Revision 9f4c44fe
Added by Leszek Koltunski almost 5 years ago
src/main/java/org/distorted/object/Cubit.java | ||
---|---|---|
65 | 65 |
|
66 | 66 |
private void normalizeScrambleQuat(Static4D quat) |
67 | 67 |
{ |
68 |
final float MAX_ERROR = 0.0001f; |
|
69 |
|
|
68 | 70 |
float x = quat.get0(); |
69 | 71 |
float y = quat.get1(); |
70 | 72 |
float z = quat.get2(); |
... | ... | |
74 | 76 |
for(float legal: mParent.LEGAL_QUATS) |
75 | 77 |
{ |
76 | 78 |
diff = x-legal; |
77 |
if( diff*diff<0.01f ) x = legal;
|
|
79 |
if( diff*diff<MAX_ERROR ) x = legal;
|
|
78 | 80 |
diff = y-legal; |
79 |
if( diff*diff<0.01f ) y = legal;
|
|
81 |
if( diff*diff<MAX_ERROR ) y = legal;
|
|
80 | 82 |
diff = z-legal; |
81 |
if( diff*diff<0.01f ) z = legal;
|
|
83 |
if( diff*diff<MAX_ERROR ) z = legal;
|
|
82 | 84 |
diff = w-legal; |
83 |
if( diff*diff<0.01f ) w = legal;
|
|
85 |
if( diff*diff<MAX_ERROR ) w = legal;
|
|
84 | 86 |
} |
85 | 87 |
|
86 | 88 |
if( w<0 ) |
src/main/java/org/distorted/object/RubikCube.java | ||
---|---|---|
62 | 62 |
// multiplying them and eventually you'll find all (24) legal rotations. |
63 | 63 |
// 3) linear scan through those shows that the only floats in those 24 quats are those 7 given |
64 | 64 |
// below. |
65 |
// |
|
66 |
// Example program in C, res/raw/compute_quats.c , is included. |
|
65 | 67 |
private static final float[] LEGALQUATS = new float[] |
66 | 68 |
{ |
67 | 69 |
0.0f , |
src/main/java/org/distorted/object/RubikPyraminx.java | ||
---|---|---|
40 | 40 |
|
41 | 41 |
public class RubikPyraminx extends RubikObject |
42 | 42 |
{ |
43 |
private static final float SQ2 = (float)Math.sqrt(2); |
|
44 |
private static final float SQ3 = (float)Math.sqrt(3); |
|
45 |
|
|
43 | 46 |
private static final Static3D[] AXIS = new Static3D[] |
44 | 47 |
{ |
45 |
new Static3D( 0, 1, 0 ),
|
|
46 |
new Static3D( (float)Math.sqrt(6)/3, -1.0f/3, -(float)Math.sqrt(3)/3 ),
|
|
47 |
new Static3D(-(float)Math.sqrt(6)/3, -1.0f/3, -(float)Math.sqrt(3)/3 ),
|
|
48 |
new Static3D( 0, -1.0f/3, 2*(float)Math.sqrt(2)/3 )
|
|
48 |
new Static3D( 0, 1, 0 ),
|
|
49 |
new Static3D( SQ2*SQ3/3, -1.0f/3, -SQ2/3 ),
|
|
50 |
new Static3D(-SQ2*SQ3/3, -1.0f/3, -SQ2/3 ),
|
|
51 |
new Static3D( 0, -1.0f/3, 2*SQ2/3 )
|
|
49 | 52 |
}; |
50 | 53 |
|
51 | 54 |
private static final int[] FACE_COLORS = new int[] |
... | ... | |
54 | 57 |
0xff0000ff, 0xffff0000 // AXIS[2]right (BLUE ) AXIS[3]right (RED ) |
55 | 58 |
}; |
56 | 59 |
|
60 |
// computed with res/raw/compute_quats.c |
|
57 | 61 |
