34 |
34 |
private int[][] mScramble;
|
35 |
35 |
private int[] mColors;
|
36 |
36 |
|
37 |
|
private static class SurfaceInfo
|
38 |
|
{
|
39 |
|
float[] surface;
|
40 |
|
int[] indices;
|
41 |
|
|
42 |
|
SurfaceInfo(float[] s) { surface = s; }
|
43 |
|
void setIndices(int[] i) { indices = i; }
|
44 |
|
}
|
45 |
|
|
46 |
37 |
private int[][] mSurfaceTable;
|
47 |
38 |
private int[][] mTmpFaceColorTable;
|
48 |
39 |
private int[][] mCubitFaceToSurfaceMap;
|
... | ... | |
50 |
41 |
private int[] mPuzzleFaceColor;
|
51 |
42 |
|
52 |
43 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
53 |
|
// remember about the double cover or unit quaternions!
|
|
44 |
// METHOD 0
|
|
45 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
46 |
// ATM this works only for puzzles which do not have clearly defined external walls - i.e. do not
|
|
47 |
// have flat surfaces perpendicular to some axis passing through the center of the puzzle as their
|
|
48 |
// external walls. I.e: the Penrose Cubes and the Masterball.
|
|
49 |
// And in case of the 3 Mirror objects ( MirrorJing, MirrorPyraminx, MirrorSkewb) - TBH I am not
|
|
50 |
// sure if those three couldn't be the default.
|
|
51 |
// Maybe they could right now, but the default can get it wrong if the 'surfaces' (all cuts at the
|
|
52 |
// initial state multiplied by all the quats) are too close to each other --> maybe if the change
|
|
53 |
// the 'offset' vector of the Mirrors, the solved state detection will suddenly stop working. Ergo:
|
|
54 |
// this is much safer.
|
|
55 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
54 |
56 |
|
55 |
57 |
private int mulQuat(int q1, int q2)
|
56 |
58 |
{
|
... | ... | |
112 |
114 |
}
|
113 |
115 |
|
114 |
116 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
115 |
|
|
116 |
|
private int computeScramble(int quatNum, int centerNum)
|
117 |
|
{
|
118 |
|
float MAXDIFF = 0.01f;
|
119 |
|
float[] center= mOrigPos[centerNum];
|
120 |
|
Static4D sc = new Static4D(center[0], center[1], center[2], 1.0f);
|
121 |
|
Static4D result = QuatHelper.rotateVectorByQuat(sc,mObjectQuats[quatNum]);
|
122 |
|
|
123 |
|
float x = result.get0();
|
124 |
|
float y = result.get1();
|
125 |
|
float z = result.get2();
|
126 |
|
|
127 |
|
for(int c=0; c<mNumCubits; c++)
|
128 |
|
{
|
129 |
|
float[] cent = mOrigPos[c];
|
130 |
|
|
131 |
|
float qx = cent[0] - x;
|
132 |
|
float qy = cent[1] - y;
|
133 |
|
float qz = cent[2] - z;
|
134 |
|
|
135 |
|
if( qx>-MAXDIFF && qx<MAXDIFF &&
|
136 |
|
qy>-MAXDIFF && qy<MAXDIFF &&
|
137 |
|
qz>-MAXDIFF && qz<MAXDIFF ) return c;
|
138 |
|
}
|
139 |
|
|
140 |
|
return -1;
|
141 |
|
}
|
142 |
|
|
143 |
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
144 |
|
// This is used to build internal data structures for the generic 'isSolved()'
|
145 |
|
//
|
146 |
117 |
// if this is an internal cubit (all faces black): return -1
|
147 |
118 |
// if this is a face cubit (one non-black face): return the color index of the only non-black face.
|
148 |
119 |
// Color index, i.e. the index into the 'FACE_COLORS' table.
