Project

General

Profile

Download (12 KB) Statistics
| Branch: | Tag: | Revision:

magiccube / src / main / java / org / distorted / objects / Movement.java @ 4e627d8b

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.objects;
21

    
22
import org.distorted.library.type.Static2D;
23
import org.distorted.library.type.Static3D;
24
import org.distorted.library.type.Static4D;
25

    
26
///////////////////////////////////////////////////////////////////////////////////////////////////
27

    
28
public abstract class Movement
29
  {
30
  static final float SQ2 = (float)Math.sqrt(2);
31
  static final float SQ3 = (float)Math.sqrt(3);
32
  static final float SQ6 = (float)Math.sqrt(6);
33

    
34
  private int mLastTouchedFace, mNumFaceAxis;
35
  private float[] mPoint, mCamera, mTouch;
36
  private float[] mPoint2D, mMove2D;
37
  private float[][][] mCastedRotAxis;
38
  private Static4D[][] mCastedRotAxis4D;
39
  private int[] mEnabledRotAxis;
40
  private float mDistanceCenterFace3D, mDistanceCenterFace2D;
41
  private Static3D[] mFaceAxis;
42

    
43
///////////////////////////////////////////////////////////////////////////////////////////////////
44

    
45
  abstract boolean isInsideFace(int face, float[] point);
46
  abstract void computeEnabledAxis(int face, float[] touchPoint, int[] enabledAxis);
47
  abstract int computeRowFromOffset(int face, int size, float offset);
48
  public abstract float returnRotationFactor(int size, int row);
49

    
50
///////////////////////////////////////////////////////////////////////////////////////////////////
51

    
52
  Movement(Static3D[] rotAxis, Static3D[] faceAxis, float distance3D, float distance2D)
53
    {
54
    mPoint = new float[3];
55
    mCamera= new float[3];
56
    mTouch = new float[3];
57

    
58
    mPoint2D = new float[2];
59
    mMove2D  = new float[2];
60

    
61
    mFaceAxis   = faceAxis;
62
    mNumFaceAxis= mFaceAxis.length;
63

    
64
    mEnabledRotAxis = new int[rotAxis.length+1];
65

    
66
    mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces
67
    mDistanceCenterFace2D = distance2D; // distance from the center of a face to its edge
68

    
69
    computeCastedAxis(rotAxis);
70
    }
71

    
72
///////////////////////////////////////////////////////////////////////////////////////////////////
73
// mCastedRotAxis[1][2]{0,1} are the 2D coords of the 2nd rotAxis cast onto the face defined by the
74
// 1st faceAxis.
75

    
76
  private void computeCastedAxis(Static3D[] rotAxis)
77
    {
78
    mCastedRotAxis   = new float[mNumFaceAxis][rotAxis.length][2];
79
    mCastedRotAxis4D = new Static4D[mNumFaceAxis][rotAxis.length];
80

    
81
    float fx,fy,fz,f;
82

    
83
    for( int casted=0; casted<rotAxis.length; casted++)
84
      {
85
      Static3D a = rotAxis[casted];
86
      mPoint[0]= a.get0();
87
      mPoint[1]= a.get1();
88
      mPoint[2]= a.get2();
89

    
90
      for( int face=0; face<mNumFaceAxis; face++)
91
        {
92
        convertTo2Dcoords( mPoint, mFaceAxis[face], mCastedRotAxis[face][casted]);
93
        normalize2D(mCastedRotAxis[face][casted]);
94

    
95
        fx = mFaceAxis[face].get0();
96
        fy = mFaceAxis[face].get1();
97
        fz = mFaceAxis[face].get2();
98
        f  = mPoint[0]*fx + mPoint[1]*fy + mPoint[2]*fz;
99
        mCastedRotAxis4D[face][casted] = new Static4D( mPoint[0]-f*fx, mPoint[1]-f*fy, mPoint[2]-f*fz, 0);
100
        }
101
      }
102
    }
103

    
104
///////////////////////////////////////////////////////////////////////////////////////////////////
105

    
106
  private void normalize2D(float[] vect)
107
    {
108
    float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]);
109
    vect[0] /= len;
110
    vect[1] /= len;
111
    }
112

