Project

General

Profile

« Previous | Next » 

Revision 48145a5b

Added by Leszek Koltunski almost 5 years ago

Speed up displaying the Patterns Dialog - do not read the whole thing, but only one Category at a time as required.

View differences:

src/main/java/org/distorted/patterns/RubikPattern.java
22 22
import org.distorted.magic.RubikPostRender;
23 23
import org.distorted.object.RubikObject;
24 24

  
25
import java.util.Vector;
25
import java.util.ArrayList;
26
import java.util.List;
26 27

  
27 28
///////////////////////////////////////////////////////////////////////////////////////////////////
28 29

  
......
38 39
  private int[] currentCategory = new int[NUM_CUBES];
39 40
  private int[] currentScrollPos= new int[NUM_CUBES];
40 41

  
41
  private Vector<Category>[] mCategories;
42
  private List<List<Category>> mCategories;
42 43
  private static RubikPattern mThis;
43 44

  
44 45
///////////////////////////////////////////////////////////////////////////////////////////////////
45 46

  
46 47
  private static class Category
47 48
    {
48
    private String name;
49
    private String[] mLines;
49 50
    private int numPatterns;
50
    private Vector<Pattern> patterns;
51
    private ArrayList<Pattern> mPatterns;
52
    private boolean mInitialized;
51 53

  
52 54
  /////////////////////////////////////////////////////////////
53 55

  
54
    Category(String n)
56
    Category(String[] lines)
55 57
      {
56
      name=n;
57
      numPatterns=0;
58
      patterns = new Vector<>();
58
      mLines=lines;
59
      numPatterns=lines.length-1;
60
      mPatterns = new ArrayList<>();
61
      mInitialized = false;
59 62
      }
60 63

  
61 64
  /////////////////////////////////////////////////////////////
62 65

  
63
    void addPattern(Pattern p)
66
    void initialize()
64 67
      {
65
      patterns.addElement(p);
66
      numPatterns++;
68
      int colon;
69
      String moves, name;
70
      Pattern pattern;
71

  
72
      for(int i=0; i<numPatterns; i++)
73
        {
74
        colon = mLines[i+1].indexOf(":");
75

  
76
        if( colon!=-1 )
77
          {
78
          moves   = mLines[i+1].substring(colon+1);
79
          name    = mLines[i+1].substring(0,colon);
80
          pattern = new Pattern(name,moves);
81

  
82
          mPatterns.add(pattern);
83
          }
84
        else
85
          {
86
          numPatterns--;
87
          }
88
        }
89

  
90
      mInitialized = true;
67 91
      }
68 92

  
69 93
  /////////////////////////////////////////////////////////////
70 94

  
71 95
    int getNumPatterns()
72
    {
73
    return numPatterns;
74
    }
96
      {
97
      return numPatterns;
98
      }
75 99

  
76 100
  /////////////////////////////////////////////////////////////
77 101

  
78 102
    String getName()
79
    {
80
    return name;
81
    }
103
      {
104
      return mLines[0];
105
      }
82 106

  
83 107
  /////////////////////////////////////////////////////////////
84 108

  
85 109
    String getPatternName(int pattern)
86 110
      {
111
      if( !mInitialized ) initialize();
112

  
87 113
      if( pattern>=0 && pattern<numPatterns )
88 114
        {
89
        Pattern p = patterns.elementAt(pattern);
115
        Pattern p = mPatterns.get(pattern);
90 116
        return  p!=null ? p.getName():"";
91 117
        }
118

  
92 119
      return "";
93 120
      }
94 121

  
......
96 123

  
97 124
    int getPatternCurMove(int pattern)
98 125
      {
126
      if( !mInitialized ) initialize();
127

  
99 128
      if( pattern>=0 && pattern<numPatterns )
100 129
        {
101
        Pattern p = patterns.elementAt(pattern);
130
        Pattern p = mPatterns.get(pattern);
102 131
        return  p!=null ? p.getCurMove():-1;
103 132
        }
133

  
104 134
      return -1;
105 135
      }
106 136

  
......
108 138

  
109 139
    int getPatternNumMove(int pattern)
110 140
      {
141
      if( !mInitialized ) initialize();
142

  
111 143
      if( pattern>=0 && pattern<numPatterns )
112 144
        {
113
        Pattern p = patterns.elementAt(pattern);
145
        Pattern p = mPatterns.get(pattern);
114 146
        return  p!=null ? p.getNumMove():-1;
115 147
        }
148

  
116 149
      return -1;
117 150
      }
118 151

  
......
120 153

  
121 154
    void makeMove(RubikPostRender post, int pattern)
122 155
      {
156
      if( !mInitialized ) initialize();
157

  
123 158
      if( pattern>=0 && pattern<numPatterns )
124 159
        {
125
        Pattern p = patterns.elementAt(pattern);
160
        Pattern p = mPatterns.get(pattern);
126 161
        if( p!=null ) p.makeMove(post);
127 162
        }
128 163
      }
......
131 166

  
132 167
    void backMove(RubikPostRender post, int pattern)
133 168
      {
169
      if( !mInitialized ) initialize();
170

  
134 171
      if( pattern>=0 && pattern<numPatterns )
135 172
        {
136
        Pattern p = patterns.elementAt(pattern);
173
        Pattern p = mPatterns.get(pattern);
137 174
        if( p!=null ) p.backMove(post);
138 175
        }
139 176
      }
......
142 179

  
143 180
    int[][] reInitialize(int pattern)
144 181
      {
182
      if( !mInitialized ) initialize();
183

  
145 184
      if( pattern>=0 && pattern<numPatterns )
146 185
        {
147
        Pattern p = patterns.elementAt(pattern);
186
        Pattern p = mPatterns.get(pattern);
148 187
        if( p!=null ) return p.reInitialize();
149 188
        }
150 189

  
......
175 214

  
176 215
  /////////////////////////////////////////////////////////////
177 216

  
178
    private int[][] movesParser(String moves)
217
    private void initialize()
179 218
      {
180
      numMove = moves.length()/4;
181
      curMove=numMove;
219
      numMove = moveStr.length()/4;
220
      moves   = new int[numMove][3];
221
      curMove = numMove;
182 222

  
183 223
      int digit0, digit1, digit2;
184
      int[][] result = new int[numMove][3];
185 224

  
186 225
      for(int i=0; i<numMove; i++)
187 226
        {
188
        digit0 = moves.charAt(4*i+1)-'0';
189
        digit1 = moves.charAt(4*i+2)-'0';
190
        digit2 = moves.charAt(4*i+3)-'0';
227
        digit0 = moveStr.charAt(4*i+1)-'0';
228
        digit1 = moveStr.charAt(4*i+2)-'0';
229
        digit2 = moveStr.charAt(4*i+3)-'0';
191 230

  
192
        result[i][0] = (10*digit0+digit1)/32;
193
        result[i][1] = (10*digit0+digit1)%32;
194
        result[i][2] = 2-digit2;
231
        moves[i][0] = (10*digit0+digit1)/32;
232
        moves[i][1] = (10*digit0+digit1)%32;
233
        moves[i][2] = 2-digit2;
195 234
        }
196 235

  
197
      return result;
236
      moveStr = null;
237
      mInitialized = true;
198 238
      }
199 239

  
200 240
  /////////////////////////////////////////////////////////////
......
208 248

  
209 249
    int getNumMove()
210 250
      {
211
      if( !mInitialized )
212
        {
213
        mInitialized = true;
214
        moves = movesParser(moveStr);
215
        moveStr = null;
216
        }
251
      if( !mInitialized ) initialize();
217 252

  
218 253
      return numMove;
219 254
      }
......
222 257

  
223 258
    int getCurMove()
224 259
      {
225
      if( !mInitialized )
226
        {
227
        mInitialized = true;
228
        moves = movesParser(moveStr);
229
        moveStr = null;
230
        }
260
      if( !mInitialized ) initialize();
231 261

  
232 262
      return curMove;
233 263
      }
......
236 266

  
237 267
    void makeMove(RubikPostRender post)
238 268
      {
239
      if( !mInitialized )
240
        {
241
        mInitialized = true;
242
        moves = movesParser(moveStr);
243
        moveStr = null;
244
        }
269
      if( !mInitialized ) initialize();
245 270

  
246 271
      curMove++;
247 272
      RubikObject object = post.getObject();
......
283 308

  
284 309
    void backMove(RubikPostRender post)
285 310
      {
286
      if( !mInitialized )
287
        {
288
        mInitialized = true;
289
        moves = movesParser(moveStr);
290
        moveStr = null;
291
        }
311
      if( !mInitialized ) initialize();
292 312

  
293 313
      curMove--;
294 314
      RubikObject object = post.getObject();
......
330 350

  
331 351
    int[][] reInitialize()
332 352
      {
333
      if( !mInitialized )
334
        {
335
        mInitialized = true;
336
        moves = movesParser(moveStr);
337
        moveStr = null;
338
        }
353
      if( !mInitialized ) initialize();
339 354

  
340 355
      mCanRotate = true;
341 356
      curMove = numMove;
......
354 369

  
355 370
  private RubikPattern()
356 371
    {
357
    mCategories = new Vector[NUM_CUBES];
372
    mCategories = new ArrayList<>();
358 373

  
359
    initializeCategories(0, RubikPatternData2.patterns);
360
    initializeCategories(1, RubikPatternData3.patterns);
361
    initializeCategories(2, RubikPatternData4.patterns);
362
    initializeCategories(3, RubikPatternData5.patterns);
374
    initializeCategories(0, RubikPatternCube2.patterns);
375
    initializeCategories(1, RubikPatternCube3.patterns);
376
    initializeCategories(2, RubikPatternCube4.patterns);
377
    initializeCategories(3, RubikPatternCube5.patterns);
363 378
    }
364 379

  
365 380
///////////////////////////////////////////////////////////////////////////////////////////////////
366 381

  
367
  private void initializeCategories(int num, String[] pat)
382
  private void initializeCategories(int num, String[][] pat)
368 383
    {
369
    int colon;
370
    mCategories[num] = new Vector<>();
371
    Category cat=null;
372
    String name, pattern;
373
    Pattern patt;
374

  
375
    numCategories[num]=0;
384
    List<Category> list = new ArrayList<>();
385
    Category cat;
376 386

  
377
    for(String p: pat)
387
    for(String[] lines: pat)
378 388
      {
379
      colon = p.indexOf(':');
380

  
381
      if( colon==-1 )
382
        {
383
        cat = new Category(p);
384
        mCategories[num].addElement(cat);
385
        numCategories[num]++;
386
        }
387
      else
388
        {
389
        pattern = p.substring(colon+1);
390
        name    = p.substring(0,colon);
391
        patt = new Pattern(name,pattern);
392
        cat.addPattern(patt);
393
        }
389
      cat = new Category(lines);
390
      list.add(cat);
394 391
      }
392

  
393
    mCategories.add(num,list);
394
    numCategories[num]=pat.length;
395 395
    }
396 396

  
397 397
///////////////////////////////////////////////////////////////////////////////////////////////////
......
410 410

  
411 411
///////////////////////////////////////////////////////////////////////////////////////////////////
412 412

  
413
  public int getNumCategories(int size)
413
  public int getNumCategories(int tab)
414 414
    {
415
    return size>=0 && size<NUM_CUBES ? numCategories[size] : 0;
415
    return tab>=0 && tab<NUM_CUBES ? numCategories[tab] : 0;
416 416
    }
417 417

  
418 418
///////////////////////////////////////////////////////////////////////////////////////////////////
419 419

  
420
  public String getCategoryName(int size,int num)
420
  public String getCategoryName(int tab, int cat)
421 421
    {
422
    if( size>=0 && size<NUM_CUBES && num>=0 && num< numCategories[size] )
422
    if( tab>=0 && tab<NUM_CUBES && cat>=0 && cat< numCategories[tab] )
423 423
      {
424
      Category c = mCategories[size].elementAt(num);
424
      Category c = mCategories.get(tab).get(cat);
425 425
      return c!=null ? c.getName() : null;
426 426
      }
427 427

  
......
430 430

  
431 431
///////////////////////////////////////////////////////////////////////////////////////////////////
432 432

  
433
  public void rememberState(int size,int num, int scrollPos)
433
  public void rememberState(int tab, int cat, int scrollPos)
434 434
    {
435
    if( size>=0 && size<NUM_CUBES )
435
    if( tab>=0 && tab<NUM_CUBES )
436 436
      {
437
      currentCategory[size] = num;
438
      currentScrollPos[size]= scrollPos;
437
      currentCategory[tab] = cat;
438
      currentScrollPos[tab]= scrollPos;
439 439
      }
440 440
    }
441 441

  
442 442
///////////////////////////////////////////////////////////////////////////////////////////////////
443 443

  
444
  public int recallCategory(int size)
444
  public int recallCategory(int tab)
445 445
    {
446
    return size>=0 && size<NUM_CUBES ? currentCategory[size] : 0;
446
    return tab>=0 && tab<NUM_CUBES ? currentCategory[tab] : 0;
447 447
    }
448 448

  
449 449
///////////////////////////////////////////////////////////////////////////////////////////////////
450 450

  
451
  public int recallScrollPos(int size)
451
  public int recallScrollPos(int tab)
452 452
    {
453
    return size>=0 && size<NUM_CUBES ? currentScrollPos[size] : 0;
453
    return tab>=0 && tab<NUM_CUBES ? currentScrollPos[tab] : 0;
454 454
    }
455 455

  
456 456
///////////////////////////////////////////////////////////////////////////////////////////////////
457 457