|
... | ... | |
250 |
221 |
|
251 |
222 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
252 |
223 |
|
253 |
|
private int surfaceExists(ArrayList<SurfaceInfo> list, float[] newSurface)
|
|
224 |
private boolean isSolved0(TwistyObjectCubit[] cubits)
|
254 |
225 |
{
|
255 |
|
final float MAX_ERROR = 0.01f;
|
256 |
|
int size = list.size();
|
257 |
|
float dnx,dny,dnz,dnw;
|
|
226 |
if( mSolvedQuats[0][0]==0 ) return isSolvedCentersOnly(cubits);
|
258 |
227 |
|
259 |
|
for(int s=0; s<size; s++)
|
|
228 |
for( int[] solvedQuat : mSolvedQuats )
|
260 |
229 |
{
|
261 |
|
SurfaceInfo si = list.get(s);
|
262 |
|
float[] surface = si.surface;
|
263 |
|
|
264 |
|
dnx = newSurface[0] - surface[0];
|
265 |
|
dny = newSurface[1] - surface[1];
|
266 |
|
dnz = newSurface[2] - surface[2];
|
267 |
|
dnw = newSurface[3] - surface[3];
|
|
230 |
int numCubits = solvedQuat[0];
|
|
231 |
int firstCubit= solvedQuat[1];
|
|
232 |
int quat = cubits[firstCubit].mQuatIndex;
|
268 |
233 |
|
269 |
|
if( dnx*dnx + dny*dny + dnz*dnz + dnw*dnw < MAX_ERROR )
|
|
234 |
for( int cubit=2; cubit<=numCubits; cubit++ )
|
270 |
235 |
{
|
271 |
|
//android.util.Log.d("D", "1 Surface "+newSurface[0]+" "+newSurface[1]+" "+newSurface[2]+" "+newSurface[3]+" exists already at "+s);
|
272 |
|
|
273 |
|
return s;
|
|
236 |
int c = solvedQuat[cubit];
|
|
237 |
if( quat != cubits[c].mQuatIndex ) return false;
|
274 |
238 |
}
|
|
239 |
}
|
|
240 |
|
|
241 |
int cubit= mSolvedQuats[0][1];
|
|
242 |
int quat0= cubits[cubit].mQuatIndex;
|
|
243 |
int numGroups = mSolvedQuats.length;
|
|
244 |
|
|
245 |
for(int group=1; group<numGroups; group++)
|
|
246 |
{
|
|
247 |
int firstCubit= mSolvedQuats[group][1];
|
|
248 |
int currQuat = cubits[firstCubit].mQuatIndex;
|
275 |
249 |
|
276 |
|
dnx = newSurface[0] + surface[0];
|
277 |
|
dny = newSurface[1] + surface[1];
|
278 |
|
dnz = newSurface[2] + surface[2];
|
279 |
|
dnw = newSurface[3] + surface[3];
|
|
250 |
if( quat0==currQuat ) continue;
|
|
251 |
|
|
252 |
boolean isGood= false;
|
|
253 |
int numEntries= mSolvedQuats[group].length;
|
|
254 |
int numCubits = mSolvedQuats[group][0];
|
280 |
255 |
|
281 |
|
if( dnx*dnx + dny*dny + dnz*dnz + dnw*dnw < MAX_ERROR )
|
|
256 |
for(int q=numCubits+1; q<numEntries; q++)
|
282 |
257 |
{
|
283 |
|
//android.util.Log.d("D", "2 Surface "+newSurface[0]+" "+newSurface[1]+" "+newSurface[2]+" "+newSurface[3]+" exists already at "+s);
|
|
258 |
int quat = mSolvedQuats[group][q];
|
284 |
259 |
|
285 |
|
return s;
|
|
260 |
if( currQuat == getMultQuat(quat0,quat) )
|
|
261 |
{
|
|
262 |
isGood = true;
|
|
263 |
break;
|
|
264 |
}
|
286 |
265 |
}
|
|
266 |
|
|
267 |
if( !isGood ) return false;
|
|
268 |
}
|
|
269 |
|
|
270 |
return true;
|
|
271 |
}
|
|
272 |
|
|
273 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
274 |
// METHOD 1
|
|
275 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
276 |
// Dino4 uses this. It is solved if and only if groups of cubits
|
|
277 |
// (0,3,7), (1,2,5), (4,8,9), (6,10,11)
|
|
278 |
// or
|
|
279 |
// (0,1,4), (2,3,6), (5,9,10), (7,8,11)
|
|
280 |
// are all the same color.