    
113
///////////////////////////////////////////////////////////////////////////////////////////////////
114
// find the casted axis with which our move2D vector forms an angle closest to 90 deg.
115

    
116
  private int computeRotationIndex(int faceAxis, float[] move2D, int[] enabled)
117
    {
118
    float cosAngle, minCosAngle = Float.MAX_VALUE;
119
    int minIndex=-1, index;
120
    float m0 = move2D[0];
121
    float m1 = move2D[1];
122
    float len = (float)Math.sqrt(m0*m0 + m1*m1);
123

    
124
    if( len!=0.0f )
125
      {
126
      m0 /= len;
127
      m1 /= len;
128
      }
129
    else
130
      {
131
      m0 = 1.0f;  // arbitrarily
132
      m1 = 0.0f;  //
133
      }
134

    
135
    int numAxis = enabled[0];
136

    
137
    for(int axis=1; axis<=numAxis; axis++)
138
      {
139
      index = enabled[axis];
140
      cosAngle = m0*mCastedRotAxis[faceAxis][index][0] + m1*mCastedRotAxis[faceAxis][index][1];
141
      if( cosAngle<0 ) cosAngle = -cosAngle;
142

    
143
      if( cosAngle<minCosAngle )
144
        {
145
        minCosAngle=cosAngle;
146
        minIndex = index;
147
        }
148
      }
149

    
150
    return minIndex;
151
    }
152

    
153
///////////////////////////////////////////////////////////////////////////////////////////////////
154

    
155
  private float computeOffset(float[] point, float[] axis)
156
    {
157
    return point[0]*axis[0] + point[1]*axis[1] + mDistanceCenterFace2D;
158
    }
159

    
160
///////////////////////////////////////////////////////////////////////////////////////////////////
161

    
162
  private boolean faceIsVisible(Static3D faceAxis)
163
    {
164
    float castCameraOnAxis = mCamera[0]*faceAxis.get0() + mCamera[1]*faceAxis.get1() + mCamera[2]*faceAxis.get2();
165
    return castCameraOnAxis > mDistanceCenterFace3D;
166
    }
167

    
168
///////////////////////////////////////////////////////////////////////////////////////////////////
169
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
170
// compute point 'output[]' which:
171
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0))
172
// 2) is co-linear with mCamera and mPoint
173
//
174
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)]
175

    
176
  private void castTouchPointOntoFace(Static3D faceAxis, float[] output)
177
    {
178
    float d0 = mPoint[0]-mCamera[0];
179
    float d1 = mPoint[1]-mCamera[1];
180
    float d2 = mPoint[2]-mCamera[2];
181
    float a0 = faceAxis.get0();
182
    float a1 = faceAxis.get1();
183
    float a2 = faceAxis.get2();
184

    
185
    float denom = a0*d0 + a1*d1 + a2*d2;
186

    
187
    if( denom != 0.0f )
188
      {
189
      float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2];
190
      float distance = mDistanceCenterFace3D;
191
      float alpha = (distance-axisCam)/denom;
192

    
193
      output[0] = mCamera[0] + d0*alpha;
194
      output[1] = mCamera[1] + d1*alpha;
195
      output[2] = mCamera[2] + d2*alpha;
196
      }
197
    }
198

    
199
///////////////////////////////////////////////////////////////////////////////////////////////////
200
// Convert the 3D point3D into a 2D point on the same face surface, but in a different
201
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects
202
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the
203
// original 3D Y axis and our 2D in-plane origin.
204
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only
205
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to
206
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily
207
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole)
208

    
209
  private void convertTo2Dcoords(float[] point3D, Static3D faceAxis, float[] output)
210
    {
211
    float y0,y1,y2; // base Y vector of the 2D coord system
212
    float a0 = faceAxis.get0();
213
    float a1 = faceAxis.get1();
214
    float a2 = faceAxis.get2();
215

    
216
    if( a0==0.0f && a2==0.0f )
217
      {
218
      y0=0; y1=0; y2=-a1;
219
      }
220
    else if( a1==0.0f )
221
      {
222
      y0=0; y1=1; y2=0;
223
      }
224
    else
225
      {
226
      float norm = (float)(-a1/Math.sqrt(1-a1*a1));
227
      y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2;
228
      }
229