  
458
  public String getPatternName(int size, int cat, int pat)
458
  public String getPatternName(int tab, int cat, int pat)
459 459
    {
460
    if( size>=0 && size<NUM_CUBES && cat>=0 && cat< numCategories[size] )
460
    if( tab>=0 && tab<NUM_CUBES && cat>=0 && cat< numCategories[tab] )
461 461
      {
462
      Category c = mCategories[size].elementAt(cat);
462
      Category c = mCategories.get(tab).get(cat);
463 463
      return c!=null ? c.getPatternName(pat) : null;
464 464
      }
465 465

  
......
468 468

  
469 469
///////////////////////////////////////////////////////////////////////////////////////////////////
470 470

  
471
  public int getNumPatterns(int size, int num )
471
  public int getNumPatterns(int tab, int cat)
472 472
    {
473
    if( size>=0 && size<NUM_CUBES && num>=0 && num< numCategories[size] )
473
    if( tab>=0 && tab<NUM_CUBES && cat>=0 && cat< numCategories[tab] )
474 474
      {
475
      Category c = mCategories[size].elementAt(num);
475
      Category c = mCategories.get(tab).get(cat);
476 476
      return c!=null ? c.getNumPatterns() : 0;
477 477
      }
478 478

  
......
481 481

  
482 482
///////////////////////////////////////////////////////////////////////////////////////////////////
483 483

  
484
  public int getCurMove(int size, int cat, int pat)
484
  public int getCurMove(int tab, int cat, int pat)
485 485
    {
486
    if( size>=0 && size<NUM_CUBES && cat>=0 && cat< numCategories[size] )
486
    if( tab>=0 && tab<NUM_CUBES && cat>=0 && cat< numCategories[tab] )
487 487
      {
488
      Category c = mCategories[size].elementAt(cat);
488
      Category c = mCategories.get(tab).get(cat);
489 489
      return c!=null ? c.getPatternCurMove(pat):0;
490 490
      }
491 491

  
......
494 494

  
495 495
///////////////////////////////////////////////////////////////////////////////////////////////////
496 496

  
497
  public int getNumMoves(int size, int cat, int pat)
497
  public int getNumMoves(int tab, int cat, int pat)
498 498
    {
499
    if( size>=0 && size<NUM_CUBES && cat>=0 && cat< numCategories[size] )
499
    if( tab>=0 && tab<NUM_CUBES && cat>=0 && cat< numCategories[tab] )
500 500
      {
501
      Category c = mCategories[size].elementAt(cat);
501
      Category c = mCategories.get(tab).get(cat);
502 502
      return c!=null ? c.getPatternNumMove(pat):0;
503 503
      }
504 504

  
......
507 507

  
508 508
///////////////////////////////////////////////////////////////////////////////////////////////////
509 509

  
510
  public void makeMove(RubikPostRender post, int size, int cat, int pat)
510
  public void makeMove(RubikPostRender post, int tab, int cat, int pat)
511 511
    {
512
    if( size>=0 && size<NUM_CUBES && cat>=0 && cat< numCategories[size] )
512
    if( tab>=0 && tab<NUM_CUBES && cat>=0 && cat< numCategories[tab] )
513 513
      {
514
      Category c = mCategories[size].elementAt(cat);
514
      Category c = mCategories.get(tab).get(cat);
515 515
      if( c!=null ) c.makeMove(post,pat);
516 516
      }
517 517
    }
518 518

  
519 519
///////////////////////////////////////////////////////////////////////////////////////////////////
520 520

  
521
  public void backMove(RubikPostRender post, int size, int cat, int pat)
521
  public void backMove(RubikPostRender post, int tab, int cat, int pat)
522 522
    {
523
    if( size>=0 && size<NUM_CUBES && cat>=0 && cat< numCategories[size] )
523
    if( tab>=0 && tab<NUM_CUBES && cat>=0 && cat< numCategories[tab] )
524 524
      {
525
      Category c = mCategories[size].elementAt(cat);
525
      Category c = mCategories.get(tab).get(cat);
526 526
      if( c!=null ) c.backMove(post,pat);
527 527
      }
528 528
    }
529 529

  
530 530
///////////////////////////////////////////////////////////////////////////////////////////////////
531 531

  
532
  public int[][] reInitialize(int size, int cat, int pat)
532
  public int[][] reInitialize(int tab, int cat, int pat)
533 533
    {
534
    if( size>=0 && size<NUM_CUBES && cat>=0 && cat< numCategories[size] )
534
    if( tab>=0 && tab<NUM_CUBES && cat>=0 && cat< numCategories[tab] )
535 535
      {
536
      Category c = mCategories[size].elementAt(cat);
536
      Category c = mCategories.get(tab).get(cat);
537 537
      if( c!=null ) return c.reInitialize(pat);
538 538
      }
539 539

  
src/main/java/org/distorted/patterns/RubikPatternCube2.java
1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

  
20
package org.distorted.patterns;
21

  
22
///////////////////////////////////////////////////////////////////////////////////////////////////
23

  
24
public class RubikPatternCube2
25
{
26
public static String[][] patterns =
27
{
28
    {
29
    "Simple",
30
	"4 Serial Stripes (Order 2) [1]: 330",
31
	"4 Serial Stripes (Order 2) [2]: 344",
32
	"4 Serial Stripes (Order 4) [1]: 331",
33
	"4 Serial Stripes (Order 4) [2]: 341",
34
	"4 Parallel Stripes [1]: 024 664 024",
35
	"4 Parallel Stripes [2]: 010 664 010",
36
	"6 Orthogonal Stripes [1]: 024 344 664 024",
37
	"6 Orthogonal Stripes [2]: 010 650 330 010",
38
	"4 Chessboards [1]: 010 664 010 344",
39
	"4 Chessboards [2]: 024 664 024 344",
40
	"4 Stripes parallel, 2 Chessboards [1]: 341 664 344 024 341",
41
	"4 Stripes parallel, 2 Chessboards [2]: 341 664 330 010 341",
42
	"4 Orthogonal Stripes, 2 Chessboards [1]: 010 330 650",
43
	"4 Orthogonal Stripes, 2 Chessboards [2]: 650 330 010",
44
	"4 Orthogonal L's, 2 Chessboards [1]: 341 024 344 650 341 024 344 650 341",
45
	"4 Orthogonal L's, 2 Chessboards [2]: 333 024 330 664 333 024 330 664 333"
46
    },
47

  
48
		{
49
    "Multi Color",
50
	"4 Colorwheels [1]: 010 664 010 341",
51
	"4 Colorwheels [2]: 024 664 024 341"
52
		},
53

  
54
		{
55
    "Various",
56
	"2 Cube in a Cube (Order 2) [1]: 023 661 023 343 021 330 013 341 653 343 650",
57
	"2 Cube in a Cube (Order 2) [2]: 023 661 023 343 021 344 021 341 661 343 664",
58
	"1 Brick [1]: 663 343 663 341 024 661 343 661 333 011 650",
59
	"1 Brick [2]: 663 343 663 341 024 661 343 661 341 663 024"
60
		},
61

  
62
		{
63
    "Corner Axis",
64
	"2 Cube in a Cube (Order 2) [1]: 024 664 341 021 663 341 024 343 661 021",
65
	"2 Cube in a Cube (Order 2) [2]: 663 331 661 024 651 341 651 343 650 024",
66
	"2 Cube in a Cube (Order 3) [1]: 343 661 023 343 664 024 341 661 023 661",
67
	"2 Cube in a Cube (Order 3) [2]: 663 021 663 343 024 664 333 653 343 021",
68
	"2 Corner Triangles [1]: 663 344 663 344 664 024 663 344 661 024",
69
	"2 Corner Triangles [2]: 024 663 344 661 024 664 344 661 344 661",
70
	"2 Corner Triangles [3]: 653 330 653 330 650 010 653 330 651 010",
71
	"2 Corner Triangles [4]: 010 653 330 651 010 650 330 651 330 651",
72
	"2 Corner Triangles [5]: 663 341 023 341 661 021 344 663 023 344",
73
	"2 Corner Triangles [6]: 663 343 024 663 343 024 343 663 021 343",
74
	"Two-One-One [1]: 661 341 663 021 341 661 343 664 024",
75
	"Two-One-One [2]: 013 333 011 653 333 013 331 010 650",
76
	"3 Orthogonal Bricks (Order 3) [1]: 341 664 343 661 024 663",
77
	"3 Orthogonal Bricks (Order 3) [2]: 651 010 653 331 650 333",
78
	"3 Orthogonal Bricks (Order 6) [1]: 663 021 663 343 024 343 664 341 023",
79
	"3 Orthogonal Bricks (Order 6) [2]: 021 663 021 341 664 341 024 343 661",
80
	"6 Carneval Masks [1]: 664 024 341 023 343 663 341 663 023",
81
	"6 Carneval Masks [2]: 664 344 021 343 023 663 341 023 343",
82
	"2 Corner Triangles [1]: 341 024 664 021 344 661 024 664 341",
83
	"2 Corner Triangles [2]: 343 664 024 663 344 023 664 024 343",
84
	"2 Color Framed Cubes (Order 2): 023 343 023 663 343 023 343",
85
	"2 Color Framed Cubes (Order 6) [1]: 343 661 023 343 661 023 341 024 343 661",
86
	"2 Color Framed Cubes (Order 6) [2]: 663 341 024 343 021 663 341 021 663 341"
87
		},
88

  
89
    {
90
    "Snakes",
91
	"2 Mambas [1]: 333 010 331",
92
	"2 Mambas [2]: 343 024 341",
93
	"2 Mambas [3]: 333 024 331",
94
	"2 Mambas [4]: 343 010 341"
95
		},
96

  
97
		{
98
    "Twists",
99
	"4 Corner Twists [1]: 021 343 663 341 661 343 663 341 661 023",
100
	"4 Corner Twists [2]: 343 664 011 664 024 651 024 341",
101
	"6 Corner Twists, 2 Color Framed Cubes [1]: 661 343 021 663 021 663 021 663 341 663",
102
	"6 Corner Twists, 2 Color Framed Cubes [2]: 663 021 663 021 341 663 023 661 341 663",
103
	"6 Corner Twists, 2 Color Framed Cubes [3]: 661 343 663 021 661 343 023 661 023 661",
104
	"8 Corner Inversions, 4 Parallel Stripes: 664 024 650"
105
		}
106
  };
107
}
src/main/java/org/distorted/patterns/RubikPatternCube3.java
1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

  
20
package org.distorted.patterns;
21

  
22
///////////////////////////////////////////////////////////////////////////////////////////////////
23

  
24
public class RubikPatternCube3
25
{
26
public static String[][] patterns =
27
  {
28
    {
29
    "Simple (1)",
30
	"4 Dots [1]: 024 341 024 343",
31
	"4 Dots [2]: 024 341 024 343",
32
	"6 Dots [1]: 661 023 663 021",
33
	"6 Dots [2]: 023 661 021 663",
34
	"2 Parallel H's [1]: 024 684 024 684",
35
	"2 Parallel H's [2]: 330 663 021 333 023 330 661 331",
36
	"3 Parallel H's: 364 044 650 333 664 331 684 010 330",
37
	"4 Parallel H's (Order 2) [1]: 024 664 364 024 664 364",
38
	"4 Parallel H's (Order 2) [2]: 024 664 331 024 330 664 331",
39
	"4 Parallel H's (Order 4) [1]: 664 330 024 363 664 330 024 361",
40
	"4 Parallel H's (Order 4) [2]: 364 684 010 331 024 333 044 684 364 664",
41
	"4 Orthogonal H's [1]: 340 684 023 340 023 684",
42
	"4 Orthogonal H's [2]: 044 363 331 664 363 331 044",
43
	"4 Serial H's [1]: 664 341 664 341",
44
	"4 Serial H's [2]: 664 371 024 371",
45
	"5 H's (Order 3): 021 341 683 340 681 341 023",
46
	"5 H's (Order 6): 343 021 683 364 024 330 653 021 343",
47
	"6 H's (Order 2): 330 661 024 663 364",
48
	"6 H's (Order 4) [1]: 340 653 021 684 023 341 684 341 651",
49
	"6 H's (Order 4) [2]: 330 661 024 663 364",
50
	"6 H's (Order 4) [3]: 653 340 650 024 653 010 340 044",
51
	"6 H's (Order 4) [4]: 340 653 024 330 024 364 683",
52
	"6 Orthogonal H's [1]: 364 044 650 340 684 044 364",
53
	"6 Orthogonal H's [2]: 364 684 010 340 044 684 364",
54
	"4 Parallel U's (Order 2) [1]: 331 684 024 684 333 044 664 044",
55
	"4 Parallel U's (Order 2) [2]: 024 364 024 363 024 363 331 664 333",
56
	"4 Parallel U's (Order 4): 683 041 653 330 013 341 011 330 651 043 681",
57
	"4 U's: 333 044 330 010 363 331 684 361",
58
	"4 Diametral U's [1]: 333 024 363 331 664 361",
59
	"4 Diametral U's [2]: 333 024 363 331 664 361",
60
	"6 Orthogonal U's (Order 3) [1]: 341 651 333 021 331 653 361 661 331",
61
	"6 Orthogonal U's (Order 3) [2]: 341 681 363 021 361 683 331 661 361",
62
	"6 Orthogonal U's (Order 3) [3]: 681 343 043 364 013 663 011 364 041 683",
63
	"6 Orthogonal U's (Order 3) [4]: 651 343 013 330 043 663 041 330 011 653",
64
	"6 Orthogonal U's (Order 6): 363 043 653 361 681 341 651 011 681 021 684 041 361",
65
	"6 Asymmetric U's (Order 4): 331 684 340 681 011 331 664 333 013 681 361",
66
	"6 Asymmetric U's (Order 12) [1]: 011 681 341 681 021 683 341 683 041",
67
	"6 Asymmetric U's (Order 12) [2]: 333 023 333 661 330 010 333 023 331 010",
68
	"6 Asymmetric U's (Order 12) [3]: 333 663 023 333 661 333 684 021 684 333 021",
69
	"6 Asymmetric U's (Order 15): 651 363 681 021 684 653 361 023 333 364 653 361",
70
	"4 Serial Bars, Cube Snake [1]: 340",
71
	"4 Serial Bars, Cube Snake [2]: 340",
72
	"4 Parallel Bars [1]: 010 650 024 684 044",
73
	"4 Parallel Bars [2]: 684 024 684 044 664 044",
74
	"4 Orthogonal Bars [1]: 044 330 024 364 044",
75
	"4 Orthogonal Bars [2]: 364 050 330 044 340 010",
76
	"6 Asymmetric Bars [1]: 364 650 340 684 361 333",
77
	"6 Asymmetric Bars [2]: 330 010 340 044 361 333",
78
	"4 Symmetric Diagonals [1]: 361 330 044 683 024 650 024 681 044 361",
79
	"4 Symmetric Diagonals [2]: 043 011 651 683 011 043 683 651 043 011 651 683"
80
		},
81

