Project

General

Profile

Download (13.2 KB) Statistics
| Branch: | Tag: | Revision:

magiccube / src / main / java / org / distorted / objects / Movement.java @ ef018c1b

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.objects;
21

    
22
import org.distorted.library.type.Static2D;
23
import org.distorted.library.type.Static3D;
24
import org.distorted.library.type.Static4D;
25

    
26
///////////////////////////////////////////////////////////////////////////////////////////////////
27

    
28
public abstract class Movement
29
  {
30
  static final float SQ3 = (float)Math.sqrt(3);
31
  static final float SQ6 = (float)Math.sqrt(6);
32

    
33
  private final int mNumFaceAxis;
34
  private final float[] mPoint, mCamera, mTouch;
35
  private final float[] mPoint2D, mMove2D;
36
  private final int[] mEnabledRotAxis;
37
  private final float mDistanceCenterFace3D, mDistanceCenterFace2D;
38
  private final Static3D[] mFaceAxis;
39

    
40
  private int mLastTouchedFace;
41
  private float[][][] mCastedRotAxis;
42
  private Static4D[][] mCastedRotAxis4D;
43

    
44
///////////////////////////////////////////////////////////////////////////////////////////////////
45

    
46
  abstract boolean isInsideFace(int face, float[] point);
47
  abstract void computeEnabledAxis(int face, float[] touchPoint, int[] enabledAxis);
48
  abstract int computeRowFromOffset(int face, int axisIndex, int numLayers, float offset);
49
  public abstract float returnRotationFactor(int numLayers, int row);
50

    
51
///////////////////////////////////////////////////////////////////////////////////////////////////
52

    
53
  Movement(Static3D[] rotAxis, Static3D[] faceAxis, float distance3D, float distance2D)
54
    {
55
    mPoint = new float[3];
56
    mCamera= new float[3];
57
    mTouch = new float[3];
58

    
59
    mPoint2D = new float[2];
60
    mMove2D  = new float[2];
61

    
62
    mFaceAxis   = faceAxis;
63
    mNumFaceAxis= mFaceAxis.length;
64

    
65
    mEnabledRotAxis = new int[rotAxis.length+1];
66

    
67
    mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces
68
    mDistanceCenterFace2D = distance2D; // distance from the center of a face to its edge
69

    
70
    computeCastedAxis(rotAxis);
71
    }
72

    
73
///////////////////////////////////////////////////////////////////////////////////////////////////
74
// mCastedRotAxis[1][2]{0,1} are the 2D coords of the 2nd rotAxis cast onto the face defined by the
75
// 1st faceAxis.
76

    
77
  private void computeCastedAxis(Static3D[] rotAxis)
78
    {
79
    mCastedRotAxis   = new float[mNumFaceAxis][rotAxis.length][2];
80
    mCastedRotAxis4D = new Static4D[mNumFaceAxis][rotAxis.length];
81

    
82
    float fx,fy,fz,f;
83

    
84
    for( int casted=0; casted<rotAxis.length; casted++)
85
      {
86
      Static3D a = rotAxis[casted];
87
      mPoint[0]= a.get0();
88
      mPoint[1]= a.get1();
89
      mPoint[2]= a.get2();
90

    
91
      for( int face=0; face<mNumFaceAxis; face++)
92
        {
93
        convertTo2Dcoords( mPoint, mFaceAxis[face], mCastedRotAxis[face][casted]);
94
        normalize2D(mCastedRotAxis[face][casted]);
95

    
96
        fx = mFaceAxis[face].get0();
97
        fy = mFaceAxis[face].get1();
98
        fz = mFaceAxis[face].get2();
99
        f  = mPoint[0]*fx + mPoint[1]*fy + mPoint[2]*fz;
100
        mCastedRotAxis4D[face][casted] = new Static4D( mPoint[0]-f*fx, mPoint[1]-f*fy, mPoint[2]-f*fz, 0);
101
        }
102
      }
103
    }
104

    
105
///////////////////////////////////////////////////////////////////////////////////////////////////
106

