mPreparationDone = false;
110
    mTmpAxis = new Static4D(0,0,0,0);
111

    
112
    if( object!=null )
113
      {
114
      mRotAxis = object.getRotationAxis() ;
115
      mNumAxis = mRotAxis.length;
116
      }
117
    else
118
      {
119
      mRotAxis = null;
120
      mNumAxis = 0;
121
      }
122
    }
123

    
124
///////////////////////////////////////////////////////////////////////////////////////////////////
125

    
126
  private FaceInfo[] computeInfos(float[][] vertices, int[][] indices, float[] position, Static4D quat, float size)
127
    {
128
    int numFaces = indices.length;
129

    
130
    int len = position.length/3;
131
    float avgX = 0.0f;
132
    float avgY = 0.0f;
133
    float avgZ = 0.0f;
134

    
135
    for(int i=0; i<len; i++)
136
      {
137
      avgX += position[3*i  ];
138
      avgY += position[3*i+1];
139
      avgZ += position[3*i+2];
140
      }
141

    
142
    avgX /= len;
143
    avgY /= len;
144
    avgZ /= len;
145

    
146
    FaceInfo[] infos = new FaceInfo[numFaces];
147
    Static4D tmp;
148

    
149
    for(int i=0; i<numFaces; i++)
150
      {
151
      int numVerts = indices[i].length;
152
      float[][] verts = new float[numVerts][4];
153

    
154
      for(int j=0; j<numVerts; j++)
155
        {
156
        int index = indices[i][j];
157
        float x = vertices[index][0];
158
        float y = vertices[index][1];
159
        float z = vertices[index][2];
160
        float w = 1.0f;
161

    
162
        tmp = QuatHelper.rotateVectorByQuat(x,y,z,w,quat);
163

    
164
        verts[j][0] = tmp.get0() + avgX;
165
        verts[j][1] = tmp.get1() + avgY;
166
        verts[j][2] = tmp.get2() + avgZ;
167
        verts[j][3] = 1.0f;
168
        }
169

    
170
      infos[i] = new FaceInfo(verts,size);
171
      }
172

    
173
    return infos;
174
    }
175

    
176
///////////////////////////////////////////////////////////////////////////////////////////////////
177
// software implementation of DistortedLibrary.mainVertexShader.degree() function.
178
// (limited to regions centered at [0,0,0])
179

    
180
  private float computeVertexDegree(float radius, float[] vert)
181
    {
182
    float x = vert[0];
183
    float y = vert[1];
184
    float z = vert[2];
185

    
186
    float len = (float)Math.sqrt(x*x + y*y + z*z);
187
    return len>radius ? 0.0f : 1.0f-len/radius;
188
    }
189

    
190
///////////////////////////////////////////////////////////////////////////////////////////////////
191
// software implementation of DistortedLibrary.VertexEffectSink
192

    
193
  private float[] adjustVert(float pillow, float radius, float[] vert)
194
    {
195
    float[] output = new float[3];
196
    float deg = computeVertexDegree(radius,vert);
197
    float t = 1.0f - deg*(1.0f-pillow)/pillow;
198
    output[0] = t*vert[0];
199
    output[1] = t*vert[1];
200
    output[2] = t*vert[2];
201

    
202
    return output;
203
    }
204

    
205
///////////////////////////////////////////////////////////////////////////////////////////////////
206

    
207
  private float[][] adjustVerticesForPillow(float pillow, float radius, float[][] verts)
208
    {
209
    int num = verts.length;
210
    float[][] output = new float[num][3];
211
    for(int i=0; i<num; i++) output[i] = adjustVert(pillow,radius,verts[i]);
212
    return output;
213
    }
214

    
215
///////////////////////////////////////////////////////////////////////////////////////////////////
216

    
217
  private void prepare()
218
    {
219
    int[] numLayers = mObject.getNumLayers();
220
    float[][] positions = mObject.getCubitPositions(numLayers);
221
    float size = mObject.getSize();
222
    mNumCubits = positions.length;
223
    mNumFaces  = new int[mNumCubits];
224

