Project

General

Profile

Download (11.7 KB) Statistics
| Branch: | Tag: | Revision:

magiccube / src / main / java / org / distorted / objects / RubikMovementObject.java @ ad38d800

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.objects;
21

    
22
import org.distorted.library.type.Static2D;
23
import org.distorted.library.type.Static3D;
24
import org.distorted.library.type.Static4D;
25

    
26
///////////////////////////////////////////////////////////////////////////////////////////////////
27

    
28
public abstract class RubikMovementObject
29
  {
30
  private int mLastTouchedAxis;
31
  private float[] mPoint, mCamera, mTouch;
32
  private float[] mPoint2D, mMove2D;
33
  private float[][][] mCastAxis;
34
  private int mLastTouchedLR;
35
  private int mNumRotAxis, mNumFaceAxis, mNumFacesPerAxis;
36
  private float mDistanceCenterFace3D, mDistanceCenterFace2D;
37
  private Static3D[] mRotAxis, mFaceAxis;
38

    
39
///////////////////////////////////////////////////////////////////////////////////////////////////
40

    
41
  abstract boolean isInsideFace(float[] point);
42

    
43
///////////////////////////////////////////////////////////////////////////////////////////////////
44

    
45
  RubikMovementObject(Static3D[] rotAxis, Static3D[] faceAxis, float distance3D, float distance2D)
46
    {
47
    mPoint = new float[3];
48
    mCamera= new float[3];
49
    mTouch = new float[3];
50

    
51
    mPoint2D = new float[2];
52
    mMove2D  = new float[2];
53

    
54
    mRotAxis    = rotAxis;
55
    mNumRotAxis = mRotAxis.length;
56
    mFaceAxis   = faceAxis;
57
    mNumFaceAxis= mFaceAxis.length;
58

    
59
    mNumFacesPerAxis = mNumFaceAxis / mNumRotAxis;
60
    mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces
61
    mDistanceCenterFace2D = distance2D; // distance from the center of a face to its edge
62

    
63
    // mCastAxis[1][2]{0,1} are the 2D coords of the 2nd axis cast onto the face defined by the
64
    // 1st pair (axis,lr)
65
    mCastAxis = new float[mNumFaceAxis][mNumRotAxis][2];
66

    
67
    for( int casted=0; casted<mNumRotAxis; casted++)
68
      {
69
      Static3D a = mRotAxis[casted];
70
      mPoint[0]= a.get0();
71
      mPoint[1]= a.get1();
72
      mPoint[2]= a.get2();
73

    
74
      for( int surface=0; surface<mNumRotAxis; surface++)
75
        for(int lr=0; lr<mNumFacesPerAxis; lr++)
76
          {
77
          int index = surface*mNumFacesPerAxis + lr;
78

    
79
          if( casted!=surface )
80
            {
81
            convertTo2Dcoords( mPoint, mRotAxis[surface], lr, mPoint2D);
82
            mCastAxis[index][casted][0] = mPoint2D[0];
83
            mCastAxis[index][casted][1] = mPoint2D[1];
84
            normalize2D(mCastAxis[index][casted]);
85
            }
86
          else
87
            {
88
            mCastAxis[index][casted][0] = 0;
89
            mCastAxis[index][casted][1] = 0;
90
            }
91
          }
92
      }
93
    }
94

    
95
///////////////////////////////////////////////////////////////////////////////////////////////////
96

    
97
  private void normalize2D(float[] vect)
98
    {
99
    float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]);
100
    vect[0] /= len;
101
    vect[1] /= len;
102
    }
103

    
104
///////////////////////////////////////////////////////////////////////////////////////////////////
105
// find the casted axis with which our move2D vector forms an angle closest to 90 deg.
106

    
107
  private int computeRotationIndex(int axis, int lr, float[] move2D)
108
    {
109
    float cosAngle, minCosAngle = Float.MAX_VALUE;
110
    int minIndex=-1;
111
    int index = axis*mNumFacesPerAxis + lr;
112
    float m0 = move2D[0];
113
    float m1 = move2D[1];
114
    float len = (float)Math.sqrt(m0*m0 + m1*m1);
115