    
107
  private void normalize2D(float[] vect)
108
    {
109
    float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]);
110
    vect[0] /= len;
111
    vect[1] /= len;
112
    }
113

    
114
///////////////////////////////////////////////////////////////////////////////////////////////////
115
// find the casted axis with which our move2D vector forms an angle closest to 90 deg.
116

    
117
  private int computeRotationIndex(int faceAxis, float[] move2D, int[] enabled)
118
    {
119
    float cosAngle, minCosAngle = Float.MAX_VALUE;
120
    int minIndex=0, index;
121
    float m0 = move2D[0];
122
    float m1 = move2D[1];
123
    float len = (float)Math.sqrt(m0*m0 + m1*m1);
124

    
125
    if( len!=0.0f )
126
      {
127
      m0 /= len;
128
      m1 /= len;
129
      }
130
    else
131
      {
132
      m0 = 1.0f;  // arbitrarily
133
      m1 = 0.0f;  //
134
      }
135

    
136
    int numAxis = enabled[0];
137

    
138
    for(int axis=1; axis<=numAxis; axis++)
139
      {
140
      index = enabled[axis];
141
      cosAngle = m0*mCastedRotAxis[faceAxis][index][0] + m1*mCastedRotAxis[faceAxis][index][1];
142
      if( cosAngle<0 ) cosAngle = -cosAngle;
143

    
144
      if( cosAngle<minCosAngle )
145
        {
146
        minCosAngle=cosAngle;
147
        minIndex = index;
148
        }
149
      }
150

    
151
    return minIndex;
152
    }
153

    
154
///////////////////////////////////////////////////////////////////////////////////////////////////
155
// in the center of the face offset is always 0 regardless of the axis
156

    
157
  private float computeOffset(float[] point, float[] axis)
158
    {
159
    return point[0]*axis[0] + point[1]*axis[1];
160
    }
161

    
162
///////////////////////////////////////////////////////////////////////////////////////////////////
163

    
164
  private boolean faceIsVisible(Static3D faceAxis)
165
    {
166
    float castCameraOnAxis = mCamera[0]*faceAxis.get0() + mCamera[1]*faceAxis.get1() + mCamera[2]*faceAxis.get2();
167
    return castCameraOnAxis > mDistanceCenterFace3D;
168
    }
169

    
170
///////////////////////////////////////////////////////////////////////////////////////////////////
171
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
172
// compute point 'output[]' which:
173
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0))
174
// 2) is co-linear with mCamera and mPoint
175
//
176
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)]
177

    
178
  private void castTouchPointOntoFace(Static3D faceAxis, float[] output)
179
    {
180
    float d0 = mPoint[0]-mCamera[0];
181
    float d1 = mPoint[1]-mCamera[1];
182
    float d2 = mPoint[2]-mCamera[2];
183
    float a0 = faceAxis.get0();
184
    float a1 = faceAxis.get1();
185
    float a2 = faceAxis.get2();
186

    
187
    float denom = a0*d0 + a1*d1 + a2*d2;
188

    
189
    if( denom != 0.0f )
190
      {
191
      float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2];
192
      float distance = mDistanceCenterFace3D;
193
      float alpha = (distance-axisCam)/denom;
194

    
195
      output[0] = mCamera[0] + d0*alpha;
196
      output[1] = mCamera[1] + d1*alpha;
197
      output[2] = mCamera[2] + d2*alpha;
198
      }
199
    }
200

    
201
///////////////////////////////////////////////////////////////////////////////////////////////////
202
// Convert the 3D point3D into a 2D point on the same face surface, but in a different
203
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects
204
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the
205
// original 3D Y axis and our 2D in-plane origin.
206
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only
207
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to
208
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily
209
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole)
210

    
211
  private void convertTo2Dcoords(float[] point3D, Static3D faceAxis, float[] output)
212
    {
213
    float y0,y1,y2; // base Y vector of the 2D coord system
214
    float a0 = faceAxis.get0();
215
    float a1 = faceAxis.get1();
216
    float a2 = faceAxis.get2();
217

