| 38 |
38 |
private static final int VECTZ = 2; //
|
| 39 |
39 |
|
| 40 |
40 |
private float[] mPoint, mCamera, mDiff, mTouch;
|
| 41 |
|
private int mRotationVect, mLastTouchedFace;
|
|
41 |
private int mRotationVect, mLastTouchedAxis, mLastTouchedLR;
|
|
42 |
private int mNumAxis, mNumFacesPerAxis;
|
| 42 |
43 |
|
| 43 |
44 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
| 44 |
45 |
|
| ... | ... | |
| 49 |
50 |
|
| 50 |
51 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
| 51 |
52 |
|
| 52 |
|
private int retFaceSign(int face)
|
| 53 |
|
{
|
| 54 |
|
return (face==FRONT || face==RIGHT || face==TOP) ? 1:-1;
|
| 55 |
|
}
|
| 56 |
|
|
| 57 |
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
| 58 |
|
|
| 59 |
|
private int retFaceRotationSign(int face)
|
|
53 |
private int retFaceRotationSign(int axis, int lr)
|
| 60 |
54 |
{
|
|
55 |
int face = axis*mNumFacesPerAxis + lr;
|
| 61 |
56 |
return (face==BACK || face==RIGHT || face==TOP) ? 1:-1;
|
| 62 |
57 |
}
|
| 63 |
58 |
|
| 64 |
59 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
| 65 |
|
// retFace{X,Y,Z}axis: 3 functions which return which real AXIS gets mapped to which when we look
|
| 66 |
|
// directly at a given face. For example, when we look at the RIGHT face of the cube (with TOP still
|
| 67 |
|
// in the top) then the 'real' X axis becomes the 'Z' axis, thus retFaceXaxis(RIGHT) = VECTZ.
|
| 68 |
60 |
|
| 69 |
|
private int retFaceXaxis(int face)
|
|
61 |
private int retFaceXaxis(int axis)
|
| 70 |
62 |
{
|
| 71 |
|
return face==LEFT || face==RIGHT ? VECTZ : VECTX;
|
|
63 |
return axis==0 ? VECTZ : VECTX;
|
| 72 |
64 |
}
|
| 73 |
65 |
|
| 74 |
66 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
| 75 |
67 |
|
| 76 |
|
private int retFaceYaxis(int face)
|
|
68 |
private int retFaceYaxis(int axis)
|
| 77 |
69 |
{
|
| 78 |
|
return face==TOP || face==BOTTOM ? VECTZ : VECTY;
|
|
70 |
return axis==1 ? VECTZ : VECTY;
|
| 79 |
71 |
}
|
| 80 |
72 |
|
| 81 |
73 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
| 82 |
74 |
|
| 83 |
|
private int retFaceAxis(int face)
|
|
75 |
private boolean faceIsVisible(int axis, int lr)
|
| 84 |
76 |
{
|
| 85 |
|
switch(face)
|
| 86 |
|
{
|
| 87 |
|
case FRONT :
|
| 88 |
|
case BACK : return VECTZ;
|
| 89 |
|
case LEFT :
|
| 90 |
|
case RIGHT : return VECTX;
|
| 91 |
|
case TOP :
|
| 92 |
|
case BOTTOM: return VECTY;
|
| 93 |
|
}
|
| 94 |
|
|
| 95 |
|
return -1;
|
| 96 |
|
}
|
| 97 |
|
|
| 98 |
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
| 99 |
|
|
| 100 |
|
private boolean faceIsVisible(int face)
|
| 101 |
|
{
|
| 102 |
|
int sign = retFaceSign(face);
|
| 103 |
|
int zAxis= retFaceAxis(face);
|
| 104 |
|
|
| 105 |
|
return sign*mCamera[zAxis] > 0.5f;
|
|
77 |
return (lr==0 ? -1:1)*mCamera[axis] > 0.5f;
|
| 106 |
78 |
}
|
| 107 |
79 |
|
| 108 |
80 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
| ... | ... | |
| 110 |
82 |
// cast this touch point onto the surface defined by the 'face' and write the cast coords to 'output'.
|
| 111 |
83 |
// Center of the 'face' = (0,0), third coord always +- cubeHalfSize.