    
225
    mInfos = new FaceInfo[mNumCubits][];
226
    float pillow = mObject.getPillowCoeff();
227
    float radius = mObject.getCircumscribedRadius();
228

    
229
    for(int i=0; i<mNumCubits; i++)
230
      {
231
      int variant = mObject.getCubitVariant(i,numLayers);
232
      ObjectShape shape = mObject.getObjectShape(variant);
233
      Static4D quat = mObject.getCubitQuats(i,numLayers);
234
      float[][] vertices = shape.getVertices();
235
      int[][] indices = shape.getVertIndices();
236
      if( pillow!=1.0f ) vertices = adjustVerticesForPillow(pillow,radius,vertices);
237

    
238
      mInfos[i] = computeInfos(vertices,indices,positions[i],quat,size);
239
      mNumFaces[i] = indices.length;
240
      }
241

    
242
    Static4D[] quats = mObject.getQuats();
243
    int numQuats = quats.length;
244

    
245
    mQuats = new float[numQuats][4];
246

    
247
    for(int i=0; i<numQuats; i++)
248
      {
249
      Static4D q = quats[i];
250
      mQuats[i][0] = q.get0();
251
      mQuats[i][1] = q.get1();
252
      mQuats[i][2] = q.get2();
253
      mQuats[i][3] = q.get3();
254
      }
255

    
256
    mPreparationDone = true;
257
    }
258

    
259
///////////////////////////////////////////////////////////////////////////////////////////////////
260
// points A, B, C are co-linear. Return true iff B is between A and C on this line.
261
// Compute D1 = A-B, D2=C-B. Then D1 and D2 are parallel vectors.
262
// They disagree in direction iff |D1+D2|<|D1-D2|
263

    
264
  private boolean isBetween(float ax, float ay, float az,
265
                            float bx, float by, float bz,
266
                            float cx, float cy, float cz)
267
    {
268
    float d1x = ax-bx;
269
    float d1y = ay-by;
270
    float d1z = az-bz;
271

    
272
    float d2x = cx-bx;
273
    float d2y = cy-by;
274
    float d2z = cz-bz;
275

    
276
    float sx = d1x+d2x;
277
    float sy = d1y+d2y;
278
    float sz = d1z+d2z;
279

    
280
    float dx = d1x-d2x;
281
    float dy = d1y-d2y;
282
    float dz = d1z-d2z;
283

    
284
    return sx*sx+sy*sy+sz*sz < dx*dx+dy*dy+dz*dz;
285
    }
286

    
287
///////////////////////////////////////////////////////////////////////////////////////////////////
288
// General algorithm: shoot a half-line from the 'point' and count how many
289
// sides of the polygon it intersects with. The point is inside iff this number
290
// is odd. Note that this works also in case of concave polygons.
291
//
292
// Arbitrarily take point P on the plane ( we have decided on P=(vert[0]+vert[1])/2 )
293
// as the other point defining the half-line.
294
// 'point' and 'P' define a line L1 in 3D. Then for each side the pair of its vertices
295
// defines a line L2. If L1||L2 return false. Otherwise, the lines are skew so it's
296
// possible to compute points C1 and C2 on lines L1 and L2 which are closest to the
297
// other line and check if
298
//
299
// a) C1 and P are on the same side of 'point'
300
//    (which happens iff 'point' is not in between of C1 and P)
301
// b) C2 is between the two vertices.
302
//
303
// Both a) and b) together mean that the half-line intersects with side defined by (p2,d2)
304
//
305
// C1 and C2 can be computed in the following way:
306
// Let n = d1 x d2 - then vector n is perpendicular to both d1 and d2 --> (c1-c2) is
307
// parallel to n.
308
// There exist real numbers A,B,C such that
309
// c1 = p1 + A*d1
310
// c2 = p2 + B*d2 and
311
// c2 = c1 + C*n so that
312
// p1 + A*d1 + C*n = p2 + B*d2  --> (p1-p2) + A*d1 = B*d2 - C*n (*)
313
// Let n2 = n x d2. Let's multiply both sides of (*) by n2. Then
314
// (p1-p2)*n2 + A*(d1*n2) = 0 (0 because d1*n2 = n*n2 = 0)
315
// and from that A = [(p1-p2)*n2]/[d1*n2]
316
// Similarly     B = [(p2-p1)*n1]/[d2*n1]  where n1 = n x d1.
317