private static final float[] LEGALQUATS = new float[] |
58 | 62 |
{ |
59 |
// TODO; |
|
63 |
0.0f, 1.0f, -1.0f, 0.5f, -0.5f, SQ2/2, -SQ2/2, SQ3/2, -SQ3/2, |
|
64 |
SQ3/3, -SQ3/3, SQ3/6, -SQ3/6, SQ2*SQ3/3, -SQ2*SQ3/3, SQ2*SQ3/6, -SQ2*SQ3/6 |
|
60 | 65 |
}; |
61 | 66 |
|
62 | 67 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
... | ... | |
106 | 111 |
|
107 | 112 |
MeshBase createCubitMesh(int vertices) |
108 | 113 |
{ |
109 |
final float SQ3 = (float)Math.sqrt(3); |
|
110 | 114 |
final float angleFaces = (float)((180/Math.PI)*(2*Math.asin(SQ3/3))); // angle between two faces of a tetrahedron |
111 | 115 |
final int MESHES=4; |
112 | 116 |
|
src/main/res/raw/compute_quats.c | ||
---|---|---|
1 |
#include <stdio.h> |
|
2 |
#include <math.h> |
|
3 |
#include <stdlib.h> |
|
4 |
|
|
5 |
#define PYRAMIX |
|
6 |
|
|
7 |
#define SQ2 1.41421356237f |
|
8 |
#define SQ3 1.73205080757f |
|
9 |
#define PI 3.14159265358f |
|
10 |
#define NUM_QUATS 100 |
|
11 |
|
|
12 |
#ifdef PYRAMIX |
|
13 |
#define NUM_AXIS 4 |
|
14 |
#define BASIC_ANGLE 3 |
|
15 |
|
|
16 |
float axis[NUM_AXIS][3] ={ { 0, 1, 0 } , |
|
17 |
{ SQ2*SQ3/3, -1.0f/3, -SQ2/3 } , |
|
18 |
{-SQ2*SQ3/3, -1.0f/3, -SQ2/3 } , |
|
19 |
{ 0, -1.0f/3, 2*SQ2/3 } }; |
|
20 |
#endif |
|
21 |
|
|
22 |
#ifdef CUBE |
|
23 |
#define NUM_AXIS 3 |
|
24 |
#define BASIC_ANGLE 4 |
|
25 |
float axis[NUM_AXIS][3] = { { 1,0,0 }, {0,1,0}, {0,0,1} }; |
|
26 |
#endif |
|
27 |
|
|
28 |
float* quats; |
|
29 |
float* table; |
|
30 |
int inserted=0; |
|
31 |
|
|
32 |
/////////////////////////////////////////////////////////////////// |
|
33 |
// q1*q2 |
|
34 |
|
|
35 |
void multiply_quats( float* q1, float* q2, float* output) |
|
36 |
{ |
|
37 |
output[0] = q2[3]*q1[0] - q2[2]*q1[1] + q2[1]*q1[2] + q2[0]*q1[3]; |
|
38 |
output[1] = q2[3]*q1[1] + q2[2]*q1[0] + q2[1]*q1[3] - q2[0]*q1[2]; |
|
39 |
output[2] = q2[3]*q1[2] + q2[2]*q1[3] - q2[1]*q1[0] + q2[0]*q1[1]; |
|
40 |
output[3] = q2[3]*q1[3] - q2[2]*q1[2] - q2[1]*q1[1] - q2[0]*q1[0]; |
|
41 |
} |
|
42 |
|
|
43 |
/////////////////////////////////////////////////////////////////// |
|
44 |
// sin(A/2)*x, sin(A/2)*y, sin(A/2)*z, cos(A/2) |
|
45 |
|
|
46 |
void create_quat(float* axis, float angle, float* output) |
|
47 |
{ |
|
48 |
float cosAngle = cos(angle/2); |
|
49 |
float sinAngle = sin(angle/2); |
|
50 |
|
|
51 |
output[0] = sinAngle*axis[0]; |
|
52 |
output[1] = sinAngle*axis[1]; |
|
53 |
output[2] = sinAngle*axis[2]; |
|
54 |
output[3] = cosAngle; |
|
55 |
} |
|
56 |
|
|
57 |