  
82
    {
83
    "Simple (2)",
84
	"4 Parallel A's (Order 2) [1]: 024 664 364 664 024",
85
	"4 Parallel A's (Order 2) [2]: 050 690 364 664 024",
86
	"4 Parallel A's (Order 4): 664 024 363 664 024",
87
	"4 Serial D's [1]: 343 684 024 684 333 044 664 044 361",
88
	"4 Serial D's [2]: 364 044 664 044 331 650 024 650 333",
89
	"4 Symmetric D's [1]: 340 044 683 024 650 024 681 044",
90
	"4 Symmetric D's [2]: 010 683 340 684 340 683 340 684 340 044 341 050 341",
91
	"4 Serial K's (Order 2) [1]: 024 361 024 330 024 333 664 343",
92
	"4 Serial K's (Order 2) [2]: 364 044 664 044 331 684 024 684 331",
93
	"4 Serial K's (Order 4): 021 331 044 330 661 333 650 023 650 333 044 361",
94
	"4 Diametral K's [1]: 333 024 361 333 664 361",
95
	"4 Diametral K's [2]: 331 024 363 331 664 363",
96
	"6 Orthogonal K's [1]: 043 343 043 363 024 663 333 011 340 663 041 361 021 361",
97
	"6 Orthogonal K's [2]: 361 661 361 681 023 340 651 333 023 664 363 683 343 683",
98
	"6 Orthogonal L's [1]: 023 661 044 330 683 651 363 010 664 010 331",
99
	"6 Orthogonal L's [2]: 023 661 010 364 653 681 333 044 664 044 361",
100
	"6 Asymmetric L's (Order 3) [1]: 684 021 663 010 681 653 363 331",
101
	"6 Asymmetric L's (Order 3) [2]: 044 364 010 681 653 044 330 681 653 330 044 364",
102
	"6 Asymmetric L's (Order 3) [3]: 330 661 343 650 363 331 043 011",
103
	"6 Asymmetric L's (Order 3) [4]: 330 661 343 650 363 331 041 013",
104
	"6 Asymmetric L's (Order 3) [5]: 364 661 343 650 361 333 041 013",
105
	"6 Asymmetric L's (Order 3) [6]: 364 661 343 650 361 333 043 011",
106
	"6 Asymmetric L's (Order 3) [7]: 041 340 044 340 041 364 650",
107
	"6 Asymmetric L's (Order 3) [8]: 011 364 664 364 013 364 650",
108
	"6 Asymmetric L's (Order 3) [9]: 021 650 021 661 010 681 653 364",
109
	"6 Asymmetric L's (Order 3) [10]: 011 684 340 684 013 330 650",
110
	"6 Asymmetric L's (Order 6): 681 653 364 664 044 681 653",
111
	"6 Asymmetric L's (Order 12) [1]: 683 651 330 010 683 651",
112
	"6 Asymmetric L's (Order 12) [2]: 340 683 651 044 364 663 024 684",
113
	"6 Asymmetric L's (Order 12) [3]: 661 024 650 044 364 663 024 684",
114
	"6 Asymmetric L's (Order 12) [4]: 331 044 331 650 331 044 650 363 684 331 044 361 010",
115
	"6 Asymmetric L's (Order 12) [5]: 363 650 331 650 331 010 333 650 361 010 331 010 364",
116
	"4 Junctions [1]: 331 024 364 024 331",
117
	"4 Junctions [2]: 331 024 330 024 331 340",
118
	"4 Parallel Y's [1]: 010 650 024 684 044 364",
119
	"4 Parallel Y's [2]: 684 024 684 044 664 044 364",
120
	"4 Symmetric Question Marks [1]: 333 044 683 340 684 340 681 044 333",
121
	"4 Symmetric Question Marks [2]: 363 044 683 024 650 024 681 044 363 340",
122
	"4 Diametral Question Marks: 043 664 340 011 364 013 343 664 343 041",
123
	"6 Orthogonal Question Marks [1]: 653 024 663 011 331 650 361 661 010 361 650 331 010 684 011 331",
124
	"6 Orthogonal Question Marks [2]: 683 024 663 041 361 684 331 661 044 331 684 361 044 650 041 361",
125
	"4 Vertical Symmetric s's [1]: 340 684 330 681 044 684 330 681 044 684 044 330 681 044",
126
	"4 Vertical Symmetric s's [2]: 044 683 330 044 684 044 683 330 684 044 683 330 684 340",
127
	"4 Horizontal Symmetric s's: 650 024 330 681 330 044 684 010 653 364 684 044 681 044"
128
		},
129

  
130
    {
131
    "Simple (3)",
132
	"2 Chessboards: 330 664 341 024 361 333",
133
	"4 Chessboards [1]: 340 010 650 024 684 044",
134
	"4 Chessboards [2]: 044 684 050 684 010 340",
135
	"6 Chessboards (Order 2), Pons Asinorum [1]: 024 664 340",
136
	"6 Chessboards (Order 2), Pons Asinorum [2]: 371 024 690 341",
137
	"6 Chessboards (Order 3) [1]: 663 341 041 664 010 340 013 663 361 024 330 664 361",
138
	"6 Chessboards (Order 3) [2]: 651 043 364 653 041 341 051 343 043 363 650 013 361 343 663",
139
	"6 Chessboards (Order 6): 653 340 684 021 661 021 653 333 024 330 664 361",
140
	"4 Crosses (Order 2) [1]: 024 364 024 664 330 664",
141
	"4 Crosses (Order 2) [2]: 683 651 363 331 050 363 331 683 651 340",
142
	"4 Crosses (Order 4): 364 664 363 664 364 024 333 024",
143
	"6 Crosses (Order 2), Gift-wrapped Cube: 363 664 340 044 664 340 010 361",
144
	"6 Crosses (Order 3), Gift-wrapped Cube [1]: 661 013 664 044 340 041 661 333 024 330 664 361",
145
	"6 Crosses (Order 3), Gift-wrapped Cube [2]: 021 664 341 333 664 363 331 664 361 681 340 683 651 340 653",
146
	"4 Horizontal Symmetric S's [1]: 363 044 653 044 340 044 653 044 361",
147
	"4 Horizontal Symmetric S's [2]: 363 684 011 684 340 684 011 684 361",
148
	"4 Vertical Symmetric S's [1]: 363 044 683 024 650 024 681 044 361",
149
	"4 Vertical Symmetric S's [2]: 363 044 683 024 650 024 681 044 361",
150
	"4 Orthogonal S's [1]: 684 363 331 044 363 331 650 043 011 330 041 013",
151
	"4 Orthogonal S's [2]: 684 363 331 044 363 331 650 043 011 330 041 013",
152
	"4 Orthogonal S's [3]: 041 013 330 043 011 684 363 331 044 363 331 650",
153
	"4 Orthogonal S's [4]: 041 013 330 043 011 684 363 331 044 363 331 650",
154
	"4 Symmetric C's: 044 683 340 684 340 681 044",
155
	"6 Orthogonal C's [1]: 363 331 684 010 343 684 044 364",
156
	"6 Orthogonal C's [2]: 361 333 044 650 341 044 684 364",
157
	"4 Parallel T's (Order 2) [1]: 684 024 684 361 044 664 044 361",
158
	"4 Parallel T's (Order 2) [2]: 363 044 664 044 363 684 024 684",
159
	"4 Parallel T's (Order 4): 043 363 021 651 011 333 013 653 023 361 041",
160
	"4 Lying Symmetric T's [1]: 044 653 044 340 044 653 044",
161
	"4 Lying Symmetric T's [2]: 044 651 044 340 044 651 044",
162
	"6 Orthogonal T's [1]: 330 010 684 343 044 684 333 361",
163
	"6 Orthogonal T's [2]: 364 684 010 341 650 010 361 333",
164
	"6 Asymmetric T's [1]: 364 650 044 341 684 044 361 333",
165
	"6 Asymmetric T's [2]: 661 044 364 661 010 364",
166
	"4 Dots, 2 H's [1]: 364 661 024 663 364",
167
	"4 Dots, 2 H's [2]: 330 661 024 663 330",
168
	"2 Dots, 4 U's [1]: 684 010 341 041 663 043 010 684 043 663 041",
169
	"2 Dots, 4 U's [2]: 651 023 653 010 653 684 023 651 341 684 010",
170
	"4 Dots, 2 U's: 361 664 361 021 361 044 364 663 361 023 361 044 361",
171
	"2 Dots, 2 Horizontal Bars [1]: 044 340 044",
172
	"2 Dots, 2 Horizontal Bars [2]: 044 340 044",
173
	"2 Dots, 2 Vertical Bars [1]: 043 011 340 041 013",
174
	"2 Dots, 2 Vertical Bars [2]: 043 011 340 041 013",
175
	"2 Dots, 4 Horizontal Bars: 341 043 011 664 041 013",
176
	"2 Dots, 4 Parallel Diagonals [1]: 364 044 330 010 681 653 044 364 044 364 681 653",
177
	"2 Dots, 4 Parallel Diagonals [2]: 364 684 330 650 043 011 684 364 684 364 043 011",
178
	"2 Dots, 4 Diametral D's [1]: 361 044 664 340 044 361",
179
	"2 Dots, 4 Diametral D's [2]: 361 684 024 340 684 361",
180
	"4 Dots, 2 K's: 363 021 331 664 333 044 330 663 333 023 333 044 361",
181
	"4 Dots, 2 Chessboards [1]: 330 024 664 330",
182
	"4 Dots, 2 Chessboards [2]: 330 024 664 330",
183
	"2 Dots, 2 Crosses [1]: 010 663 340 663 010",
184
	"2 Dots, 2 Crosses [2]: 010 663 340 663 010",
185
	"2 Dots, 4 Crosses: 363 684 364 024 330 684 361 663 024 663",
186
	"2 Dots, 2 Horizontal Parallel S's [1]: 681 653 041 013 683 651 041 013 683 651 043 011",
187
	"2 Dots, 2 Horizontal Parallel S's [2]: 683 651 043 011 681 653 043 011 681 653 041 013",
188
	"2 Dots, 2 Vertical Parallel S's [1]: 330 650 330 684 041 013 650 364 650 364 041 013",
189
	"2 Dots, 2 Vertical Parallel S's [2]: 364 684 364 650 043 011 684 330 684 330 043 011",
190
	"2 Dots, 4 Orthogonal S's [1]: 363 044 651 340 683 651 024 681 044 361",
191
	"2 Dots, 4 Orthogonal S's [2]: 363 044 651 024 681 653 340 681 044 361",
192
	"2 Dots, 4 Diametral T's [1]: 363 330 684 024 340 684 361",
193
	"2 Dots, 4 Diametral T's [2]: 363 044 340 690 010 364 333",
194
	"2 Dots, 4 Lying T's [1]: 044 340 683 340 650 340 681 010",
195
	"2 Dots, 4 Lying T's [2]: 010 683 340 650 340 681 340 044",
196
	"4 Diametral E's, 2 H's [1]: 363 044 664 044 664 361",
197
	"4 Diametral E's, 2 H's [2]: 361 684 024 684 024 363"
198
		},
199