    
318
  private boolean isInside(float[] point, float[][] vertices)
319
    {
320
    float e1x = (vertices[0][0]+vertices[1][0])/2;
321
    float e1y = (vertices[0][1]+vertices[1][1])/2;
322
    float e1z = (vertices[0][2]+vertices[1][2])/2;
323

    
324
    float d1x = e1x - point[0];
325
    float d1y = e1y - point[1];
326
    float d1z = e1z - point[2];
327

    
328
    float ax = vertices[0][0] - vertices[1][0];
329
    float ay = vertices[0][1] - vertices[1][1];
330
    float az = vertices[0][2] - vertices[1][2];
331

    
332
    float normX = d1y*az - d1z*ay;
333
    float normY = d1z*ax - d1x*az;
334
    float normZ = d1x*ay - d1y*ax;
335

    
336
    float n1x = d1y*normZ - d1z*normY;
337
    float n1y = d1z*normX - d1x*normZ;
338
    float n1z = d1x*normY - d1y*normX;
339

    
340
    float p1x = point[0];
341
    float p1y = point[1];
342
    float p1z = point[2];
343

    
344
    int len = vertices.length;
345
    int numCrossings = 0;
346

    
347
    for(int side=0; side<len; side++)
348
      {
349
      float p2x = vertices[side][0];
350
      float p2y = vertices[side][1];
351
      float p2z = vertices[side][2];
352

    
353
      int next = side==len-1 ? 0 : side+1;
354

    
355
      float e2x = vertices[next][0];
356
      float e2y = vertices[next][1];
357
      float e2z = vertices[next][2];
358

    
359
      float d2x = e2x-p2x;
360
      float d2y = e2y-p2y;
361
      float d2z = e2z-p2z;
362

    
363
      float nx = d2y*d1z - d2z*d1y;
364
      float ny = d2z*d1x - d2x*d1z;
365
      float nz = d2x*d1y - d2y*d1x;
366

    
367
      float n2x = d2y*nz - d2z*ny;
368
      float n2y = d2z*nx - d2x*nz;
369
      float n2z = d2x*ny - d2y*nx;
370

    
371
      float dpx = p1x-p2x;
372
      float dpy = p1y-p2y;
373
      float dpz = p1z-p2z;
374

    
375
      float A1 =-dpx*n2x-dpy*n2y-dpz*n2z;
376
      float B1 = d1x*n2x+d1y*n2y+d1z*n2z;
377

    
378
      float A2 = dpx*n1x+dpy*n1y+dpz*n1z;
379
      float B2 = d2x*n1x+d2y*n1y+d2z*n1z;
380

    
381
      if( B1==0 || B2==0 ) continue;
382

    
383
      float C1 = A1/B1;
384
      float C2 = A2/B2;
385

    
386
      float c1x = p1x + C1*d1x;
387
      float c1y = p1y + C1*d1y;
388
      float c1z = p1z + C1*d1z;
389

    
390
      float c2x = p2x + C2*d2x;
391
      float c2y = p2y + C2*d2y;
392
      float c2z = p2z + C2*d2z;
393

    
394
      if( !isBetween(c1x,c1y,c1z, p1x,p1y,p1z, e1x,e1y,e1z ) &&
395
           isBetween(p2x,p2y,p2z, c2x,c2y,c2z, e2x,e2y,e2z )  )
396
        {
397
        numCrossings++;
398
        }
399
      }
400

    
401
    return (numCrossings%2)==1;
402
    }
403

    
404
///////////////////////////////////////////////////////////////////////////////////////////////////
405

    
406
  private void rotateVertices(float[][] points, float[][] rotated, float[] quat)
407
    {
408
    int numPoints = points.length;
409