|
|
281 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
282 |
|
|
283 |
private int computeScramble(int quatNum, int centerNum)
|
|
284 |
{
|
|
285 |
float MAXDIFF = 0.01f;
|
|
286 |
float[] center= mOrigPos[centerNum];
|
|
287 |
Static4D sc = new Static4D(center[0], center[1], center[2], 1.0f);
|
|
288 |
Static4D result = QuatHelper.rotateVectorByQuat(sc,mObjectQuats[quatNum]);
|
|
289 |
|
|
290 |
float x = result.get0();
|
|
291 |
float y = result.get1();
|
|
292 |
float z = result.get2();
|
|
293 |
|
|
294 |
for(int c=0; c<mNumCubits; c++)
|
|
295 |
{
|
|
296 |
float[] cent = mOrigPos[c];
|
|
297 |
|
|
298 |
float qx = cent[0] - x;
|
|
299 |
float qy = cent[1] - y;
|
|
300 |
float qz = cent[2] - z;
|
|
301 |
|
|
302 |
if( qx>-MAXDIFF && qx<MAXDIFF &&
|
|
303 |
qy>-MAXDIFF && qy<MAXDIFF &&
|
|
304 |
qz>-MAXDIFF && qz<MAXDIFF ) return c;
|
287 |
305 |
}
|
288 |
306 |
|
289 |
|
//android.util.Log.d("D", "Surface "+newSurface[0]+" "+newSurface[1]+" "+newSurface[2]+" "+newSurface[3]+" doesnt exist yet");
|
290 |
307 |
return -1;
|
291 |
308 |
}
|
292 |
309 |
|
293 |
310 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
294 |
311 |
|
295 |
|
private int adjoinNewSurface(ArrayList<SurfaceInfo> list, float[] newSurface)
|
|
312 |
private boolean isSolved1(TwistyObjectCubit[] cubits)
|
296 |
313 |
{
|
297 |
|
int index = surfaceExists(list,newSurface);
|
298 |
|
if( index>=0 ) return index;
|
|
314 |
if( mScramble==null )
|
|
315 |
{
|
|
316 |
mScramble = new int[mNumQuats][mNumCubits];
|
|
317 |
mColors = new int[mNumCubits];
|
299 |
318 |
|
300 |
|
//android.util.Log.d("D", "Adding new surface "+newSurface[0]+" "+newSurface[1]+" "+newSurface[2]+" "+newSurface[3]+" to "+list.size());
|
|
319 |
for(int q=0; q<mNumQuats; q++)
|
|
320 |
for(int c=0; c<mNumCubits; c++) mScramble[q][c] = computeScramble(q,c);
|
|
321 |
}
|
301 |
322 |
|
302 |
|
SurfaceInfo si = new SurfaceInfo(newSurface);
|
303 |
|
list.add(si);
|
304 |
|
return list.size()-1;
|
|
323 |
if( mFaceMap==null )
|
|
324 |
{
|
|
325 |
mFaceMap = new int[] { 4, 2, 2, 4, 0, 2, 1, 4, 0, 0, 1, 1 };
|
|
326 |
}
|
|
327 |
|
|
328 |
for(int c=0; c<mNumCubits; c++)
|
|
329 |
{
|
|
330 |
int index = mScramble[cubits[c].mQuatIndex][c];
|
|
331 |
mColors[index] = mFaceMap[c];
|
|
332 |
}
|
|
333 |
|
|
334 |
if( mColors[0]==mColors[3] && mColors[0]==mColors[7] &&
|
|
335 |
mColors[1]==mColors[2] && mColors[1]==mColors[5] &&
|
|
336 |
mColors[4]==mColors[8] && mColors[4]==mColors[9] ) return true;
|
|
337 |
|
|
338 |
if( mColors[0]==mColors[1] && mColors[0]==mColors[4] &&
|
|
339 |
mColors[2]==mColors[3] && mColors[2]==mColors[6] &&
|
|
340 |
mColors[5]==mColors[9] && mColors[5]==mColors[10] ) return true;
|
|
341 |
|
|
342 |
return false;
|
305 |
343 |
}
|
306 |
344 |
|
|
345 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
346 |
// METHOD 2
|
|
347 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
348 |
// The main solver - works by checking if all external walls of the puzzle are monochromatic.
|
|
349 |
// Almost all puzzles use this one.