/////////////////////////////////////////////////////////////////// |
|
58 |
// double cover, so q == -q |
|
59 |
|
|
60 |
int is_the_same(float* q1, float* q2) |
|
61 |
{ |
|
62 |
const float MAX = 0.01f; |
|
63 |
|
|
64 |
float d0 = q1[0]-q2[0]; |
|
65 |
float d1 = q1[1]-q2[1]; |
|
66 |
float d2 = q1[2]-q2[2]; |
|
67 |
float d3 = q1[3]-q2[3]; |
|
68 |
|
|
69 |
if( d0<MAX && d0>-MAX && |
|
70 |
d1<MAX && d1>-MAX && |
|
71 |
d2<MAX && d2>-MAX && |
|
72 |
d3<MAX && d3>-MAX ) return 1; |
|
73 |
|
|
74 |
d0 = q1[0]+q2[0]; |
|
75 |
d1 = q1[1]+q2[1]; |
|
76 |
d2 = q1[2]+q2[2]; |
|
77 |
d3 = q1[3]+q2[3]; |
|
78 |
|
|
79 |
if( d0<MAX && d0>-MAX && |
|
80 |
d1<MAX && d1>-MAX && |
|
81 |
d2<MAX && d2>-MAX && |
|
82 |
d3<MAX && d3>-MAX ) return 1; |
|
83 |
|
|
84 |
return 0; |
|
85 |
} |
|
86 |
|
|
87 |
/////////////////////////////////////////////////////////////////// |
|
88 |
|
|
89 |
void insert(float* quat, float* to) |
|
90 |
{ |
|
91 |
for(int i=0; i<inserted; i++) |
|
92 |
{ |
|
93 |
if( is_the_same(quat,to+4*i)==1 ) return; |
|
94 |
} |
|
95 |
|
|
96 |
to[4*inserted+0] = quat[0]; |
|
97 |
to[4*inserted+1] = quat[1]; |
|
98 |
to[4*inserted+2] = quat[2]; |
|
99 |
to[4*inserted+3] = quat[3]; |
|
100 |
|
|
101 |
inserted++; |
|
102 |
} |
|
103 |
|
|
104 |
/////////////////////////////////////////////////////////////////// |
|
105 |
|
|
106 |
int main(int argc, char** argv) |
|
107 |
{ |
|
108 |
float tmp[4]; |
|
109 |
int num = 1+NUM_AXIS*(BASIC_ANGLE-1); |
|
110 |
|
|
111 |
quats = (float*) malloc(4*sizeof(float)*num ); |
|
112 |
table = (float*) malloc(4*sizeof(float)*NUM_QUATS); |
|
113 |
|
|
114 |
tmp[0] = 0.0f; tmp[1] = 0.0f; tmp[2] = 0.0f; tmp[3] = 1.0f; |
|
115 |
insert(tmp,quats); |
|
116 |
|
|
117 |
for(int angle=1; angle<BASIC_ANGLE; angle++) |
|
118 |
for( int ax=0; ax<NUM_AXIS; ax++) |
|
119 |
{ |
|
120 |
create_quat(axis[ax], 2*PI*angle/BASIC_ANGLE, tmp); |
|
121 |
insert(tmp,quats); |
|
122 |
} |
|
123 |
|
|
124 |
inserted=0; |
|
125 |
|
|
126 |
for(int i=0; i<num; i++) |
|
127 |
for(int j=0; j<num; j++) |
|
128 |
{ |
|
129 |
multiply_quats( quats+4*i, quats+4*j, tmp); |
|
130 |
insert(tmp,table); |
|
131 |
} |
|
132 |
|
|
133 |
printf("inserted: %d\n", inserted); |
|
134 |
|
|
135 |
for(int i=0; i<inserted; i++) |
|
136 |
{ |
|
137 |
printf( "%d %7.4f %7.4f %7.4f %7.4f\n", i, table[4*i], table[4*i+1], table[4*i+2], table[4*i+3] ); |
|
138 |
} |
|
139 |
|
|
140 |
return 0; |
|
141 |
} |
Also available in: Unified diff
Progress with the Pyraminx - computing all legal quaternions!