  
200
    {
201
    "Simple (4)",
202
	"2 H's, 4 Serial Bars [1]: 364 023 340 023 364",
203
	"2 H's, 4 Serial Bars [2]: 364 023 340 023 364",
204
	"2 H's, 4 Parallel Bars: 010 664 044",
205
	"2 H's, 4 Orthogonal Bars [1]: 041 013 664 041 013",
206
	"2 H's, 4 Orthogonal Bars [2]: 364 650 024 340 684 364",
207
	"2 H's, 4 Orthogonal Bars [3]: 364 684 340 050 684 330",
208
	"2 Standing H's, 2 Chessboards [1]: 010 340 650 024 684 044",
209
	"2 Standing H's, 2 Chessboards [2]: 010 684 050 684 340 044",
210
	"2 Lying H's, 2 Chessboards [1]: 340 043 011 340 041 013",
211
	"2 Lying H's, 2 Chessboards [2]: 664 361 333 024 361 333",
212
	"2 H's, 4 Chessboards [1]: 340 010 664 044",
213
	"2 H's, 4 Chessboards [2]: 340 010 690 010",
214
	"4 Parallel H's, 2 Chessboards [1]: 664 343 024 341",
215
	"4 Parallel H's, 2 Chessboards [2]: 363 664 361 333 664 331",
216
	"4 Orthogonal H's, 2 Chessboards: 044 330 664 364 044",
217
	"4 Serial H's, 2 Chessboards: 330 664 024 364",
218
	"2 H's, 4 Crosses [1]: 044 340 650 340 684 044",
219
	"2 H's, 4 Crosses [2]: 044 340 650 340 684 044",
220
	"2 Parallel Bars, 2 Parallel L's: 683 651 330 681 653",
221
	"4 Serial Bars, 2 Chessboards: 364 664 341 024 361 333",
222
	"4 Parallel Bars, 2 Chessboards [1]: 024 664",
223
	"4 Parallel Bars, 2 Chessboards [2]: 024 664",
224
	"4 Orthogonal Bars, 2 Chessboards [1]: 024 364 650 340 684 364",
225
	"4 Orthogonal Bars, 2 Chessboards [2]: 024 364 650 340 684 364",
226
	"2 Horizontal Bars, 2 Crosses: 330 664 364 664",
227
	"2 Vertical Bars, 2 Crosses [1]: 664 044 330 664 024 364 044",
228
	"2 Vertical Bars, 2 Crosses [2]: 664 044 330 664 024 364 044",
229
	"4 Serial Bars, 2 Crosses: 664 330 010 664 340 044 361 333",
230
	"2 Parallel Bars, 4 Orthogonal S's: 364 024 361 044 681 044 340 044 681 044 361",
231
	"4 Symmetric Diagonals, 2 Chessboards: 664 024 363 044 681 044 340 044 681 044 361",
232
	"4 Parallel Diagonals, 2 Crosses [1]: 043 011 681 653 043 011 681 653 043 011 681 653",
233
	"4 Parallel Diagonals, 2 Crosses [2]: 041 013 683 651 041 013 683 651 041 013 683 651",
234
	"4 Parallel Diagonals, 2 Crosses [3]: 043 011 681 653 043 011 681 653 043 011 681 653",
235
	"4 Parallel Diagonals, 2 Crosses [4]: 041 013 683 651 041 013 683 651 041 013 683 651",
236
	"2 Diagonals, 2 Vertical S's [1]: 043 664 340 011 364 013 343 664 343 041 364",
237
	"2 Diagonals, 2 Vertical S's [2]: 041 664 340 013 364 011 343 664 343 043 364",
238
	"2 Diagonals, 2 Horizontal S's [1]: 363 684 340 043 664 010 664 041 684 361",
239
	"2 Diagonals, 2 Horizontal S's [2]: 363 684 340 043 340 044 340 041 684 361",
240
	"2 Diagonals, 4 Lying Symmetric T's [1]: 023 663 363 330 010 331 661 023 361 330 044 361",
241
	"2 Diagonals, 4 Lying Symmetric T's [2]: 664 024 361 010 331 023 664 023 363 044 361",
242
	"4 Parallel A's, 2 Chessboards: 333 664 343 024 364",
243
	"4 Symmetric D's, 2 Chessboards [1]: 664 010 681 044 340 044 681 044",
244
	"4 Symmetric D's, 2 Chessboards [2]: 044 683 044 340 690 010 683 044",
245
	"2 K's (Order 4), 4 Chessboards [1]: 331 663 363 024 331 650 330 023 363 663 363 650 363",
246
	"2 K's (Order 4), 4 Chessboards [2]: 333 021 361 664 333 010 330 661 361 021 361 010 361",
247
	"2 K's (Order 8), 4 Chessboards [1]: 330 661 024 333 041 013 681 343 021 683 043 011 361",
248
	"2 K's (Order 8), 4 Chessboards [2]: 330 664 023 333 681 653 041 343 663 043 683 651 361",
249
	"4 Serial K's, 2 Chessboards: 664 333 024 364 024 333 024"
250
		},
251

  
252
    {
253
    "Simple (5)",
254
	"2 Chessboards (Order 2), 4 Crosses [1]: 024 341 664 341",
255
	"2 Chessboards (Order 2), 4 Crosses [2]: 664 343 024 343",
256
	"2 Chessboards (Order 4), 4 Crosses: 664 331 024 364 664 333 024 361 333",
257
	"2 Chessboards With, Cube in a Cube: 650 364 681 364 010 650 010 653 364 650 010 681 044",
258
	"2 Chessboards, 4 Lying Symmetric T's: 664 340 010 683 340 684 340 681 044",
259
	"2 Crosses, 4 Horizontal Parallel S's [1]: 041 664 340 011 684 011 664 340 043 684 044",
260
	"2 Crosses, 4 Horizontal Parallel S's [2]: 011 664 340 041 650 041 664 340 013 650 010",
261
	"2 Crosses, 4 Orthogonal S's: 364 683 651 044 361 333 684 361 333 010 683 651",
262
	"2 Crosses, 2 Parallel C's [1]: 650 343 010 650 341 041 340 010 340 041",
263
	"2 Crosses, 2 Parallel C's [2]: 684 341 010 684 343 041 340 010 340 041",
264
	"2 Crosses, 4 Diametral C's [1]: 664 024 361 684 024 340 684 361",
265
	"2 Crosses, 4 Diametral C's [2]: 024 690 361 684 024 340 684 361",
266
	"2 Lying T's, 2 unnamed: 010 681 364 024 364 681 044",
267
	"2 Dots, 2 Lying H's, 2 Horizontal Bars: 021 340 023",
268
	"2 Dots, 2 Lying H's, 2 Vertical Bars [1]: 340 044 664 340 044",
269
	"2 Dots, 2 Lying H's, 2 Vertical Bars [2]: 010 690 340 044 370",
270
	"2 Dots, 2 Standing H's, 2 Horizontal Bars [1]: 684 044 340 010 650",
271
	"2 Dots, 2 Standing H's, 2 Horizontal Bars [2]: 684 044 340 010 650",
272
	"2 Dots, 2 Standing H's, 2 Vertical Bars [1]: 024 364 044 664 010 330",
273
	"2 Dots, 2 Standing H's, 2 Vertical Bars [2]: 024 364 044 664 010 330",
274
	"2 Dots, 2 Lying H's, 2 Crosses: 343 044 664 044 343",
275
	"2 Dots, 2 Standing H's, 2 Crosses: 650 044 330 664 364 044 684",
276
	"DAVE: 021 650 044 330 664 364 041 013",
277
	"ELVA: 683 364 024 364 681 024 330",
278
	"2 Dots, 2 Horizontal Bars, 2 Chessboards: 340 044 664 044",
279
	"2 Dots, 2 Vertical Bars, 2 Chessboards: 044 664 330 024 364 044",
280
	"2 Dots, 2 Diagonals, 2 S's [1]: 653 010 663 330 021 684 041 013 330 044 361",
281
	"2 Dots, 2 Diagonals, 2 S's [2]: 653 010 661 364 021 650 041 013 364 044 361",
282
	"2 Dots, 2 Diagonals, 2 S's [3]: 011 340 664 043 650 041 664 021 340 041 364",
283
	"2 Dots, 2 Diagonals, 2 S's [4]: 013 340 664 041 684 043 664 023 340 043 364",
284
	"2 Dots, 2 Chessboards, 2 Crosses [1]: 664 364 684 024 650 364",
285
	"2 Dots, 2 Chessboards, 2 Crosses [2]: 664 364 684 024 650 364"
286
		},
287

  
288
    {
289
    "Multi Color",
290
	"4 Serial H's: 043 364 663 330 011 664 013 364 663 330 041",
291
	"6 Orthogonal H's [1]: 331 043 651 331 021 651 331 011 661 363 043 331 684 011 331",
292
	"6 Orthogonal H's [2]: 361 013 681 361 021 681 361 041 661 333 013 361 650 041 361",
293
	"4 Serial Stripes: 363 331",
294
	"4 Parallel Stripes: 684 023 684 361 043 011 364 683 021 341 681 041 013 361",
295
	"6 Stripes (Order 2): 653 363 023 663 361 010 681 653 043 364 661 364 041 361",
296
	"6 Stripes (Order 12) [1]: 011 364 663 364 013 363 331 683 021 343 681 044",
297
	"6 Stripes (Order 12) [2]: 011 364 661 364 013 361 333 681 023 343 683 044",
298
	"6 Stripes (Order 12) [3]: 333 661 023 331 650 043 011 683 364 021 364 681",
299
	"6 Stripes (Order 12) [4]: 363 663 021 361 650 041 013 683 364 023 364 681 333",
300
	"6 Stripes (Order 12) [5]: 340 011 364 681 024 684 340 681 010 333 044 663 044",
301
	"6 Stripes (Order 24): 651 330 023 330 653 363 331 043 661 341 041 684 363",
302
	"4 Serial Bars [1]: 024 341 024",
303
	"4 Serial Bars [2]: 024 341 024",
304
	"4 Parallel Bars: 024 331 024 364 664 333 024 364",
305
	"4 Serial K's [1]: 043 340 683 024 363 683 044 681 361 024 681 340 041 364",
306
	"4 Serial K's [2]: 011 340 011 663 364 010 364 013 664 330 663 364 041 364",
307
	"4 Diametral K's [1]: 363 011 340 043 364 663 330 013 364 661 364 041 361",
308
	"4 Diametral K's [2]: 363 011 684 341 650 041 340 011 650 341 684 041 361",
309
	"4 Serial Double-L's: 333 041 661 044 364 043 340 043 661 044 364 041 361",
310
	"6 Orthogonal Double-L's (Order 3) [1]: 341 043 011 330 683 651 331 024 364 024 361",
311
	"6 Orthogonal Double-L's (Order 3) [2]: 341 041 013 364 681 653 361 024 330 024 331",
312
	"6 Orthogonal Double-L's (Order 9): 044 661 021 681 653 044 361 333",
313
	"6 Asymmetric Double-L's (Order 2): 340 013 330 023 343 044 333 664 041 341 661 043",
314
	"6 Asymmetric Double-L's (Order 6): 363 331 043 011 681 653 363 331",
315
	"6 Orthogonal Double-r's: 683 651 041 013 683 651 361 333 043 011 361 333",
316
	"4 Parallel Y's [1]: 364 041 363 653 364 651 361 044 361 683 364 681 363 041",
317
	"4 Parallel Y's [2]: 364 653 363 013 364 011 361 650 361 043 364 041 363 653",
318
	"6 Chessboards (Order 3): 663 024 343",
319
	"6 Chessboards (Order 6) [1]: 343 044 651 024 340 681 021 341 043 664 340 041 364",
320
	"6 Chessboards (Order 6) [2]: 331 653 341 021 681 024 363 684 023 340 684 333 041 013 361",
321
	"6 Chessboards (Order 2) [1]: 343 043 663 044 364 013 343 664 041 684 013 664 041 364 041",
322
	"6 Chessboards (Order 2) [2]: 041 330 011 340 663 043 650 044 341 013 340 661 043 364 041",
323
	"6 Chessboards (Order 2) [3]: 041 330 010 363 661 021 331 683 651 013 364 663 021 364 041 361",
324
	"6 Chessboards (Order 2) [4]: 651 361 663 331 023 664 010 363 661 333 650 331 023 361 041",
325
	"6 Chessboards (Order 2) [5]: 011 331 681 650 021 653 041 663 043 331 663 361 681 041",
326
	"6 Chessboards (Order 2) [6]: 021 363 661 364 044 333 664 023 361 650 361 024 333 044 361",
327
	"4 Blossoms: 024 331 664 364 024 333 024 333 361",
328
	"6 Blossoms (Order 3) [1]: 024 681 024 650 340 653 361 024 364 663 343 663 361",
329
	"6 Blossoms (Order 3) [2]: 363 661 341 661 364 024 363 651 340 650 024 683 024",
330
	"6 Blossoms (Order 6) [1]: 023 664 343 023 343",
331
	"6 Blossoms (Order 6) [2]: 021 343 021 664 343",
332
	"6 Blossoms (Order 6) [3]: 011 664 330 664 364 013 333 024 364 664 361",
333
	"4 Serial Crosses: 024 664 331 024 664 363",
334
	"5 Crosses: 664 024 331 684 043 364 010 684 043 330 684 340 011 340 041 361",
335
	"6 Orthogonal Crosses, Gift-wrapped Cube [1]: 010 651 024 340 681 010 650 333 664 044 343 010 361",
336
	"6 Orthogonal Crosses, Gift-wrapped Cube [2]: 010 653 024 340 683 010 650 333 664 044 343 010 361",
337
	"6 Orthogonal Crosses, Gift-wrapped Cube [3]: 684 041 664 024 340 013 650 331 664 024 330 361",
338
	"6 Crosses, Gift-wrapped Cube: 044 683 013 664 024 340 041 333 664 340 024 361 681 044",
339
	"4 Parallel T's [1]: 011 653 331 650 333 651 021 361 683 364 681 363 041",
340
	"4 Parallel T's [2]: 651 041 331 044 333 043 661 361 011 364 013 363 681"
341
		},
342