    
116
    if( len!=0.0f )
117
      {
118
      m0 /= len;
119
      m1 /= len;
120
      }
121
    else
122
      {
123
      m0 = 1.0f;  // arbitrarily
124
      m1 = 0.0f;  //
125
      }
126

    
127
    for(int i=0; i<mNumRotAxis; i++)
128
      {
129
      if( axis != i )
130
        {
131
        cosAngle = m0*mCastAxis[index][i][0] +  m1*mCastAxis[index][i][1];
132
        if( cosAngle<0 ) cosAngle = -cosAngle;
133

    
134
        if( cosAngle<minCosAngle )
135
          {
136
          minCosAngle=cosAngle;
137
          minIndex = i;
138
          }
139
        }
140
      }
141

    
142
    return minIndex;
143
    }
144

    
145
///////////////////////////////////////////////////////////////////////////////////////////////////
146

    
147
  private float computeOffset(float[] point, float[] axis)
148
    {
149
    return point[0]*axis[0] + point[1]*axis[1] + mDistanceCenterFace2D;
150
    }
151

    
152
///////////////////////////////////////////////////////////////////////////////////////////////////
153

    
154
  private boolean faceIsVisible(Static3D axis, int lr)
155
    {
156
    float castCameraOnAxis = mCamera[0]*axis.get0() + mCamera[1]*axis.get1() + mCamera[2]*axis.get2();
157
    return (2*lr-1)*castCameraOnAxis > mDistanceCenterFace3D;
158
    }
159

    
160
///////////////////////////////////////////////////////////////////////////////////////////////////
161
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
162
// compute point 'output[]' which:
163
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0)) [and this
164
//    distance is +-mDistanceCenterFace, depending if it is the face on the left or the right end of
165
//    the axis] (lr=0 or 1, so (2lr-1)*mDistanceCenterFace)
166
// 2) is co-linear with mCamera and mPoint
167
//
168
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)]
169

    
170
  private void castTouchPointOntoFace(Static3D axis, int lr, float[] output)
171
    {
172
    float d0 = mPoint[0]-mCamera[0];
173
    float d1 = mPoint[1]-mCamera[1];
174
    float d2 = mPoint[2]-mCamera[2];
175
    float a0 = axis.get0();
176
    float a1 = axis.get1();
177
    float a2 = axis.get2();
178

    
179
    float denom = a0*d0 + a1*d1 + a2*d2;
180

    
181
    if( denom != 0.0f )
182
      {
183
      float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2];
184
      float distance = (2*lr-1)*mDistanceCenterFace3D;
185
      float alpha = (distance-axisCam)/denom;
186

    
187
      output[0] = mCamera[0] + d0*alpha;
188
      output[1] = mCamera[1] + d1*alpha;
189
      output[2] = mCamera[2] + d2*alpha;
190
      }
191
    }
192

    
193
///////////////////////////////////////////////////////////////////////////////////////////////////
194
// Convert the 3D point3D into a 2D point on the same face surface, but in a different
195
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects
196
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the
197
// original 3D Y axis and our 2D in-plane origin.
198
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only
199
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to
200
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily
201
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole)
202

    
203
  private void convertTo2Dcoords(float[] point3D, Static3D axis, int lr, float[] output)
204
    {
205
    float y0,y1,y2; // base Y vector of the 2D coord system
206
    float a0 = axis.get0();
207
    float a1 = axis.get1();
208
    float a2 = axis.get2();
209

    
210
    if( lr==0 )
211
      {
212
      a0=-a0; a1=-a1; a2=-a2;
213
      }
214

    
215
    if( a0==0.0f && a2==0.0f )
216
      {
217
      y0=0; y1=0; y2=-a1;
218
      }
219
    else if( a1==0.0f )
220
      {
221
      y0=0; y1=1; y2=0;
222
      }
223
    else
224
      {
225
      float norm = (float)(-a1/Math.sqrt(1-a1*a1));
226
      y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2;
227
      }
228

    
229
    float x0 = y1*a2 - y2*a1;  //
230
    float x1 = y2*a0 - y0*a2;  // (2D coord baseY) x (axis) = 2D coord baseX
231
    float x2 = y0*a1 - y1*a0;  //
232