|
307 |
350 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
308 |
351 |
|
309 |
|
private float[] multiplySurface( float[] surface, Static4D quat )
|
|
352 |
private int surfaceExists(ArrayList<TwistyObjectSurface> list, TwistyObjectSurface surface)
|
310 |
353 |
{
|
311 |
|
float[] ret = new float[4];
|
312 |
|
QuatHelper.rotateVectorByQuat(ret,surface[0],surface[1],surface[2],0,quat);
|
313 |
|
ret[3] = surface[3];
|
|
354 |
int size = list.size();
|
314 |
355 |
|
315 |
|
return ret;
|
|
356 |
for(int s=0; s<size; s++)
|
|
357 |
if( surface.isSame(list.get(s)) ) return s;
|
|
358 |
|
|
359 |
return -1;
|
|
360 |
}
|
|
361 |
|
|
362 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
363 |
|
|
364 |
private int adjoinNewSurface(ArrayList<TwistyObjectSurface> list, TwistyObjectSurface si)
|
|
365 |
{
|
|
366 |
int index = surfaceExists(list,si);
|
|
367 |
if( index>=0 ) return index;
|
|
368 |
list.add(si);
|
|
369 |
return list.size()-1;
|
316 |
370 |
}
|
317 |
371 |
|
318 |
372 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
... | ... | |
329 |
383 |
|
330 |
384 |
for(int v=0; v<numVariants; v++) shapes[v] = mParent.getObjectShape(v);
|
331 |
385 |
|
332 |
|
ArrayList<SurfaceInfo> tmpSurfaces = new ArrayList<>();
|
|
386 |
ArrayList<TwistyObjectSurface> tmpSurfaces = new ArrayList<>();
|
333 |
387 |
|
334 |
388 |
for(int c=0; c<numCubits; c++)
|
335 |
389 |
{
|
... | ... | |
381 |
435 |
float z = rotPoint[2] + pz;
|
382 |
436 |
surface[3] = x*surface[0] + y*surface[1] + z*surface[2];
|
383 |
437 |
|
384 |
|
int index = surfaceExists(tmpSurfaces,surface);
|
|
438 |
TwistyObjectSurface si = new TwistyObjectSurface(surface);
|
|
439 |
int index = surfaceExists(tmpSurfaces,si);
|
385 |
440 |
|
386 |
441 |
if( index>=0 )
|
387 |
442 |
{
|
... | ... | |
389 |
444 |
}
|
390 |
445 |
else
|
391 |
446 |
{
|
392 |
|
SurfaceInfo si = new SurfaceInfo(surface);
|
393 |
447 |
tmpSurfaces.add(si);
|
394 |
448 |
mCubitFaceToSurfaceMap[c][f] = tmpSurfaces.size()-1;
|
395 |
449 |
|
... | ... | |
399 |
453 |
|
400 |
454 |
for(int q=0; q<mNumQuats; q++)
|
401 |
455 |
{
|
402 |
|
float[] ts = multiplySurface(surface, mObjectQuats[q]);
|
|
456 |
TwistyObjectSurface ts = si.rotateSurface(mObjectQuats[q]);
|
403 |
457 |
int ind = adjoinNewSurface(tmpSurfaces,ts);
|
404 |
458 |
indices[q] = ind;
|
405 |
459 |
}
|
... | ... | |
414 |
468 |
|
415 |
469 |
for(int s=0; s<size; s++)
|
416 |
470 |
{
|
417 |
|
SurfaceInfo si = tmpSurfaces.get(s);
|
|
471 |
TwistyObjectSurface si = tmpSurfaces.get(s);
|
418 |
472 |
|
419 |
|
if( si.indices == null )
|
|
473 |
if( si.getIndices() == null )
|
420 |
474 |
{
|
421 |
|
float[] surface = si.surface;