    
230
    float x0 = y1*a2 - y2*a1;  //
231
    float x1 = y2*a0 - y0*a2;  // (2D coord baseY) x (axis) = 2D coord baseX
232
    float x2 = y0*a1 - y1*a0;  //
233

    
234
    float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2;
235

    
236
    float origin0 = originAlpha*a0; // coords of the point where axis
237
    float origin1 = originAlpha*a1; // intersects surface plane i.e.
238
    float origin2 = originAlpha*a2; // the origin of our 2D coord system
239

    
240
    float v0 = point3D[0] - origin0;
241
    float v1 = point3D[1] - origin1;
242
    float v2 = point3D[2] - origin2;
243

    
244
    output[0] = v0*x0 + v1*x1 + v2*x2;
245
    output[1] = v0*y0 + v1*y1 + v2*y2;
246
    }
247

    
248
///////////////////////////////////////////////////////////////////////////////////////////////////
249
// PUBLIC API
250
///////////////////////////////////////////////////////////////////////////////////////////////////
251

    
252
  public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera)
253
    {
254
    float objectRatio = TwistyObject.getObjectRatio();
255

    
256
    mPoint[0]  = rotatedTouchPoint.get0()/objectRatio;
257
    mPoint[1]  = rotatedTouchPoint.get1()/objectRatio;
258
    mPoint[2]  = rotatedTouchPoint.get2()/objectRatio;
259

    
260
    mCamera[0] = rotatedCamera.get0()/objectRatio;
261
    mCamera[1] = rotatedCamera.get1()/objectRatio;
262
    mCamera[2] = rotatedCamera.get2()/objectRatio;
263

    
264
    for( mLastTouchedFace=0; mLastTouchedFace<mNumFaceAxis; mLastTouchedFace++)
265
      {
266
      if( faceIsVisible(mFaceAxis[mLastTouchedFace]) )
267
        {
268
        castTouchPointOntoFace(mFaceAxis[mLastTouchedFace], mTouch);
269
        convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedFace], mPoint2D);
270
        if( isInsideFace(mLastTouchedFace,mPoint2D) ) return true;
271
        }
272
      }
273

    
274
    return false;
275
    }
276

    
277
///////////////////////////////////////////////////////////////////////////////////////////////////
278

    
279
  public Static2D newRotation(int size, Static4D rotatedTouchPoint)
280
    {
281
    float objectRatio = TwistyObject.getObjectRatio();
282

    
283
    mPoint[0] = rotatedTouchPoint.get0()/objectRatio;
284
    mPoint[1] = rotatedTouchPoint.get1()/objectRatio;
285
    mPoint[2] = rotatedTouchPoint.get2()/objectRatio;
286

    
287
    castTouchPointOntoFace(mFaceAxis[mLastTouchedFace], mTouch);
288
    convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedFace], mMove2D);
289

    
290
    mMove2D[0] -= mPoint2D[0];
291
    mMove2D[1] -= mPoint2D[1];
292

    
293
    computeEnabledAxis(mLastTouchedFace, mPoint2D, mEnabledRotAxis);
294
    int rotIndex = computeRotationIndex(mLastTouchedFace, mMove2D, mEnabledRotAxis);
295
    float offset = computeOffset(mPoint2D, mCastedRotAxis[mLastTouchedFace][rotIndex]);
296
    int row      = computeRowFromOffset(mLastTouchedFace,size,offset);
297

    
298
    return new Static2D(rotIndex,row);
299
    }
300

    
301
///////////////////////////////////////////////////////////////////////////////////////////////////
302

    
303
  public Static4D getCastedRotAxis(int rotIndex)
304
    {
305
    return mCastedRotAxis4D[mLastTouchedFace][rotIndex];
306
    }
307

    
308
///////////////////////////////////////////////////////////////////////////////////////////////////
309

    
310
  public int getTouchedFace()
311
    {
312
    return mLastTouchedFace;
313
    }
314

    
315
///////////////////////////////////////////////////////////////////////////////////////////////////
316

    
317
  public float[] getTouchedPoint3D()
318
    {
319
    return mTouch;
320
    }
321
  }
(4-4/28)