Project

General

Profile

Download (9.65 KB) Statistics
| Branch: | Tag: | Revision:

magiccube / src / main / java / org / distorted / object / RubikObjectMovement.java @ cad4b4d6

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.object;
21

    
22
import org.distorted.library.type.Static2D;
23
import org.distorted.library.type.Static3D;
24
import org.distorted.library.type.Static4D;
25

    
26
///////////////////////////////////////////////////////////////////////////////////////////////////
27

    
28
public abstract class RubikObjectMovement
29
  {
30
  int mRotationVect, mLastTouchedAxis;
31

    
32
  private float[] mPoint, mCamera, mDiff, mTouch, m2Dpoint;
33
  private int mLastTouchedLR;
34
  private int mNumAxis, mNumFacesPerAxis;
35
  private int[] mPossible;
36
  private float mDistanceCenterFace;
37
  private Static3D[] mAxis;
38

    
39
///////////////////////////////////////////////////////////////////////////////////////////////////
40

    
41
  abstract boolean isInsideFace(float[] point);
42
  abstract float fillUpRotationVectAndOffset(float[] vect, float[] touch, int[] possible);
43
  abstract float returnAngle(float[] vect, int[] possible);
44
  abstract void fillPossibleRotations(int axis, int[] output);
45

    
46
///////////////////////////////////////////////////////////////////////////////////////////////////
47

    
48
  RubikObjectMovement(Static3D[] axis, int numFacesPerAxis, float distance)
49
    {
50
    mPoint = new float[3];
51
    mCamera= new float[3];
52
    mDiff  = new float[3];
53
    mTouch = new float[3];
54

    
55
    m2Dpoint = new float[2];
56

    
57
    mAxis = axis;
58
    mNumAxis = mAxis.length;
59
    mNumFacesPerAxis = numFacesPerAxis;
60
    mDistanceCenterFace = distance;
61
    mPossible = new int[mNumAxis-1];
62
    }
63

    
64
///////////////////////////////////////////////////////////////////////////////////////////////////
65

    
66
  private boolean faceIsVisible(Static3D axis, int lr)
67
    {
68
    float castCameraOnAxis = mCamera[0]*axis.get0() + mCamera[1]*axis.get1() + mCamera[2]*axis.get2();
69
    return (2*lr-1)*castCameraOnAxis > mDistanceCenterFace;
70
    }
71

    
72
///////////////////////////////////////////////////////////////////////////////////////////////////
73
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
74
// compute point 'output[]' which:
75
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0)) [and this
76
//    distance is +-mDistanceCenterFace, depending if it is the face on the left or the right end of
77
//    the axis] (lr=0 or 1, so (2lr-1)*mDistanceCenterFace)
78
// 2) is co-linear with mCamera and mPoint
79
//
80
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)]
81

    
82
  private void castTouchPointOntoFace(Static3D axis, int lr, float[] output)
83
    {
84
    float d0 = mPoint[0]-mCamera[0];
85
    float d1 = mPoint[1]-mCamera[1];
86
    float d2 = mPoint[2]-mCamera[2];
87
    float a0 = axis.get0();
88
    float a1 = axis.get1();
89
    float a2 = axis.get2();
90

    
91
    float denom = a0*d0 + a1*d1 + a2*d2;
92

    
93
    if( denom != 0.0f )
94
      {
95
      float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2];
96
      float distance = (2*lr-1)*mDistanceCenterFace;
97
      float alpha = (distance-axisCam)/denom;
98

    
99
      output[0] = mCamera[0] + d0*alpha;
100
      output[1] = mCamera[1] + d1*alpha;
101
      output[2] = mCamera[2] + d2*alpha;
102
      }
103
    }
104

    
105
///////////////////////////////////////////////////////////////////////////////////////////////////
106
// Convert the 3D point3D into a 2D point on the same face surface, but in a different
107
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects
108
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the
109
// original 3D Y axis and our 2D in-plane origin.
110
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only
111
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to
112
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily
113
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole)
114

    
115
  private void convertTo2Dcoords(float[] point3D, Static3D axis, int lr, float[] output)
116
    {
117
    float y0,y1,y2; // base Y vector of the 2D coord system
118
    float a0 = axis.get0();
119
    float a1 = axis.get1();
120
    float a2 = axis.get2();
121

    
122
    if( lr==0 )
123
      {
124
      a0=-a0; a1=-a1; a2=-a2;
125
      }
126

    
127
    if( a0==0.0f && a2==0.0f )
128
      {
129
      y0=0; y1=0; y2=-a1;
130
      }
131
    else if( a1==0.0f )
132
      {
133
      y0=0; y1=1; y2=0;
134
      }
135
    else
136
      {
137
      float norm = (float)(-a1/Math.sqrt(1-a1*a1));
138
      y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2;
139
      }
140