|
422 |
475 |
int[] indices = new int[mNumQuats];
|
423 |
476 |
|
424 |
477 |
for(int q=0; q<mNumQuats; q++)
|
425 |
478 |
{
|
426 |
|
float[] ts = multiplySurface(surface, mObjectQuats[q]);
|
|
479 |
TwistyObjectSurface ts = si.rotateSurface(mObjectQuats[q]);
|
427 |
480 |
int ind = adjoinNewSurface(tmpSurfaces,ts);
|
428 |
481 |
indices[q] = ind;
|
429 |
482 |
}
|
... | ... | |
431 |
484 |
si.setIndices(indices);
|
432 |
485 |
}
|
433 |
486 |
|
434 |
|
mSurfaceTable[s] = si.indices;
|
|
487 |
mSurfaceTable[s] = si.getIndices();
|
435 |
488 |
}
|
436 |
489 |
}
|
437 |
490 |
|
438 |
491 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
439 |
492 |
|
440 |
|
private void debugSurfaceTable(ArrayList<SurfaceInfo> surfaces)
|
|
493 |
private void debugSurfaceTable(ArrayList<TwistyObjectSurface> surfaces)
|
441 |
494 |
{
|
442 |
|
int size = surfaces.size();
|
443 |
|
android.util.Log.e("D", "COMPUTE size: "+size);
|
|
495 |
int numSurfaces = surfaces.size();
|
|
496 |
android.util.Log.e("D", "numSurfaces: "+numSurfaces);
|
444 |
497 |
|
445 |
|
for(int s=0; s<size; s++)
|
|
498 |
for(int s=0; s<numSurfaces; s++)
|
446 |
499 |
{
|
447 |
500 |
StringBuilder sb = new StringBuilder();
|
448 |
501 |
sb.append("surface ");
|
449 |
502 |
sb.append(s);
|
450 |
503 |
sb.append(" : ");
|
451 |
|
|
452 |
|
SurfaceInfo si = surfaces.get(s);
|
453 |
|
float[] sur = si.surface;
|
454 |
|
|
455 |
|
sb.append(sur[0]);
|
456 |
|
sb.append(' ');
|
457 |
|
sb.append(sur[1]);
|
458 |
|
sb.append(' ');
|
459 |
|
sb.append(sur[2]);
|
460 |
|
sb.append(' ');
|
461 |
|
sb.append(sur[3]);
|
|
504 |
sb.append(surfaces.get(s).print());
|
462 |
505 |
sb.append(" indices:");
|
463 |
506 |
|
464 |
507 |
for(int q=0; q<mNumQuats; q++)
|
... | ... | |
471 |
514 |
}
|
472 |
515 |
}
|
473 |
516 |
|
474 |
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
475 |
|
// ATM this works only for puzzles which do not have clearly defined external walls - i.e. do not
|
476 |
|
// have flat surfaces perpendicular to some axis passing through the center of the puzzle as their
|
477 |
|
// external walls. I.e: the Penrose Cubes and the Masterball.
|
478 |
|
// And in case of the 3 Mirror objects ( MirrorJing, MirrorPyraminx, MirrorSkewb) - TBH I am not sure
|
479 |
|
// if those three couldn't be the default.
|
480 |
|
// Maybe they could right now, but the default can get it wrong if the 'surfaces' (all cuts at the
|
481 |
|
// initial state multiplied by all the quats) are too close to each other --> maybe if the change the
|
482 |
|
// 'offset' vector of the Mirrors, the solved state detection will suddenly stop working. Ergo: this
|
483 |
|
// is much safer.