|
| 112 |
84 |
|
| 113 |
|
private void castTouchPointOntoFace(int face, float[] output)
|
|
85 |
private void castTouchPointOntoFace(int axis, int lr, float[] output)
|
| 114 |
86 |
{
|
| 115 |
|
int sign = retFaceSign(face);
|
| 116 |
|
int zAxis= retFaceAxis(face);
|
| 117 |
|
float diff = mPoint[zAxis]-mCamera[zAxis];
|
| 118 |
|
|
| 119 |
|
float ratio = diff!=0.0f ? (sign*0.5f-mCamera[zAxis])/diff : 0.0f;
|
|
87 |
float diff = mPoint[axis]-mCamera[axis];
|
|
88 |
float ratio = diff!=0.0f ? ( (lr-0.5f)-mCamera[axis])/diff : 0.0f;
|
| 120 |
89 |
|
| 121 |
90 |
output[0] = (mPoint[0]-mCamera[0])*ratio + mCamera[0];
|
| 122 |
91 |
output[1] = (mPoint[1]-mCamera[1])*ratio + mCamera[1];
|
| ... | ... | |
| 131 |
100 |
mCamera= new float[3];
|
| 132 |
101 |
mDiff = new float[3];
|
| 133 |
102 |
mTouch = new float[3];
|
|
103 |
|
|
104 |
mNumAxis = RubikCube.AXIS.length;
|
|
105 |
mNumFacesPerAxis = RubikCube.FACE_COLORS.length / mNumAxis;
|
| 134 |
106 |
}
|
| 135 |
107 |
|
| 136 |
108 |
///////////////////////////////////////////////////////////////////////////////////////////////////
|
| ... | ... | |
| 147 |
119 |
mCamera[1] = rotatedCamera.get1()/RubikObject.OBJECT_SCREEN_RATIO;
|
| 148 |
120 |
mCamera[2] = rotatedCamera.get2()/RubikObject.OBJECT_SCREEN_RATIO;
|
| 149 |
121 |
|
| 150 |
|
for( mLastTouchedFace=LEFT; mLastTouchedFace<=FRONT; mLastTouchedFace++)
|
|
122 |
for( mLastTouchedAxis=0; mLastTouchedAxis<mNumAxis; mLastTouchedAxis++)
|
| 151 |
123 |
{
|
| 152 |
|
if( faceIsVisible(mLastTouchedFace) )
|
|
124 |
for( mLastTouchedLR=0; mLastTouchedLR<mNumFacesPerAxis; mLastTouchedLR++)
|
| 153 |
125 |
{
|
| 154 |
|
castTouchPointOntoFace(mLastTouchedFace, mTouch);
|
| 155 |
|
|
| 156 |
|
if( mTouch[0]<=0.5f && mTouch[0]>=-0.5f &&
|
| 157 |
|
mTouch[1]<=0.5f && mTouch[1]>=-0.5f &&
|
| 158 |
|
mTouch[2]<=0.5f && mTouch[2]>=-0.5f ) return true;
|
|
126 |
if( faceIsVisible(mLastTouchedAxis, mLastTouchedLR) )
|
|
127 |
{
|
|
128 |
castTouchPointOntoFace(mLastTouchedAxis, mLastTouchedLR, mTouch);
|
|
129 |
|
|
130 |
if( mTouch[0]<=0.5f && mTouch[0]>=-0.5f &&
|
|
131 |
mTouch[1]<=0.5f && mTouch[1]>=-0.5f &&
|
|
132 |
mTouch[2]<=0.5f && mTouch[2]>=-0.5f ) return true;
|
|
133 |
}
|
| 159 |
134 |
}
|
| 160 |
135 |
}
|
| 161 |
136 |
|
| ... | ... | |
| 170 |
145 |
mPoint[1] = rotatedTouchPoint.get1()/RubikObject.OBJECT_SCREEN_RATIO;
|
| 171 |
146 |
mPoint[2] = rotatedTouchPoint.get2()/RubikObject.OBJECT_SCREEN_RATIO;
|
| 172 |
147 |
|
| 173 |
|
castTouchPointOntoFace(mLastTouchedFace,mDiff);
|
|
148 |
castTouchPointOntoFace(mLastTouchedAxis, mLastTouchedLR, mDiff);
|
| 174 |
149 |
|
| 175 |
150 |
mDiff[0] -= mTouch[0];
|
| 176 |
151 |
mDiff[1] -= mTouch[1];
|
| 177 |
152 |
mDiff[2] -= mTouch[2];
|
| 178 |
153 |
|
| 179 |
|
int xAxis = retFaceXaxis(mLastTouchedFace);
|
| 180 |
|
int yAxis = retFaceYaxis(mLastTouchedFace);
|
|
154 |
int xAxis = retFaceXaxis(mLastTouchedAxis);
|
|
155 |
int yAxis = retFaceYaxis(mLastTouchedAxis);
|
| 181 |
156 |
mRotationVect = (isVertical( mDiff[xAxis], mDiff[yAxis]) ? xAxis : yAxis);
|
| 182 |
157 |
float offset= mTouch[mRotationVect]+0.5f;
|
| 183 |
158 |
|
| ... | ... | |
| 192 |
167 |
|
| 193 |
168 |
public float continueRotation(Static4D rotatedTouchPoint)
|
| 194 |
169 |
{
|
| 195 |
|
mDiff[0] = rotatedTouchPoint.get0()/RubikObject.OBJECT_SCREEN_RATIO-mTouch[0];
|
| 196 |
|
mDiff[1] = rotatedTouchPoint.get1()/RubikObject.OBJECT_SCREEN_RATIO-mTouch[1];
|
| 197 |
|
mDiff[2] = rotatedTouchPoint.get2()/RubikObject.OBJECT_SCREEN_RATIO-mTouch[2];
|
|
170 |
mDiff[0] = rotatedTouchPoint.get0()/RubikObject.OBJECT_SCREEN_RATIO - mTouch[0];
|
|
171 |
mDiff[1] = rotatedTouchPoint.get1()/RubikObject.OBJECT_SCREEN_RATIO - mTouch[1];
|
|
172 |
mDiff[2] = rotatedTouchPoint.get2()/RubikObject.OBJECT_SCREEN_RATIO - mTouch[2];
|
| 198 |
173 |
|
| 199 |
|
int xAxis= retFaceXaxis(mLastTouchedFace);
|
| 200 |
|
int yAxis= retFaceYaxis(mLastTouchedFace);
|
| 201 |
|
int sign = retFaceRotationSign(mLastTouchedFace);
|
|
174 |
int xAxis= retFaceXaxis(mLastTouchedAxis);
|
|
175 |
int yAxis= retFaceYaxis(mLastTouchedAxis);
|
|
176 |
int sign = retFaceRotationSign(mLastTouchedAxis, mLastTouchedLR);
|
| 202 |
177 |
float angle = (mRotationVect==xAxis ? mDiff[yAxis] : -mDiff[xAxis]);
|
| 203 |
178 |
|
| 204 |
179 |
return sign*angle*0.5f;
|
Improve RubikCubeMovement