  
343
    {
344
    "Combos",
345
	"2 Dots, 4 Stripes [1]: 010 661 010 361 043 011 683 343 023 681 364 041 013 361",
346
	"2 Dots, 4 Stripes [2]: 650 023 650 361 043 011 340 683 021 341 681 364 041 013 361",
347
	"2 Bars, 4 Stripes [1]: 361 333 044 340 010",
348
	"2 Bars, 4 Stripes [2]: 363 331 044 340 010",
349
	"2 Chessboards, 4 Stripes [1]: 361 013 340 043 663 330 010 364 011 364 663 364 041 361",
350
	"2 Chessboards, 4 Stripes [2]: 361 653 340 683 021 330 650 364 651 364 021 364 681 361",
351
	"2 Crosses, 4 Stripes [1]: 341 663 013 684 363 331 024 683 364 023 364 681 041 013 361",
352
	"2 Crosses, 4 Stripes [2]: 661 343 013 684 361 333 683 044 343 044 681 041 013 361",
353
	"6 Crosses, Gift-wrapped Cube: 653 024 340 681 361 664 024 333 013 664 340 041",
354
	"2 Dots, 2 Chessboards, 2 Blossoms: 664 330 024 363 661 343 661 330 024 361",
355
	"2 Dots, 2 Crosses, 2 Blossoms: 664 364 024 361 024 650 024 684 361",
356
	"2 Chessboards, 2 Crosses, 2 Blossoms: 361 024 330 650 340 684 361"
357
		},
358

  
359
    {
360
    "Various",
361
	"1 T: 043 651 011 363 681 011 683 010 653 041 361 683 041 681 043",
362
	"2 Color Diagonals, 4 Lying Parallel T's: 364 653 364 681 013 341 021 681 044 361 653 333 653 044 363",
363
	"2 Small Bricks: 043 361 041 651 043 363 044 653 331 651 333 651 043 653",
364
	"2 Small Asymmetric Bricks: 664 361 013 363 650 333 043 333 041 330 684",
365
	"3 Small Bricks: 041 363 684 333 681 331 684 361 683 043",
366
	"4 Small Bricks: 331 044 361 333 044 363",
367
	"2 Bricks: 043 683 044 653 331 650 333 651 044 681 043 650 044"
368
		},
369

  
370
    {
371
    "Corner Axis (1)",
372
	"2 Small Cube in a Cube: 651 044 653 363 010 361 651 044 653 363 010 361",
373
	"2 Small Edge Triangles: 361 653 341 651 331 651 043 011 651 021 653 044 361",
374
	"2 Big Edge Triangles [1]: 343 013 363 021 361 011 363 023 333",
375
	"2 Big Edge Triangles [2]: 343 043 333 021 331 041 333 023 363",
376
	"2 Propellers (Order 2) [1]: 363 041 681 341 043 651 011 683 333 681 013 341 661 331 681 361",
377
	"2 Propellers (Order 2) [2]: 363 683 333 663 343 011 683 331 681 013 653 041 343 683 043 361",
378
	"2 Propellers (Order 3) [1]: 681 330 651 343 661 333 650 363 013 684 011 361 650 363",
379
	"2 Propellers (Order 3) [2]: 023 661 021 663 331 684 333 043 650 041 331 684 333 043 650 041",
380
	"2 Screws [1]: 363 684 330 044 361 011 650 043 683 331 683 043 681 333 010 364",
381
	"2 Screws [2]: 364 010 331 683 041 681 333 681 041 650 013 363 044 330 684 361",
382
	"1 Small Edge Triangle: 043 363 681 340 683 361 681 340 683 041",
383
	"2 Small Edge Triangles: 341 041 364 651 013 340 011 340 653 364 043 343",
384
	"2 Small Distorted Edge Triangles: 363 044 331 681 011 340 013 340 683 333 044 361",
385
	"2 Small Cube in a Cube, 2 Big Edge Triangles [1]: 663 043 011 651 043 653 043 333 683 333 681 330 021 343",
386
	"2 Small Cube in a Cube, 2 Big Edge Triangles [2]: 663 041 013 681 013 683 013 363 653 363 651 364 021 343",
387
	"2 Corner Triangles [1]: 364 041 684 043 684 043 364 041 684 041 684 043",
388
	"2 Corner Triangles [2]: 041 684 043 684 043 364 041 684 041 684 043 364",
389
	"2 Corner Triangles [3]: 330 011 650 013 650 013 330 011 650 011 650 013",
390
	"2 Corner Triangles [4]: 011 333 684 331 651 333 684 331 653 013",
391
	"2 Corner Triangles [5]: 333 011 650 013 681 011 650 013 683 331",
392
	"Edge Hexagon (Order 2) [1]: 331 684 341 041 661 013 364 011 663 043 684 044 361",
393
	"Edge Hexagon (Order 2) [2]: 044 650 331 664 363 330 041 661 041 684 010 041 661 041 343 024",
394
	"Edge Hexagon (Order 3): 363 651 331 043 340 651 340 653 041 333 653 361",
395
	"2 Spirals [1]: 013 653 363 331 043 361 041 330 044 331 011 333 041 013 683 363",
396
	"2 Spirals [2]: 363 684 330 044 361 011 650 043 683 331 683 043 681 333 010 364 023 661 021 663",
397
	"2 Peaks (Order 2): 684 364 681 010 684 364 681 010 684 010 364 681 010",
398
	"3 Peaks (Order 3) [1]: 364 043 650 013 664 330 684 044 684 011 330 041",
399
	"3 Peaks (Order 3) [2]: 043 330 013 684 044 684 330 664 011 650 041 364",
400
	"2 Peaks (Order 2) [1]: 343 664 011 651 333 650 331 653 011 361 684 364 650 364 044",
401
	"2 Peaks (Order 2) [2]: 684 361 333 650 364 684 333 683 041 331 044 333 043 683 343 024",
402
	"2 Peaks (Order 3) [1]: 363 010 331 683 333 653 363 013 650 364 683 361 681 364 653 361",
403
	"2 Peaks (Order 3) [2]: 013 331 651 364 684 043 681 361 041 010 683 010 653 373 043 364 343 663",
404
	"2 Rings (Order 2) [1]: 010 650 333 664 363 041 343 041 650 043 341 041",
405
	"2 Rings (Order 2) [2]: 024 341 043 364 053 653 333 651 011 363 651 331 684 011 653 011 331",
406
	"2 Rings (Order 3) [1]: 021 684 023 343 681 340 651 041 341 663 011 661 364",
407
	"2 Rings (Order 3) [2]: 023 364 044 681 341 013 340 011 341 683 044 364 661 021 663",
408
	"2 Small Cube in a Cube, 6 U's [1]: 663 041 683 013 681 044 331 661 331 651 023 363 021 653 331",
409
	"2 Small Cube in a Cube, 6 U's [2]: 663 011 653 043 651 010 361 661 361 681 023 333 021 683 361",
410
	"6 Birds: 363 681 021 331 661 011 341 681 043 653 331 681 023 333 683 361",
411
	"6 Fish: 363 653 363 681 043 683 041 361 651 043 681 041 683 361",
412
	"6-part Windwheel [1]: 011 651 041 650 043 653 333 650 331 013",
413
	"6-part Windwheel [2]: 333 011 650 013 653 363 650 361 651 331",
414
	"7-part Windwheel [1]: 041 681 011 684 013 683 363 684 361 043",
415
	"7-part Windwheel [2]: 363 041 684 043 683 333 684 331 681 361",
416
	"2 Cube in a Cube (Order 2) [1]: 684 330 683 330 044 684 044 683 330 684 044 683 044",
417
	"2 Cube in a Cube (Order 2) [2]: 340 684 044 364 044 361 044 684 364 684 363 684 044 364 044 361",
418
	"2 Cube in a Cube (Order 3) [1]: 364 681 361 043 363 661 361 023 361 011 361 683 043 364",
419
	"2 Cube in a Cube (Order 3) [2]: 013 330 043 330 041 683 043 371 011 693 361 651 333 010 363 023 343",
420
	"3 Orthogonal Bricks [1]: 011 653 331 683 013 681 011 333 651 331 681 333 683 013",
421
	"3 Orthogonal Bricks [2]: 041 683 361 653 043 651 041 363 681 361 651 363 653 043",
422
	"6 Crow's-feet (Order 2) [1]: 651 041 650 333 681 044 683 364 650 361 041 331 683 044 681 361",
423
	"6 Crow's-feet (Order 2) [2]: 024 341 364 011 364 044 653 044 683 651 331 683 650 043 331 013 684 013 331",
424
	"6 Crow's-feet (Order 3): 650 343 011 333 010 043 651 044 363 651 363 041 681 333 683 361",
425
	"6 Planes (Order 2) [1]: 330 653 013 664 024 653 330 683 361 021 683 330 681 331 013 683 041",
426
	"6 Planes (Order 2) [2]: 044 331 681 043 331 041 683 044 684 010 651 013 361 044 013 330 044 681 343 024",
427
	"6 Planes (Order 3): 011 681 341 661 361 650 363 044 664 363 650 333 010 650 041 361",
428
	"6 Planes (Order 6): 664 011 364 041 364 041 684 011 684 011 330 013 364",
429
	"Orchid [1]: 023 683 361 681 013 361 650 043 651 331 651 333 013 663 363 683 363",
430
	"Orchid [2]: 011 331 011 373 013 681 363 683 363 043 364 653 013 333 653 383 663"
431
		},
432