|
484 |
|
|
485 |
|
private boolean isSolved0(TwistyObjectCubit[] cubits)
|
486 |
|
{
|
487 |
|
if( mSolvedQuats[0][0]==0 ) return isSolvedCentersOnly(cubits);
|
488 |
|
|
489 |
|
for( int[] solvedQuat : mSolvedQuats )
|
490 |
|
{
|
491 |
|
int numCubits = solvedQuat[0];
|
492 |
|
int firstCubit= solvedQuat[1];
|
493 |
|
int quat = cubits[firstCubit].mQuatIndex;
|
494 |
|
|
495 |
|
for( int cubit=2; cubit<=numCubits; cubit++ )
|
496 |
|
{
|
497 |
|
int c = solvedQuat[cubit];
|
498 |
|
if( quat != cubits[c].mQuatIndex ) return false;
|
499 |
|
}
|
500 |
|
}
|
501 |
|
|
502 |
|
int cubit= mSolvedQuats[0][1];
|
503 |
|
int quat0= cubits[cubit].mQuatIndex;
|
504 |
|
int numGroups = mSolvedQuats.length;
|
505 |
|
|
506 |
|
for(int group=1; group<numGroups; group++)
|
507 |
|
{
|
508 |
|
int firstCubit= mSolvedQuats[group][1];
|
509 |
|
int currQuat = cubits[firstCubit].mQuatIndex;
|
510 |
|
|
511 |
|
if( quat0==currQuat ) continue;
|
512 |
|
|
513 |
|
boolean isGood= false;
|
514 |
|
int numEntries= mSolvedQuats[group].length;
|
515 |
|
int numCubits = mSolvedQuats[group][0];
|
516 |
|
|
517 |
|
for(int q=numCubits+1; q<numEntries; q++)
|
518 |
|
{
|
519 |
|
int quat = mSolvedQuats[group][q];
|
520 |
|
|
521 |
|
if( currQuat == getMultQuat(quat0,quat) )
|
522 |
|
{
|
523 |
|
isGood = true;
|
524 |
|
break;
|
525 |
|
}
|
526 |
|
}
|
527 |
|
|
528 |
|
if( !isGood ) return false;
|
529 |
|
}
|
530 |
|
|
531 |
|
return true;
|
532 |
|
}
|
533 |
|
|
534 |
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
535 |
|
// Dino4 uses this. It is solved if and only if groups of cubits
|
536 |
|
// (0,3,7), (1,2,5), (4,8,9), (6,10,11)
|
537 |
|
// or
|
538 |
|
// (0,1,4), (2,3,6), (5,9,10), (7,8,11)
|
539 |
|
// are all the same color.
|
540 |
|
|
541 |
|
private boolean isSolved1(TwistyObjectCubit[] cubits)
|
542 |
|
{
|
543 |
|
if( mScramble==null )
|
544 |
|
{
|
545 |
|
mScramble = new int[mNumQuats][mNumCubits];
|
546 |
|
mColors = new int[mNumCubits];
|
547 |
|
|
548 |
|
for(int q=0; q<mNumQuats; q++)
|
549 |
|
for(int c=0; c<mNumCubits; c++) mScramble[q][c] = computeScramble(q,c);
|
550 |
|
}
|
551 |
|
|
552 |
|
if( mFaceMap==null )
|
553 |
|
{
|
554 |
|
mFaceMap = new int[] { 4, 2, 2, 4, 0, 2, 1, 4, 0, 0, 1, 1 };
|
555 |
|
}
|
556 |
|
|
557 |
|
for(int c=0; c<mNumCubits; c++)
|
558 |
|
{
|
559 |
|
int index = mScramble[cubits[c].mQuatIndex][c];
|
560 |
|
mColors[index] = mFaceMap[c];
|
561 |
|
}
|
562 |
|
|
563 |
|
if( mColors[0]==mColors[3] && mColors[0]==mColors[7] &&
|
564 |
|
mColors[1]==mColors[2] && mColors[1]==mColors[5] &&
|
565 |
|
mColors[4]==mColors[8] && mColors[4]==mColors[9] ) return true;
|
566 |
|
|
567 |
|
if( mColors[0]==mColors[1] && mColors[0]==mColors[4] &&
|
568 |
|
mColors[2]==mColors[3] && mColors[2]==mColors[6] &&
|
569 |
|
mColors[5]==mColors[9] && mColors[5]==mColors[10] ) return true;
|
570 |
|
|
571 |
|
return false;
|
572 |
|
}
|
573 |
|
|
574 |
517 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
575 |
518 |
|
576 |
519 |
private int surfaceColor(int filled, int surface)
|
... | ... | |
582 |
525 |
}
|
583 |
526 |
|
584 |
527 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
585 |
|
// The main solver - works by checking if all external walls of the puzzle are monochromatic.
|
586 |
|
// Almost all puzzles use this one.