    
410
    for(int i=0; i<numPoints; i++)
411
      {
412
      QuatHelper.rotateVectorByQuat(rotated[i],points[i],quat);
413
      }
414
    }
415

    
416
///////////////////////////////////////////////////////////////////////////////////////////////////
417
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
418
// a normalVec (nx,ny,nz) and distance (which together define a plane) compute point 'output[]' which:
419
// 1) lies on this plane
420
// 2) is co-linear with mCamera and mPoint
421
//
422
// output = camera + alpha*(point-camera), where alpha = [dist-normalVec*camera] / [normalVec*(point-camera)]
423

    
424
  void castTouchPointOntoFace(float nx, float ny, float nz, float distance, float[] output)
425
    {
426
    float d0 = mPoint[0]-mCamera[0];
427
    float d1 = mPoint[1]-mCamera[1];
428
    float d2 = mPoint[2]-mCamera[2];
429

    
430
    float denom = nx*d0 + ny*d1 + nz*d2;
431

    
432
    if( denom != 0.0f )
433
      {
434
      float axisCam = nx*mCamera[0] + ny*mCamera[1] + nz*mCamera[2];
435
      float alpha = (distance-axisCam)/denom;
436

    
437
      output[0] = mCamera[0] + d0*alpha;
438
      output[1] = mCamera[1] + d1*alpha;
439
      output[2] = mCamera[2] + d2*alpha;
440
      }
441
    }
442

    
443
///////////////////////////////////////////////////////////////////////////////////////////////////
444

    
445
  private boolean cubitFaceIsVisible(float nx, float ny, float nz, float distance)
446
    {
447
    return mCamera[0]*nx + mCamera[1]*ny + mCamera[2]*nz > distance;
448
    }
449

    
450
///////////////////////////////////////////////////////////////////////////////////////////////////
451
// FaceInfo defines a 3D plane (by means of a unit normal vector 'vector' and distance from the origin
452
// 'distance') and a list of points on the plane ('vertices').
453
//
454
// 0) rotate the face normal vector by quat
455
// 1) see if the face is visible. If not, return NOT_TOUCHED
456
// 2) else, cast the line passing through mPoint and mCamera onto this plane
457
// 3) if Z of this point is further from us than the already computed closestSoFar, return NOT_TOUCHED
458
// 4) else, rotate 'vertices' by quat and see if the casted point lies inside the polygon defined by them
459
// 5) if yes, return the distance form this point to the camera; otherwise, return NOT_TOUCHED
460

    
461
  private float cubitFaceTouched(FaceInfo info, float[] quat, float closestSoFar)
462
    {
463
    QuatHelper.rotateVectorByQuat(mTmp,info.normal,quat);
464
    float nx = mTmp[0];
465
    float ny = mTmp[1];
466
    float nz = mTmp[2];
467

    
468
    if( cubitFaceIsVisible(nx,ny,nz,info.distance) )
469
      {
470
      castTouchPointOntoFace(nx,ny,nz,info.distance,mTouch);
471

    
472
      float dx = mTouch[0]-mCamera[0];
473
      float dy = mTouch[1]-mCamera[1];
474
      float dz = mTouch[2]-mCamera[2];
475
      float dist = dx*dx + dy*dy + dz*dz;
476

    
477
      if( dist<closestSoFar )
478
        {
479
        rotateVertices(info.vertices,info.rotated,quat);
480
        if( isInside(mTouch,info.rotated) ) return dist;
481
        }
482
      }
483

    
484
    return NOT_TOUCHED;
485
    }
486

    
487
///////////////////////////////////////////////////////////////////////////////////////////////////
488

    
489
  int computeRow(int cubit, int rotIndex)
490
    {
491
    int row = mObject.getCubitRotRow(cubit,rotIndex);
492

    
493
    for(int index=0; index<32; index++)
494
      {
495
      if( (row&1)==1 ) return index;
496
      row>>=1;
497
      }
498

    
499
    return 0;
500
    }
501

    
502
///////////////////////////////////////////////////////////////////////////////////////////////////
503
// PUBLIC API
504
///////////////////////////////////////////////////////////////////////////////////////////////////
505