  
433
    {
434
    "Corner Axis (2)",
435
	"Color Edge Hexagon (Order 2) [1]: 013 650 363 661 331 010 361 663 023 333 650 364 043",
436
	"Color Edge Hexagon (Order 2) [2]: 043 684 333 661 361 044 331 663 023 363 684 330 013",
437
	"Color Edge Hexagon (Order 3) [1]: 363 331 044 651 340 041 340 043 653 044 361 333",
438
	"Color Edge Hexagon (Order 3) [2]: 363 331 044 651 041 340 043 340 653 044 361 333",
439
	"2 Spiral Cubes [1]: 663 363 041 363 043 663 361 664 043 681 361 044 663 010 684 041 361",
440
	"2 Spiral Cubes [2]: 363 043 684 010 661 044 363 683 041 664 363 661 041 361 043 361 661",
441
	"2 Color Rings (Order 3) [1]: 021 361 663 330 023 333 013 663 044 343 041 343",
442
	"2 Color Rings (Order 3) [2]: 341 043 341 044 661 011 331 021 330 661 363 023",
443
	"2 Color Rings (Order 6) [1]: 361 021 363 010 333 663 333 653 024 683 010 364",
444
	"2 Color Rings (Order 6) [2]: 650 010 363 043 341 013 661 023 340 681 330 044",
445
	"2 Color Rings (Order 10) [1]: 364 010 653 340 041 341 663 343 043 651 010 364",
446
	"2 Color Rings (Order 10) [2]: 043 333 663 331 041 013 363 663 361 043",
447
	"2 Color Rings (Order 12) [1]: 043 663 041 650 011 343 011 333 664 363 650 044",
448
	"2 Color Rings (Order 12) [2]: 011 364 683 024 653 041 331 011 341 013 663 333 041 361",
449
	"2 Color Rings (Order 24): 663 044 341 661 043 340 013 683 343 021 653 023 364",
450
	"2 Winding Rings (Order 6) [1]: 333 023 331 041 681 341 650 340 653 364 664 011 661 013 361",
451
	"2 Winding Rings (Order 6) [2]: 331 681 024 681 363 683 023 681 011 661 013 333 010 361",
452
	"2 Winding Rings (Order 6) [3]: 331 683 044 011 343 011 653 013 683 340 681 011 361",
453
	"2 Winding Rings (Order 12) [1]: 664 364 650 041 684 343 684 041 684 010 684 044 364",
454
	"2 Winding Rings (Order 12) [2]: 364 010 651 044 341 681 653 364 684 330 683 044 364",
455
	"2 Distorted Winding Rings (Order 6): 331 683 044 011 343 011 653 013 683 340 681 011 361",
456
	"2 Distorted Winding Rings (Order 9): 010 364 681 333 663 331 023 651 024 661 044 364",
457
	"2 Distorted Winding Rings (Order 12): 364 650 363 013 664 011 361 653 041 343 043 653 364",
458
	"6 Birds (Order 3) [1]: 021 331 013 333 010 364 653 364 681 013 653 333 661 331 650 361",
459
	"6 Birds (Order 3) [2]: 363 650 333 663 331 651 011 683 364 651 364 010 331 011 333 023",
460
	"6 Birds (Order 6): 013 661 363 013 333 023 363 011 364 041 651 013 683 361 650 363",
461
	"Six-Two-One [1]: 043 330 010 651 333 653 041 653 331 010 330",
462
	"Six-Two-One [2]: 651 364 684 043 361 041 653 041 363 684 364",
463
	"2 (Cube in a)2 Cube (Order 2) [1]: 683 011 683 010 681 333 011 340 651 364 010 683 024 363 681",
464
	"2 (Cube in a)2 Cube (Order 2) [2]: 041 653 041 650 043 331 653 340 013 364 650 041 664 361 043",
465
	"2 (Cube in a)2 Cube (Order 3): 363 681 331 043 681 364 684 363 683 361 684 653 331 651 044 330 683",
466
	"6 Dots (Order 3), 2 Peaks: 364 043 363 681 361 023 364 333 023 331 653 363 041 681 364",
467
	"6 Dots (Order 6), 2 Peaks: 023 343 011 331 653 330 651 333 043 681 330 650 364 684 044",
468
	"3 Orthogonal Bricks [1]: 331 010 330 010 333 653 330 651",
469
	"3 Orthogonal Bricks [2]: 683 364 681 361 044 364 044 363",
470
	"6 Orthogonal S's: 330 684 041 683 013 361 663 363 010 651 043 330 683 361 681 361",
471
	"6 Crow's-feet (Order 3): 023 361 024 651 024 361 653 363 683 361 663 044 011 651 013 343",
472
	"6 Crow's-feet (Order 6): 333 013 364 044 364 043 361 011 653 044 333 664 013 653 364",
473
	"2 Chessboard Cubes (Order 2) [1]: 361 684 361 653 333 664 331 010 651 013 341 653 330 363 043 361",
474
	"2 Chessboard Cubes (Order 2) [2]: 684 011 361 681 013 651 331 683 024 681 653 044 011 363 653 361",
475
	"2 Chessboard Cubes (Order 3) [1]: 363 041 684 041 343 681 024 364 651 043 364 011 364 653 331 023 651",
476
	"2 Chessboard Cubes (Order 3) [2]: 653 021 333 651 364 013 364 041 653 364 024 683 341 043 684 043 361",
477
	"2 Slice Cubes: 681 650 011 333 010 331 013 683 333 650 044 361 333 044 364",
478
	"2 Stripe Cubes: 681 011 681 363 684 361 683 021 333 651 330 653 331 041",
479
	"2 Symmetric Stripe Cubes (Order 4): 013 331 041 653 021 333 651 364 681 041 330 044 013 661 044",
480
	"2 Symmetric Stripe Cubes (Order 6) [1]: 361 684 044 361 684 010 661 363 651 343 653 364 651 330 653 010 683",
481
	"2 Symmetric Stripe Cubes (Order 6) [2]: 681 010 651 330 653 364 651 341 653 361 663 010 684 363 044 684 363",
482
	"2 Symmetric Stripe Cubes (Order 12): 651 363 013 683 010 681 364 010 683 044 681 363 013 681",
483
	"2 Asymmetric Stripe Cubes (Order 12) [1]: 330 653 010 330 011 331 684 651 043 364 684 361 681 041",
484
	"2 Asymmetric Stripe Cubes (Order 12) [2]: 013 653 364 650 363 331 011 683 363 653 361 684 044 364 653 041",
485
	"2 Asymmetric Stripe Cubes (Order 12) [3]: 043 651 364 044 684 363 651 361 681 013 361 333 650 364 651 011",
486
	"2 Asymmetric Stripe Cubes (Order 12) [4]: 364 684 013 681 021 331 651 010 684 021 661 044 653 041 653 021",
487
	"2 Asymmetric Stripe Cubes (Order 12) [5]: 023 651 043 651 044 663 023 684 010 653 333 023 683 011 684 364",
488
	"6 U's, 2 Screws: 010 363 683 013 683 013 363 331 683 340 044 653 361 021 681 333",
489
	"2 Small Edge Triangles, 6 Chessboards [1]: 363 043 683 650 023 653 361 024 361 664 330 684 021 361 653 023",
490
	"2 Small Edge Triangles, 6 Chessboards [2]: 021 651 363 023 684 330 664 363 024 363 651 021 681 650 041 361",
491
	"2 Big Edge Triangles, 6 Chessboards (Order 3) [1]: 343 681 340 044 653 041 664 340 043 651 340 010 651 343",
492
	"2 Big Edge Triangles, 6 Chessboards (Order 3) [2]: 343 651 340 010 683 011 664 340 013 681 340 044 681 343",
493
	"2 Big Edge Triangles, 6 Chessboards (Order 3) [3]: 341 653 010 340 653 041 340 664 043 651 044 340 683 341",
494
	"2 Big Edge Triangles, 6 Chessboards (Order 3) [4]: 341 683 044 340 683 011 340 664 013 681 010 340 653 341",
495
	"2 Big Edge Triangles, 6 Chessboards (Order 6) [1]: 343 664 044 011 363 021 361 011 363 023 333",
496
	"2 Big Edge Triangles, 6 Chessboards (Order 6) [2]: 343 664 041 010 333 021 331 041 333 023 363",
497
	"2 Small Edge Triangles (Order 3), Edge Hexagon [1]: 341 650 330 664 043 651 340 684 024 651 013 330 024 684 341",
498
	"2 Small Edge Triangles (Order 3), Edge Hexagon [2]: 343 684 024 330 011 653 024 684 340 653 041 664 330 650 343",
499
	"2 Small Edge Triangles (Order 6), Edge Hexagon: 364 010 681 024 651 361 021 361 044 333 664 364 661 024 361",
500
	"6 Orthogonal V's: 043 333 023 363 024 683 364 664 044 653 340 041 341 011 361",
501
	"2 Peaks (Order 3), Edge Hexagon [1]: 653 333 651 330 681 010 681 650 013 684 043 661 340 683 023 681 361",
502
	"2 Peaks (Order 3), Edge Hexagon [2]: 363 683 021 681 340 663 041 684 011 683 650 010 683 330 653 331 651",
503
	"2 Peaks (Order 6), Edge Hexagon [1]: 361 043 361 650 043 650 043 651 041 651 333 044 663 343 661 361",
504
	"2 Peaks (Order 6), Edge Hexagon [2]: 043 361 041 683 364 684 021 681 340 011 340 683 343 041 650 044 361"
505
		},
506

  
507
    {
508
    "Corner Axis (3)",
509
	"2 Small Edge Triangles (Order 2), 6 Crow's-feet: 013 331 684 013 650 333 683 331 653 044 361 683 041 363 653 010 331",
510
	"2 Small Edge Triangles (Order 3), 6 Crow's-feet: 023 681 361 024 683 361 661 041 330 010 653 044 681 043 341 044 364",
511
	"2 Small Edge Triangles (Order 6), 6 Crow's-feet: 650 043 653 044 333 651 363 331 651 041 363 681 024 681 331 011 364",
512
	"Exotic Orchid [1]: 364 011 341 683 043 010 683 361 661 021 331 681 011 653 041 364",
513
	"Exotic Orchid [2]: 023 681 013 340 043 651 044 330 011 364 661 013 330 010 650 363 043",
514
	"2 Spirals, 6 Orthogonal L's: 331 041 013 331 683 021 361 683 330 044 011 650 010 363 041 651 361",
515
	"Gift-wrapped Cube (Order 2) [1]: 044 664 044 333 664 330 024 361",
516
	"Gift-wrapped Cube (Order 2) [2]: 684 024 684 331 024 330 664 363",
517
	"Gift-wrapped Cube (Order 6) [1]: 041 664 044 340 013 333 024 330 664 361",
518
	"Gift-wrapped Cube (Order 6) [2]: 331 024 364 664 363 683 340 650 024 651",
519
	"Gift-wrapped Cube (Order 6) [3]: 683 364 684 024 650 364 681 043 664 044 340 011",
520
	"Gift-wrapped Cube (Order 6) [4]: 681 340 650 024 653 011 330 044 664 010 330 013",
521
	"Extra Gift-wrapped Cube (Order 2): 013 333 684 013 343 681 021 651 331 651 683 023 363 043",
522
	"Extra Gift-wrapped Cube (Order 3): 364 044 343 013 684 361 664 343 024 361 684 043 684 361 333",
523
	"Extra Gift-wrapped Cube (Order 6): 684 010 663 011 650 361 661 023 331 044 653 021 684 044",
524
	"Special Gift-wrapped Cube: 011 650 021 681 024 331 041 341 043 363 663 024 330 041 361",
525
	"2 Cube in a Cube (Order 3), Edge Hexagon [1]: 363 043 364 041 331 681 364 651 041 330 011 361 651 330 653 333",
526
	"2 Cube in a Cube (Order 3), Edge Hexagon [2]: 331 651 330 653 363 013 330 043 653 364 683 333 043 364 041 361",
527
	"2 Cube in a Cube (Order 6), Edge Hexagon: 683 361 683 044 361 044 361 041 363 041 651 364 684 653",
528
	"6 Chessboards (Order 3), With 2 Propellers [1]: 333 681 024 343 653 043 684 041 683 023 681 363 044 333 664 044 363",
529
	"6 Chessboards (Order 3), With 2 Propellers [2]: 361 044 664 331 044 361 683 021 681 043 684 041 651 341 024 683 331",
530
	"6 Chessboards (Order 6), With 2 Propellers: 663 341 663 044 331 010 681 363 010 361 010 361 681 363 684 361",
531
	"Stonehenge: 364 681 343 013 653 021 651 043 341 651 340 681 041 650 364",
532
	"6 Orthogonal L's And, 6 Orthogonal U's: 364 650 043 683 340 653 343 041 653 023 651 011 341 683 364",
533
	"2 (Cube in a)2 Cube (Order 2), Edge Hexagon: 684 013 651 333 043 684 043 340 684 340 010 653 341 043 330 041 364",
534
	"2 (Cube in a)2 Cube (Order 3), Edge Hexagon: 653 010 361 333 651 330 653 363 010 651 363 684 043 361 044 363 684 361",
535
	"4 Serial Chessboardstripes [1]: 684 024 684 333 044 664 044 364",
536
	"4 Serial Chessboardstripes [2]: 010 661 010 333 684 023 684 333 044 663 044 361",
537
	"4 Serial Chessboardstripes [3]: 343 661 364 044 333 684 021 684 333 663 330 044",
538
	"4 Symmetric Chessboardstripes: 650 363 024 684 010 650 331 041 651 363 024 361 653 041",
539
	"6 Orthogonal Chessboardstripes [1]: 011 363 013 653 363 683 333 651 043 340 043 330 021 650 340 011 331",
540
	"6 Orthogonal Chessboardstripes [2]: 023 333 011 651 010 683 043 011 683 363 653 341 021 341 043 651 331",
541
	"6 Bars in a Color Cube: 024 653 361 023 663 363 681 361 663 023 333 651 024 683 361 333",
542
	"6 Fish [1]: 363 681 363 331 651 361 653 333 663 043 653 041 684 041",
543
	"6 Fish [2]: 043 684 043 651 041 661 331 651 363 653 361 333 683 361",
544
	"2 Propellers And, 6 Small Bricks in a Color Cube: 683 024 361 043 011 664 361 651 343 021 651 024 663 041 361",
545
	"2 Propellers in a Color Cube: 011 661 363 651 041 650 023 681 331 663 043 651 013 661 041 361",
546
	"2 Small Color Edge Triangles, Edge Hexagon: 364 651 340 653 333 651 341 651 361 024 664 331 013 343 013 361",
547
	"2 Small Edge Triangles, Color Edge Hexagon [1]: 043 363 041 651 011 341 041 333 011 363 023 333 681 363 041 361",
548
	"2 Small Edge Triangles, Color Edge Hexagon [2]: 341 024 683 021 664 363 663 021 333 663 041 343",
549
	"2 Peaks, Color Edge Hexagon [1]: 653 043 684 364 651 041 341 043 364 010 683 363 650 044 684 651",
550
	"2 Peaks, Color Edge Hexagon [2]: 363 043 363 684 044 331 661 341 684 361 043 651 363 650 363 653 361",
551
	"2 Peaks, Color Edge Hexagon [3]: 363 651 361 650 361 653 041 363 684 343 663 333 044 684 361 041 361",
552
	"2 Peak in a Color Cube: 651 044 683 340 013 331 043 664 333 011 684 330 651 021 681 044"
553
		},
554

  
555
    {
556
    "Corner Axis (4)",
557
	"6 Diagonals, Tetraeder in a Cube: 343 663 041 330 651 330 011 663 341 011 684 361 684 041",
558
	"2 Color Framed Cubes (Order 2): 683 010 664 023 650 333 041 013 363 043 011 333 684 041 013 361",
559
	"2 Color Framed Cubes (Order 6) [1]: 364 661 013 364 650 331 041 650 341 683 331 681 363 023 684 044 364",
560
	"2 Color Framed Cubes (Order 6) [2]: 043 333 651 010 681 653 331 041 683 361 011 681 653 330 651 013 363",
561
	"2 Color Framed Cubes (Order 6) [3]: 361 011 653 330 683 651 013 363 681 043 333 683 651 010 653 331 041",
562
	"2 Color Framed Cubes (Order 6) [4]: 364 683 044 341 041 340 684 043 683 041 684 341 044 684 041 364",
563
	"2 Color Framed Cubes (Order 6) [5]: 013 650 041 651 043 361 010 681 330 013 364 044 653 044 651 361",
564
	"Four-Two-Two-One: 650 333 664 364 333 683 363 683 043 361 043 684 361 683 013 364",
565
	"6 Crow's-feet (Order 2): 011 363 663 361 044 650 340 044 363 684 011 340 681 653 041 361",
566
	"6 Crow's-feet (Order 4): 021 333 010 363 651 361 043 333 044 333 651 013 343 653 363 043",
567
	"6 Crow's-feet in a Color Cube: 683 363 331 010 684 010 361 683 651 331 681 653 333 681",
568
	"6 Asymmetric L's: 363 023 681 333 653 041 364 653 023 343 011 653 343 681 044 364",
569
	"6 Corners in a Color Cube [1]: 363 044 363 650 044 363 010 364 684 363 651 013 650 010 364 043 664",
570
	"6 Corners in a Color Cube [2]: 664 041 364 010 650 011 653 361 684 364 010 361 044 650 361 044 361",
571
	"6 Carneval Masks [1]: 330 650 044 363 664 331 041 333 023 341 043 011 361 044 681 363",
572
	"6 Carneval Masks [2]: 044 684 364 044 331 041 650 333 684 041 661 023 681 331 664 361",
573
	"2 Diamond Cubes: 041 651 361 651 330 653 363 683 363 041 013 653 010 330 684",
574
	"2 Color Framed Cube in Cube (Order 6): 361 651 333 024 681 044 363 044 663 043 650 041 661 010 340 681 361",
575
	"2 Color Framed Cube in a Cube (Order 6) [1]: 331 663 361 651 361 044 653 364 043 364 661 330 041 343 041 361",
576
	"2 Color Framed Cube in a Cube (Order 6) [2]: 653 021 653 024 330 664 361 043 684 331 664 363 653 010 681 041 364",
577
	"6 Bars in a Color Cube: 024 650 010 661 331 664 363 044 330 663 361 044 663 044 361",
578
	"2 Small Color Edge Triangles, Color Edge Hexagon: 023 363 663 330 044 333 023 664 361 650 333 664 361 044 361",
579
	"Colorwheel (Order 12) [1]: 363 331 013 661 340 684 341 041 013 363 683 651",
580
	"Colorwheel (Order 12) [2]: 361 333 043 661 340 650 341 043 011 333 681 653",
581
	"Colorwheel (Order 24) [1]: 663 361 681 653 333 681 340 651 024 684 044 681 023 364",
582
	"Colorwheel (Order 24) [2]: 663 331 683 651 363 651 340 681 024 650 010 651 023 330",
583
	"4 Small Edge Triangles in a Color Cube [1]: 363 664 330 024 363 043 011 364 683 651 363 664 024 363",
584
	"4 Small Edge Triangles in a Color Cube [2]: 024 330 010 681 363 023 661 361 043 663 343 041 681 364",
585
	"2 Propellers in a Color Cube: 041 333 681 330 651 331 011 684 011 343 650 013 331 663 011 333 043 361",
586
	"6 Diagonals, Tetraeder in a Color Cube: 664 011 363 331 011 684 023 341 661 044 651 361 333 651 024 684"
587
		},
588