|
587 |
528 |
|
588 |
529 |
private boolean isSolved2(TwistyObjectCubit[] cubits)
|
589 |
530 |
{
|
... | ... | |
624 |
565 |
return true;
|
625 |
566 |
}
|
626 |
567 |
|
|
568 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
569 |
// PUBLIC API
|
|
570 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
571 |
|
|
572 |
TwistyObjectSolved(TwistyObject parent, float[][] orig, int index)
|
|
573 |
{
|
|
574 |
mParent = parent;
|
|
575 |
mObjectQuats = mParent.mObjectQuats;
|
|
576 |
mNumQuats = mObjectQuats.length;
|
|
577 |
mOrigPos = orig;
|
|
578 |
mNumCubits = orig.length;
|
|
579 |
mFunctionIndex = index;
|
|
580 |
mTmpQuats = new int[mNumQuats];
|
|
581 |
|
|
582 |
if( mFunctionIndex==2 )
|
|
583 |
{
|
|
584 |
computeSurfaceTable();
|
|
585 |
int numFaces = parent.getNumPuzzleFaces();
|
|
586 |
mTmpFaceColorTable = new int[numFaces][2];
|
|
587 |
}
|
|
588 |
}
|
|
589 |
|
|
590 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
591 |
|
|
592 |
void setupSolvedQuats(int[][] quats)
|
|
593 |
{
|
|
594 |
mSolvedQuats = quats;
|
|
595 |
}
|
|
596 |
|
|
597 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
598 |
|
|
599 |
void setPuzzleFaceColor(int[] color)
|
|
600 |
{
|
|
601 |
mPuzzleFaceColor = color;
|
|
602 |
}
|
|
603 |
|
|
604 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
605 |
|
|
606 |
boolean isSolved(TwistyObjectCubit[] cubits)
|
|
607 |
{
|
|
608 |
switch(mFunctionIndex)
|
|
609 |
{
|
|
610 |
case 0: return isSolved0(cubits);
|
|
611 |
case 1: return isSolved1(cubits);
|
|
612 |
case 2: return isSolved2(cubits);
|
|
613 |
}
|
|
614 |
|
|
615 |
return false;
|
|
616 |
}
|
|
617 |
|
627 |
618 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
628 |
619 |
// Called from TwistyObject
|
629 |
620 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
... | ... | |
682 |
673 |
*/
|
683 |
674 |
return solvedQuats;
|
684 |
675 |
}
|
685 |
|
|
686 |
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
687 |
|
|
688 |
|
void setupSolvedQuats(int[][] quats)
|
689 |
|
{
|
690 |
|
mSolvedQuats = quats;
|
691 |
|
}
|
692 |
|
|
693 |
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
694 |
|
|
695 |
|
TwistyObjectSolved(TwistyObject parent, float[][] orig, int index)
|
696 |
|
{
|
697 |
|
mParent = parent;
|
698 |
|
mObjectQuats = mParent.mObjectQuats;
|
699 |
|
mNumQuats = mObjectQuats.length;
|
700 |
|
mOrigPos = orig;
|
701 |
|
mNumCubits = orig.length;
|
702 |
|
mFunctionIndex = index;
|
703 |
|
mTmpQuats = new int[mNumQuats];
|
704 |
|
|
705 |
|
if( mFunctionIndex==2 )
|
706 |
|
{
|
707 |
|
computeSurfaceTable();
|
708 |
|
int numFaces = parent.getNumPuzzleFaces();
|
709 |
|
mTmpFaceColorTable = new int[numFaces][2];
|
710 |
|
}
|
711 |
|
}
|
712 |
|
|
713 |
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
714 |
|
|
715 |
|
void setPuzzleFaceColor(int[] color)
|
716 |
|
{
|
717 |
|
mPuzzleFaceColor = color;
|
718 |
|
}
|
719 |
|
|
720 |
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
721 |
|
|
722 |
|
boolean isSolved(TwistyObjectCubit[] cubits)
|
723 |
|
{
|
724 |
|
switch(mFunctionIndex)
|
725 |
|
{
|
726 |
|
case 0: return isSolved0(cubits);
|
727 |
|
case 1: return isSolved1(cubits);
|
728 |
|
case 2: return isSolved2(cubits);
|
729 |
|
}
|
730 |
|
|
731 |
|
return false;
|
732 |
|
}
|
733 |
|
}
|
|
676 |
}
|
TwistyObjectSolved:
1) separate the 3 methods
2) abstract away the 'TwistyObjectSurface' from method2 - in anticipation for making the surface be able to accept curved surfaces (and support the likes of Masterball and the Penroses)