    
506
  public boolean objectTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera)
507
    {
508
    if( !mPreparationDone ) prepare();
509

    
510
    mPoint[0]  = rotatedTouchPoint.get0()/mObjectRatio;
511
    mPoint[1]  = rotatedTouchPoint.get1()/mObjectRatio;
512
    mPoint[2]  = rotatedTouchPoint.get2()/mObjectRatio;
513

    
514
    mCamera[0] = rotatedCamera.get0()/mObjectRatio;
515
    mCamera[1] = rotatedCamera.get1()/mObjectRatio;
516
    mCamera[2] = rotatedCamera.get2()/mObjectRatio;
517

    
518
    float closestSoFar = NOT_TOUCHED;
519
    mTouchedCubit = -1;
520
    mTouchedFace  = -1;
521
    int numQuats = mQuats.length;
522

    
523
    for(int cubit=0; cubit<mNumCubits; cubit++)
524
      {
525
      int quatIndex = mObject.getCubitQuatIndex(cubit);
526

    
527
      if( quatIndex<numQuats )
528
        {
529
        float[] quat = mQuats[quatIndex];
530

    
531
        for(int face=0; face<mNumFaces[cubit]; face++)
532
          {
533
          float dist = cubitFaceTouched(mInfos[cubit][face],quat,closestSoFar);
534

    
535
          if( dist!=NOT_TOUCHED )
536
            {
537
            mTouchedCubit= cubit;
538
            mTouchedFace = face;
539
            closestSoFar = dist;
540
            }
541
          }
542
        }
543
      }
544
/*
545
    if( closestSoFar!=NOT_TOUCHED )
546
      {
547
      android.util.Log.e("D", "cubit="+mTouchedCubit+" face="+mTouchedFace+" result: "+closestSoFar);
548
      }
549
*/
550
    return closestSoFar!=NOT_TOUCHED;
551
    }
552

    
553
///////////////////////////////////////////////////////////////////////////////////////////////////
554
// really implemented in derived classes; here present only because we need to be able to
555
// instantiate an object of this class for MODE_REPLACE.
556

    
557
  public void newRotation(int[] output, Static4D rotatedTouchPoint, Static4D quat)
558
    {
559

    
560
    }
561

    
562
///////////////////////////////////////////////////////////////////////////////////////////////////
563

    
564
  public void getCastedRotAxis(float[] output, Static4D quat, int axisIndex)
565
    {
566
    Static3D rotAxis = mRotAxis[axisIndex];
567
    float rx = rotAxis.get0();
568
    float ry = rotAxis.get1();
569
    float rz = rotAxis.get2();
570

    
571
    mTmpAxis.set(rx,ry,rz,0);
572
    Static4D result = QuatHelper.rotateVectorByQuat(mTmpAxis, quat);
573

    
574
    float cx =result.get0();
575
    float cy =result.get1();
576

    
577
    float len = (float)Math.sqrt(cx*cx+cy*cy);
578

    
579
    if( len!=0 )
580
      {
581
      output[0] = cx/len;
582
      output[1] = cy/len;
583
      }
584
    else
585
      {
586
      output[0] = 1;
587
      output[1] = 0;
588
      }
589
    }
590

    
591
///////////////////////////////////////////////////////////////////////////////////////////////////
592

    
593
  public float[] getTouchedPuzzleCenter()
594
    {
595
    return null;
596
    }
597

    
598
///////////////////////////////////////////////////////////////////////////////////////////////////
599

    
600
  public int getTouchedCubitFace()
601
    {
602
    return mTouchedFace;
603
    }
604

    
605
///////////////////////////////////////////////////////////////////////////////////////////////////
606

    
607
  public int getTouchedCubit()
608
    {
609
    return mTouchedCubit;
610
    }
611

    
612
///////////////////////////////////////////////////////////////////////////////////////////////////
613

    
614
  public float returnRotationFactor(int[] numLayers, int row)
615
    {
616
    return 1.0f;
617
    }
618
  }
(9-9/13)