  
589
    {
590
    "Asymmetric",
591
	"3 Dots, 1 Ring: 341 023 363 041 663 044 663 041 333 661 340",
592
	"3 Dots (Backside), 1 Ring: 341 023 333 011 663 010 663 011 363 661 340",
593
	"3 Q's, 3 W's: 041 651 363 331 023 341 013 653 043 650 013 651 331",
594
	"3 Q's (Backside), 3 W's: 011 681 361 333 023 341 043 683 013 684 043 681 361",
595
	"3 Orthogonal U's, 3 Junctions: 343 041 664 011 343 661 333 664 363 661",
596
	"3 Orthogonal U's (Backside), 3 Junctions: 021 333 024 363 021 343 681 024 651 343",
597
	"3 Orthogonal U's, 3 Junctions: 021 363 024 333 021 343 651 024 681 343",
598
	"3 Orthogonal U's (Backside), 3 Junctions: 343 011 664 041 343 661 363 664 333 661",
599
	"3 Orthogonal Bars, 3 Orthogonal r's: 363 011 663 333 013 330 653 343 651 330 011 363 653 333",
600
	"3 Orthogonal Bars (Backside), 3 Orthogonal r's: 333 041 663 363 043 364 683 343 681 364 041 333 683 363",
601
	"3 Diagonals, 3 Planes: 043 361 683 331 650 333 023 663 330 021 651 330 043 331",
602
	"3 Diagonals (Backside), 3 Planes: 013 331 653 361 684 363 023 663 364 021 681 364 013 361",
603
	"3 Orthogonal K's, 1 Big Edge Triangle: 341 653 021 361 024 363 021 651 343",
604
	"3 Orthogonal K's (Backside), 1 Big Edge Triangle: 343 041 661 333 664 331 661 043 341",
605
	"3 Fish, Edge Hexagon: 363 684 044 361 024 364 333 650 044 361",
606
	"3 Fish (Backside), Edge Hexagon: 331 010 650 333 664 361 330 044 650 333",
607
	"3 Chessboards, Edge Hexagon: 663 011 331 024 333 661 010 341 681 340 683 011 343",
608
	"3 Chessboards (Backside), Edge Hexagon: 663 041 361 024 363 661 044 341 651 340 653 041 343",
609
	"3 Crow's-feet, 6 Fish: 333 651 043 650 364 011 364 664 011 684 013 653 363",
610
	"3 Crow's-feet (Backside), 6 Fish: 363 681 013 684 330 041 330 664 041 650 043 683 333",
611
	"1 Corner Triangle, 3 Birds: 683 043 333 044 363 013 361 024 363 023 653 010 651 333",
612
	"1 Corner Triangle (Backside), 3 Birds: 653 013 363 010 333 043 331 024 333 023 683 044 681 363",
613
	"3 Planes, 3 Birds: 651 331 013 684 011 681 021 363 041 330 011 341 021 681 361",
614
	"3 Planes (Backside), 3 Birds: 681 361 043 650 041 651 021 333 011 364 041 341 021 651 331",
615
	"Edge Hexagon, Color Edge Hexagon: 330 683 340 013 333 650 011 341 013 650 363 651 013 330",
616
	"Edge Hexagon (Backside), Color Edge Hexagon: 364 653 340 043 363 684 041 341 043 684 333 681 043 364",
617
	"Anaconda, 3 Crosses: 361 653 330 651 011 341 684 341 681 043 330 041 361",
618
	"Anaconda (Backside), 3 Crosses: 331 683 364 681 043 341 044 341 653 013 364 011 331",
619
	"1 Small Cube in a Cube, 1 Peak: 044 333 651 333 043 681 043 683 044 330 653 044",
620
	"1 Small Cube in a Cube (Backside), 1 Peak: 650 043 364 650 013 653 011 653 363 041 363 650",
621
	"1 Propeller, 1 Cube in a Cube: 010 683 333 683 013 363 041 663 021 653 364 010 651 364",
622
	"1 Propeller (Backside), 1 Cube in a Cube: 044 653 363 653 043 333 011 663 021 683 330 044 681 330"
623
		},
624

  
625
    {
626
    "Multi Rotation",
627
	"4 Small Edge Triangles [1]: 664 330 024 361 653 023 343 651 041 661 341 043 361",
628
	"4 Small Edge Triangles [2]: 363 011 663 341 664 013 340 683 023 343 681 361",
629
	"2 Peaks (Order 3), 1 Diagonal: 651 364 681 011 331 013 364 013 333 651 363 011 683 361 650",
630
	"3 Peaks (Order 3), 3 Diagonals [1]: 043 681 331 651 364 651 363 650 023 341 013 044 331",
631
	"3 Peaks (Order 3), 3 Diagonals [2]: 043 684 330 653 331 011 330 010 361 023 341 023 683 011 333",
632
	"4 Peaks (Order 2), 5 Diagonals: 331 683 010 361 011 331 041 683 364 043 681 343 041 683 333",
633
	"4 Peaks (Order 2), 6 Diagonals: 361 013 661 041 684 011 364 010 684 013 684 043 343 043 681",
634
	"4 Peaks (Order 3), 6 Diagonals: 343 683 013 651 011 681 041 661 363 651 333 681 331 653 021",
635
	"4 Peaks (Order 4), 6 Diagonals [1]: 333 651 021 653 010 683 364 653 361 651 010 681 363 011 681",
636
	"4 Peaks (Order 4), 6 Diagonals [2]: 013 330 651 023 651 021 653 343 681 023 683 044 363",
637
	"4 Peaks (Order 4), 6 Diagonals [3]: 653 330 041 343 043 663 043 663 013 661 041 684 363",
638
	"4 Peaks (Order 4), 6 Diagonals [4]: 011 330 683 341 681 021 681 021 651 023 683 044 361",
639
	"4 Peaks (Order 6), 6 Diagonals [1]: 013 681 364 023 651 363 331 013 653 361 650 683 043 661 330 681",
640
	"4 Peaks (Order 6), 6 Diagonals [2]: 043 361 663 021 343 683 331 021 653 333 661 010 041 361",
641
	"4 Peaks (Order 6), 6 Diagonals [3]: 044 661 363 021 663 333 364 681 363 331 681 044 361 041 013",
642
	"4 Peaks (Order 9), 6 Diagonals [1]: 683 343 013 664 331 043 343 041 341 683 013 681 363 043 653 363",
643
	"4 Peaks (Order 9), 6 Diagonals [2]: 013 331 041 363 663 361 043 683 011 333 010 681 011 683 333 041",
644
	"4 Peaks (Order 12), 6 Multi Color Diagonals: 661 361 043 011 331 683 011 663 331 684 651 041 364",
645
	"3 Peaks, 2 Propellers: 651 333 021 330 044 363 661 361 651 011 651 010 341 041 361"
646
		},
647

  
648
    {
649
    "Snakes",
650
	"Mamba (Type 60, Order 6): 683 341 010 333 024 364 651 341 653 361 650 013",
651
	"Mamba (Type 51, Order 6) [1]: 011 650 363 651 343 653 364 024 331 010 343 681",
652
	"Mamba (Type 51, Order 6) [2]: 683 361 684 364 013 363 331 010 364 681 333 013",
653
	"Mamba (Type 42, Order 6): 011 331 683 364 010 361 333 011 364 684 363 681",
654
	"Mamba (Type 60, Order 6): 043 343 650 361 664 330 011 343 013 333 010 653",
655
	"Mamba (Type 51, Order 6): 651 010 331 011 341 013 330 664 363 650 341 041",
656
	"Mamba (Type 33, Order 12) [1]: 011 651 043 361 023 331 013 341 043 361 681 333",
657
	"Mamba (Type 33, Order 12) [2]: 363 683 363 011 361 021 331 681 361 041 363 330",
658
	"2 Mambas (Type 30/30) [1]: 044 684 333 664 363 043 661 043 650 041 663 041 010",
659
	"2 Mambas (Type 30/30) [2]: 041 343 044 653 341 681 331 023 663 361 013 341 013 361",
660
	"Anaconda (Type 60) [1]: 651 330 011 683 341 681 021 341 041 650 361",
661
	"Anaconda (Type 60) [2]: 043 330 683 023 691 011 343 013 653 330 041",
662
	"Python (Type 42) [1]: 363 684 010 343 011 661 011 650 013 663 011 333",
663
	"Python (Type 42) [2]: 333 650 044 343 041 661 041 684 043 663 041 363",
664
	"Python (Type 42) [3]: 363 044 341 010 361 684 043 343 041 650 043 373 681 343 024",
665
	"Python (Type 42) [4]: 333 010 341 044 331 650 013 343 011 684 013 373 651 343 024",
666
	"Fat Anaconda: 684 364 010 330 010 333 683 013 363 010 361 011 681 340 650"
667
		},
668

  
669
    {
670
    "Multi Snakes",
671
	"Winding Anaconda (Order 6): 330 684 043 650 341 650 011 330 010 364 041 013 364",
672
	"Winding Anaconda (Order 12): 684 044 683 651 044 364 651 044 341 044 683 010 364",
673
	"Multi Color Anaconda (Order 3) [1]: 363 011 681 041 663 043 361 663 363 651 333 041",
674
	"Multi Color Anaconda (Order 3) [2]: 043 331 653 361 661 363 041 661 043 683 013 361",
675
	"Multi Color Anaconda (Order 6): 663 010 330 683 024 653 013 661 013 364 043 343 041",
676
	"Multi Color Anaconda (Order 10) [1]: 330 661 023 363 681 341 023 683 333 021 661 364",
677
	"Multi Color Anaconda (Order 10) [2]: 330 023 661 361 011 663 343 013 331 663 023 364",
678
	"Multi Color Anaconda (Order 12): 043 650 364 651 341 683 010 653 023 681 023 364 041",
679
	"Multi Color Anaconda (Order 24): 363 044 651 331 023 361 661 341 013 650 361",
680
	"Multi Color Anaconda (Order 105): 333 041 681 361 333 651 021 653 330 043 651 331",
681
	"Multi Color Python (Order 2) [1]: 363 043 011 683 651 363 331 041 013 683 651 331",
682
	"Multi Color Python (Order 2) [2]: 363 043 011 681 653 361 333 043 011 683 651 331",
683
	"Boa Constrictor [1]: 364 650 010 330 043 333 684 041 650 363 330 013 331 664 361",
684
	"Boa Constrictor [2]: 363 661 021 333 043 341 044 681 361 653 333 651 684 361",
685
	"Boa Constrictor [3]: 044 364 041 651 043 011 651 023 331 650 041 333 684 043 650 043 361",
686
	"Anaconda (Order 3), 2 Peaks: 330 011 683 650 361 043 651 361 650 333 044 331 661 011 683 333 013",
687
	"Anaconda (Order 6), 2 Peaks [1]: 651 041 333 041 684 363 651 010 331 651 361 330 664 010 651 333",
688
	"Anaconda (Order 6), 2 Peaks [2]: 044 011 361 013 363 013 681 333 013 681 011 343 011 363 684 361",
689
	"Winding Anaconda, 2 Peaks: 330 041 681 363 651 010 363 043 681 044 330 013 364 650 043 684 011",
690
	"Anaconda, 6 Orthogonal L's [1]: 330 010 341 043 664 011 684 044 653 024 681 044 333 361",
691
	"Anaconda, 6 Orthogonal L's [2]: 361 333 684 011 340 043 650 010 683 340 651 044 361 333",
692
	"Anaconda, 6 Orthogonal L's [3]: 661 361 044 331 013 663 343 013 330 681 653 043 650 340 013 343"
693
		},
694