    
233
    float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2;
234

    
235
    float origin0 = originAlpha*a0; // coords of the point where axis
236
    float origin1 = originAlpha*a1; // intersects surface plane i.e.
237
    float origin2 = originAlpha*a2; // the origin of our 2D coord system
238

    
239
    float v0 = point3D[0] - origin0;
240
    float v1 = point3D[1] - origin1;
241
    float v2 = point3D[2] - origin2;
242

    
243
    output[0] = v0*x0 + v1*x1 + v2*x2;
244
    output[1] = v0*y0 + v1*y1 + v2*y2;
245
    }
246

    
247
///////////////////////////////////////////////////////////////////////////////////////////////////
248
// PUBLIC API
249
///////////////////////////////////////////////////////////////////////////////////////////////////
250

    
251
  public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera)
252
    {
253
    float objectRatio = RubikObject.getObjectRatio();
254

    
255
    mPoint[0]  = rotatedTouchPoint.get0()/objectRatio;
256
    mPoint[1]  = rotatedTouchPoint.get1()/objectRatio;
257
    mPoint[2]  = rotatedTouchPoint.get2()/objectRatio;
258

    
259
    mCamera[0] = rotatedCamera.get0()/objectRatio;
260
    mCamera[1] = rotatedCamera.get1()/objectRatio;
261
    mCamera[2] = rotatedCamera.get2()/objectRatio;
262

    
263
    for( mLastTouchedAxis=0; mLastTouchedAxis<mNumRotAxis; mLastTouchedAxis++)
264
      {
265
      for( mLastTouchedLR=0; mLastTouchedLR<mNumFacesPerAxis; mLastTouchedLR++)
266
        {
267
        if( faceIsVisible(mRotAxis[mLastTouchedAxis], mLastTouchedLR) )
268
          {
269
          castTouchPointOntoFace(mRotAxis[mLastTouchedAxis], mLastTouchedLR, mTouch);
270
          convertTo2Dcoords(mTouch, mRotAxis[mLastTouchedAxis], mLastTouchedLR, mPoint2D);
271

    
272
          if( isInsideFace(mPoint2D) ) return true;
273
          }
274
        }
275
      }
276

    
277
    return false;
278
    }
279

    
280
///////////////////////////////////////////////////////////////////////////////////////////////////
281

    
282
  public Static2D newRotation(Static4D rotatedTouchPoint)
283
    {
284
    float objectRatio = RubikObject.getObjectRatio();
285

    
286
    mPoint[0] = rotatedTouchPoint.get0()/objectRatio;
287
    mPoint[1] = rotatedTouchPoint.get1()/objectRatio;
288
    mPoint[2] = rotatedTouchPoint.get2()/objectRatio;
289

    
290
    castTouchPointOntoFace(mRotAxis[mLastTouchedAxis], mLastTouchedLR, mTouch);
291
    convertTo2Dcoords(mTouch, mRotAxis[mLastTouchedAxis], mLastTouchedLR, mMove2D);
292

    
293
    mMove2D[0] -= mPoint2D[0];
294
    mMove2D[1] -= mPoint2D[1];
295

    
296
    int rotIndex = computeRotationIndex(mLastTouchedAxis, mLastTouchedLR, mMove2D);
297
    int index    = mLastTouchedAxis*mNumFacesPerAxis+mLastTouchedLR;
298
    float offset = computeOffset(mPoint2D, mCastAxis[index][rotIndex]);
299

    
300
    return new Static2D(rotIndex,offset);
301
    }
302

    
303
///////////////////////////////////////////////////////////////////////////////////////////////////
304

    
305
  public int getTouchedFace()
306
    {
307
    return mNumFacesPerAxis==2 ? 2*mLastTouchedAxis + 1 - mLastTouchedLR : mLastTouchedAxis;
308
    }
309

    
310
///////////////////////////////////////////////////////////////////////////////////////////////////
311

    
312
  public float[] getTouchedPoint3D()
313
    {
314
    return mTouch;
315
    }
316
  }
(6-6/10)