    
141
    float x0 = y1*a2 - y2*a1;  //
142
    float x1 = y2*a0 - y0*a2;  // (2D coord baseY) x (axis) = 2D coord baseX
143
    float x2 = y0*a1 - y1*a0;  //
144

    
145
    float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2;
146

    
147
    float origin0 = originAlpha*a0; // coords of the point where axis
148
    float origin1 = originAlpha*a1; // intersects surface plane i.e.
149
    float origin2 = originAlpha*a2; // the origin of our 2D coord system
150

    
151
    float v0 = point3D[0] - origin0;
152
    float v1 = point3D[1] - origin1;
153
    float v2 = point3D[2] - origin2;
154

    
155
    output[0] = v0*x0 + v1*x1 + v2*x2;
156
    output[1] = v0*y0 + v1*y1 + v2*y2;
157
    }
158

    
159
///////////////////////////////////////////////////////////////////////////////////////////////////
160

    
161
  private String getFaceColor(int axis)
162
    {
163
    switch(axis)
164
      {
165
      case 0: return "yellow ";
166
      case 1: return "green ";
167
      case 2: return "blue ";
168
      case 3: return "red ";
169
      }
170

    
171
    return null;
172
    }
173

    
174
///////////////////////////////////////////////////////////////////////////////////////////////////
175
// PUBLIC API
176
///////////////////////////////////////////////////////////////////////////////////////////////////
177

    
178
  public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera)
179
    {
180
    mPoint[0]  = rotatedTouchPoint.get0()/RubikObject.OBJECT_SCREEN_RATIO;
181
    mPoint[1]  = rotatedTouchPoint.get1()/RubikObject.OBJECT_SCREEN_RATIO;
182
    mPoint[2]  = rotatedTouchPoint.get2()/RubikObject.OBJECT_SCREEN_RATIO;
183

    
184
    mCamera[0] = rotatedCamera.get0()/RubikObject.OBJECT_SCREEN_RATIO;
185
    mCamera[1] = rotatedCamera.get1()/RubikObject.OBJECT_SCREEN_RATIO;
186
    mCamera[2] = rotatedCamera.get2()/RubikObject.OBJECT_SCREEN_RATIO;
187

    
188
    for( mLastTouchedAxis=0; mLastTouchedAxis<mNumAxis; mLastTouchedAxis++)
189
      {
190
      for( mLastTouchedLR=0; mLastTouchedLR<mNumFacesPerAxis; mLastTouchedLR++)
191
        {
192
        if( faceIsVisible(mAxis[mLastTouchedAxis], mLastTouchedLR) )
193
          {
194
          castTouchPointOntoFace(mAxis[mLastTouchedAxis], mLastTouchedLR, mTouch);
195
          convertTo2Dcoords(mTouch, mAxis[mLastTouchedAxis], mLastTouchedLR, m2Dpoint);
196

    
197
          if( isInsideFace(m2Dpoint) )
198
            {
199
            android.util.Log.e("move", "face "+getFaceColor(mLastTouchedAxis)+" ("+m2Dpoint[0]+","+m2Dpoint[1]+")");
200

    
201
            fillPossibleRotations(mLastTouchedAxis, mPossible);
202
            return true;
203
            }
204
          }
205
        }
206
      }
207

    
208
    return false;
209
    }
210

    
211
///////////////////////////////////////////////////////////////////////////////////////////////////
212

    
213
  public Static2D newRotation(Static4D rotatedTouchPoint)
214
    {
215
    mPoint[0] = rotatedTouchPoint.get0()/RubikObject.OBJECT_SCREEN_RATIO;
216
    mPoint[1] = rotatedTouchPoint.get1()/RubikObject.OBJECT_SCREEN_RATIO;
217
    mPoint[2] = rotatedTouchPoint.get2()/RubikObject.OBJECT_SCREEN_RATIO;
218

    
219
    castTouchPointOntoFace(mAxis[mLastTouchedAxis], mLastTouchedLR, mDiff);
220

    
221
    mDiff[0] -= mTouch[0];
222
    mDiff[1] -= mTouch[1];
223
    mDiff[2] -= mTouch[2];
224

    
225
    float offset = fillUpRotationVectAndOffset(mDiff, mTouch, mPossible);
226
    return new Static2D(mRotationVect,offset);
227
    }
228

    
229
///////////////////////////////////////////////////////////////////////////////////////////////////
230

    
231
  public float continueRotation(Static4D rotatedTouchPoint)
232
    {
233
    mDiff[0] = rotatedTouchPoint.get0()/RubikObject.OBJECT_SCREEN_RATIO - mPoint[0];
234
    mDiff[1] = rotatedTouchPoint.get1()/RubikObject.OBJECT_SCREEN_RATIO - mPoint[1];
235
    mDiff[2] = rotatedTouchPoint.get2()/RubikObject.OBJECT_SCREEN_RATIO - mPoint[2];
236

    
237
    return (mLastTouchedLR-0.5f)*returnAngle(mDiff, mPossible);
238
    }
239
  }
(6-6/8)