  
695
    {
696
    "Labyrinths",
697
	"The Labyrinth of Minos (Order 2): 361 653 041 333 024 331 043 653 340 684 330 024 361",
698
	"The Labyrinth of Minos (Order 4): 341 010 364 664 024 333 664 333 044",
699
	"The Labyrinth of Minos (Order 6): 340 651 043 684 363 664 011 653 024 333 044 681 013 340",
700
	"The Labyrinth of Minos (Order 15): 041 681 013 664 041 013 661 041 340 653 340 684 041 010",
701
	"Greek Labyrinth [1]: 011 343 013 363 013 650 333 663 331 684 044 341 041 361",
702
	"Greek Labyrinth [2]: 041 343 043 333 043 684 363 663 361 650 010 341 011 331",
703
	"English Maze (Type 1) [1]: 361 684 340 650 361 330",
704
	"English Maze (Type 1) [2]: 331 650 340 684 364 331",
705
	"English Maze (Type 1) [3]: 361 684 340 650 361 330",
706
	"English Maze (Type 1) [4]: 331 650 340 684 364 331",
707
	"English Maze (Type 2): 341 044 340 650 363 024 361 650 044",
708
	"English Maze (Type 3) [1]: 041 361 651 340 650 341 651 363 043 333 024 331",
709
	"English Maze (Type 3) [2]: 011 331 681 340 684 341 681 333 013 363 024 361",
710
	"English Maze (Type 3) [3]: 013 361 683 340 684 341 683 363 011 333 024 331",
711
	"English Maze (Type 3) [4]: 043 331 653 340 650 341 653 333 041 363 024 361",
712
	"2 Crosses, Connected Rings: 330 664 011 681 343 683 333 024 331 011 681 340 683 044 364",
713
	"2 Crosses, Cobra [1]: 650 010 363 024 333 024 681 343 681 044 683 341 683 650",
714
	"2 Crosses, Cobra [2]: 010 650 361 664 331 664 043 341 043 684 041 343 041 010",
715
	"4 Crosses [1]: 341 044 361 664 364 024 363 664 330 010",
716
	"4 Crosses [2]: 341 010 331 664 330 024 333 664 364 044",
717
	"4 Crosses [3]: 650 364 333 684 024 650 024 361 684 343",
718
	"4 Crosses [4]: 684 363 330 650 024 684 024 331 650 343"
719
		},
720

  
721
    {
722
    "Multi Labyrinths",
723
	"Multi Color Labyrinth of Minos (Order 6) [1]: 010 683 361 024 663 331 043 340 010 333 663 361 651 341 683 364",
724
	"Multi Color Labyrinth of Minos (Order 6) [2]: 364 681 343 653 363 661 331 010 340 041 333 661 024 363 681 010",
725
	"Multi Color Greek Labyrinth [1]: 651 043 650 361 330 684 330 664 013 650 011 331 013 651",
726
	"Multi Color Greek Labyrinth [2]: 683 041 363 043 684 041 664 364 650 364 333 684 011 683",
727
	"Connected Greek Labyrinth (Order 3) [1]: 343 041 010 330 041 361 024 664 331 651 364 684 651 343",
728
	"Connected Greek Labyrinth (Order 3) [2]: 343 044 011 364 011 331 024 664 361 681 330 681 650 343",
729
	"Connected Greek Labyrinth (Order 6) [1]: 361 651 340 010 651 343 653 044 650 024 683 363",
730
	"Connected Greek Labyrinth (Order 6) [2]: 331 681 340 044 681 343 683 010 684 024 653 333",
731
	"English Multi Color Maze: 044 661 010 361 011 664 340 041 363 010 663 044 363 044 361",
732
	"English Multi Color Maze (Type 1) [1]: 651 041 330 663 330 043 361 333 653 021 343 651 010 331",
733
	"English Multi Color Maze (Type 1) [2]: 681 011 364 663 364 013 363 331 683 021 343 681 044 361",
734
	"English Multi Color Maze (Type 1) [3]: 664 013 364 651 340 044 340 010 681 010 333 044 663 044",
735
	"English Multi Color Maze (Type 1) [4]: 664 043 330 681 340 010 340 044 651 044 363 010 663 010"
736
		},
737

  
738
    {
739
    "3D-Puzzles",
740
	"3D-Puzzle, With Cube Snake: 364 663 333 023 364 653 330 681 043 364 011 653 010 653 041",
741
	"3D-Puzzle (Order 3), With 2 Peaks: 664 333 041 651 010 684 010 681 333 684 363 011 651 340",
742
	"3D-Puzzle (Order 6), With 2 Peaks: 684 341 663 041 340 663 041 361 651 010 364 041 343 684 364",
743
	"3D-Puzzle (Order 12), With 2 Small Cubes: 010 331 010 330 650 363 650 361 650 043 330 684",
744
	"3D-Puzzle (Order 2), With 2 Cubes [1]: 013 331 683 333 013 363 011 681 013 681 041 683 024 331 041 333",
745
	"3D-Puzzle (Order 2), With 2 Cubes [2]: 681 363 011 361 681 331 683 013 681 013 653 011 664 363 653 361",
746
	"3D-Puzzle (Order 3), With 2 Cubes [1]: 364 041 363 683 361 043 340 043 333 683 331 041 330",
747
	"3D-Puzzle (Order 3), With 2 Cubes [2]: 330 653 331 011 333 651 340 651 361 011 363 653 364",
748
	"3D-Puzzle With Small And Large Cube: 043 683 043 361 041 363 043 363",
749
	"3D-Puzzle With Large And Small Cube: 011 363 651 361 013 651 331 011",
750
	"3D-Puzzle (Order 36), With 1 Cube [1]: 333 653 330 043 331 041 330 651 011 653 013 333 651 011",
751
	"3D-Puzzle (Order 36), With 1 Cube [2]: 333 013 651 331 011 333 013 650 363 653 361 650 011 651",
752
	"3D-Puzzle (Order 3), With Anaconda: 044 331 651 333 044 361 651 013 330 044 684 331 044 653 331 011 364",
753
	"3D-Puzzle (Order 6), With Anaconda [1]: 333 684 330 010 681 010 331 681 361 043 333 653 331 043 363 330 044",
754
	"3D-Puzzle (Order 6), With Anaconda [2]: 363 011 653 363 010 684 024 650 361 650 363 024 651 011 361",
755
	"3D-Puzzle (Order 4), With Anaconda: 653 333 651 331 653 043 651 361 023 651 331 651 011 651 010 650"
756
		},
757

  
758
    {
759
    "Flips and Twists",
760
	"2 Edge Flips, 4 Symmetric E's: 043 341 041 684 043 343 043 343 044 684 341",
761
	"2 Edge Flips: 044 651 021 651 010 333 010 653 023 653 044 361",
762
	"4 Edge Flips, 4 Serial H's: 340 041 661 044 364 043 340 043 661 044 364 041",
763
	"6 Edge Flips, 2 Small Edge Triangles: 683 043 361 043 361 663 361 683 041 331 011 683 330 684 341 653",
764
	"6 Edge Flips, Edge Hexagon: 364 024 681 013 331 651 013 363 664 013 653 331 043 653 361",
765
	"6 Edge Flips: 024 363 021 363 013 340 043 651 021 651 013 664 041 010",
766
	"8 Edge Flips, 2 Parallel H's, 2 Chessboards: 683 651 363 331 043 011 683 651 363 331 043 011",
767
	"10 Edge Flips, 2 Symmetric K's, 2 Chessboards: 681 343 010 661 330 010 684 364 013 341 013 364 011 343 041 361",
768
	"Superflip, Centre: 024 361 044 333 663 024 363 023 364 684 333 663 024 361 044 361",
769
	"6 Corner Twists, 6 Fish: 650 331 653 333 651 343 044 341 661 013 653 043 650 023 361",
770
	"Supertwist [1]: 650 043 664 340 044 013 650 331 664 024 330 361",
771
	"Supertwist [2]: 364 664 024 363 044 651 024 340 681 650 044 361",
772
	"8 Corner Inversions: 653 024 340 681 363 664 024 331 013 664 340 041",
773
	"Superflip, With 4 Dots: 024 361 044 333 024 663 363 023 364 684 333 024 663 361 044 361",
774
	"Superflip, With 6 Dots: 664 361 044 333 023 664 363 021 364 650 333 664 023 361 044 361",
775
	"Superflip, With 6 H's: 331 041 653 023 683 363 023 361 013 341 041 010 683 361",
776
	"Superflip, With 6 Chessboards: 023 363 663 330 044 333 023 664 361 650 333 664 361 044 361",
777
	"Superfliptwist: 043 661 343 011 363 024 331 011 661 341 043 361 044 661 340 044 361",
778
	"Superfliptwist, With 6 Chessboards: 684 331 663 023 363 041 340 664 043 653 364 021 364 681 361 333",
779
	"Supertwist, With 6 Chessboards [1]: 363 024 664 331 010 651 340 024 681 650 044 664",
780
	"Supertwist, With 6 Chessboards [2]: 664 044 683 650 024 340 653 010 333 664 024 361",
781
	"Super Inversion: 664 330 024 333 684 343 044 364 010 684 364 684 044 361"
782
		},
783

  
784
    {
785
    "6-Color Cubes",
786
	"2 Multi Color Framed Cubes [1]: 043 664 024 333 664 011 663 361 664 331 651 364 331 650 041 361",
787
	"2 Multi Color Framed Cubes [2]: 044 364 683 041 684 361 333 683 363 331 043 681 364 044",
788
	"2 Multi Color Framed Diamond Cubes [1]: 021 651 340 011 331 684 011 340 013 653 331 011 364 664 023 361",
789
	"2 Multi Color Framed Diamond Cubes [2]: 681 650 010 340 041 331 663 021 363 664 043 681 653 043 361",
790
	"6 L's in a Multi Color Cube: 663 013 651 041 330 664 023 653 331 023 343 653 333 044 653 343",
791
	"2 Propellers in a Multi Color Cube: 651 043 650 361 044 361 010 650 010 331 041 013 684 361 681",
792
	"2 Propellers And, 6 Bricks in a Multi Color Cube: 363 683 331 683 331 013 340 664 044 343 684 044 013 661 041 361",
793
	"Colourful Gift-wrapped Cube: 664 343 010 330 681 340 024 651 041 661 041 330 011 341 041",
794
	"The Queen of Rubik's Cube: 651 043 361 684 343 023 650 364 024 663 333 041 681",
795
	"6 Diagonals, Tetraeder in a Multi Color Cube: 361 041 364 013 650 010 651 330 010 683 341 661 361 044 331 650 361",
796
	"Multi Color Cube (Order 12) [1]: 653 043 683 010 664 044 331 011 650 363 023 651 331 023 361",
797
	"Multi Color Cube (Order 12) [2]: 650 363 043 684 364 043 363 010 330 683 361 661 331 044 653 361",
798
	"Multi Color Cube (Order 12) [3]: 340 043 684 653 010 363 044 651 364 021 333 043 341 041 364",
799
	"Multi Color Cube (Order 12) [4]: 330 041 333 043 663 361 650 044 363 010 661 013 651 363 681 041 363",
800
	"2 Asymmetric Stripe Cubes in a Multi Color Cube (Order 6) [1]: 341 684 330 683 011 361 663 364 043 011 331 683 343 021 361",
801
	"2 Asymmetric Stripe Cubes in a Multi Color Cube (Order 6) [2]: 684 041 333 010 650 011 364 650 343 681 340 013 361 044 340 681 361",
802
	"2 Asymmetric Stripe Cubes in a Multi Color Cube (Order 12): 331 664 041 364 653 044 651 044 361 651 331 651 010 684 011 364 333",
803
	"Multi Color Cube (Order 4): 681 653 043 011 340 683 651",
804
	"Multi Color Cube (Order 6): 684 010 661 363 024 333 661 364 010 363 044 663 044 361",
805
	"Multi Color Cube (Order 36): 681 653 043 011 340 651",
806
	"Oriental Carpet: 041 343 661 011 684 364 023 663 011 650 341 650 043 361 333"
807
    }
808
  };
809
}
src/main/java/org/distorted/patterns/RubikPatternCube4.java
1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

  
20
package org.distorted.patterns;
21

  
22
///////////////////////////////////////////////////////////////////////////////////////////////////
23

  
24
public class RubikPatternCube4
25
{
26
public static String[][] patterns =
27
  {
28
    {
29
    "Simple (1)",
30
	"2 Dots: 660 044 660 044 401 660 044 660 044 403",
31
	"3 Dots [1]: 723 341 084 343 041 341 084 343 043 721",
32
	"3 Dots [2]: 083 681 404 683 341 681 404 683 343 081",
33
	"3 Dots [3]: 721 343 023 404 021 341 023 404 021 723",
34
	"3 Dots [4]: 083 661 404 663 341 661 404 663 343 081",
35
	"4 Dots [1]: 361 010 660 010 363 010 660 010",
36
	"4 Dots [2]: 363 084 660 084 361 084 660 084",
37
	"6 Dots [1]: 084 330 041 661 041 663 043 343 043 330 341 084 341 011 343 044 341 013 343 044",
38
	"6 Dots [2]: 330 021 010 663 363 663 361 661 023 661 010 330 363 083 361 020 363 081 361 020",
39
	"6 Dots [3]: 404 650 083 011 663 361 661 363 081 013 650 404",
40
	"6 Dots [4]: 404 650 083 011 683 341 681 343 081 013 650 404",
41
	"6 Dots [5]: 413 731 683 341 681 343 733 411",
42
	"6 Dots [6]: 413 731 663 361 661 363 733 411",
43
	"2 Small Diagonals [1]: 403 701 364 703 401 333 701 364 703 331",
44
	"2 Small Diagonals [2]: 403 061 340 063 401 333 061 340 063 331",
45
	"3 Small Diagonals [1]: 660 083 420 331 651 663 361 661 363 653 420 333 081 660",
46
	"3 Small Diagonals [2]: 041 361 123 341 683 121 363 123 361 681 383 081",
47
	"4 Small Diagonals [1]: 361 724 120 381 044 383 084 724 363",
... This diff was truncated because it exceeds the maximum size that can be displayed.

Also available in: Unified diff