    
218
    if( a0==0.0f && a2==0.0f )
219
      {
220
      y0=0; y1=0; y2=-a1;
221
      }
222
    else if( a1==0.0f )
223
      {
224
      y0=0; y1=1; y2=0;
225
      }
226
    else
227
      {
228
      float norm = (float)(-a1/Math.sqrt(1-a1*a1));
229
      y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2;
230
      }
231

    
232
    float x0 = y1*a2 - y2*a1;  //
233
    float x1 = y2*a0 - y0*a2;  // (2D coord baseY) x (axis) = 2D coord baseX
234
    float x2 = y0*a1 - y1*a0;  //
235

    
236
    float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2;
237

    
238
    float origin0 = originAlpha*a0; // coords of the point where axis
239
    float origin1 = originAlpha*a1; // intersects surface plane i.e.
240
    float origin2 = originAlpha*a2; // the origin of our 2D coord system
241

    
242
    float v0 = point3D[0] - origin0;
243
    float v1 = point3D[1] - origin1;
244
    float v2 = point3D[2] - origin2;
245

    
246
    output[0] = v0*x0 + v1*x1 + v2*x2;
247
    output[1] = v0*y0 + v1*y1 + v2*y2;
248
    }
249

    
250
///////////////////////////////////////////////////////////////////////////////////////////////////
251

    
252
  float[] computeBorder(float scale, float[] cuts, boolean[] rotatable)
253
    {
254
    int len = cuts.length;
255
    float[] border = new float[len];
256

    
257
    for(int i=0; i<len; i++)
258
      {
259
      if( !rotatable[i] )
260
        {
261
        border[i] = i>0 ? border[i-1] : -Float.MAX_VALUE;
262
        }
263
      else
264
        {
265
        if( rotatable[i+1] ) border[i] = scale*cuts[i];
266
        else
267
          {
268
          int found = -1;
269

    
270
          for(int j=i+2; j<=len; j++)
271
            {
272
            if( rotatable[j] )
273
              {
274
              found=j;
275
              break;
276
              }
277
            }
278

    
279
          border[i] = found>0 ? scale*(cuts[i]+cuts[found-1])/2 : Float.MAX_VALUE;
280
          }
281
        }
282
      }
283

    
284
    return border;
285
    }
286

    
287
///////////////////////////////////////////////////////////////////////////////////////////////////
288

    
289
  float[][] computeBorders(float coeff, float[][] cuts, boolean[][] rotatable)
290
    {
291
    int numCuts = cuts.length;
292
    float[][] borders = new float[numCuts][];
293

    
294
    for(int i=0; i<numCuts; i++)
295
      {
296
      borders[i] = computeBorder(coeff,cuts[i],rotatable[i]);
297
      }
298

    
299
    return borders;
300
    }
301

    
302
///////////////////////////////////////////////////////////////////////////////////////////////////
303
// PUBLIC API
304
///////////////////////////////////////////////////////////////////////////////////////////////////
305

    
306
  public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera, float objectRatio)
307
    {
308
    mPoint[0]  = rotatedTouchPoint.get0()/objectRatio;
309
    mPoint[1]  = rotatedTouchPoint.get1()/objectRatio;
310
    mPoint[2]  = rotatedTouchPoint.get2()/objectRatio;
311

    
312
    mCamera[0] = rotatedCamera.get0()/objectRatio;
313
    mCamera[1] = rotatedCamera.get1()/objectRatio;
314
    mCamera[2] = rotatedCamera.get2()/objectRatio;
315

    
316
    for( mLastTouchedFace=0; mLastTouchedFace<mNumFaceAxis; mLastTouchedFace++)
317
      {
318
      if( faceIsVisible(mFaceAxis[mLastTouchedFace]) )
319
        {
320
        castTouchPointOntoFace(mFaceAxis[mLastTouchedFace], mTouch);
321
        convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedFace], mPoint2D);
322
        if( isInsideFace(mLastTouchedFace,mPoint2D) ) return true;
323
        }
324
      }
325

    
326
    return false;
327
    }
328

    
329
///////////////////////////////////////////////////////////////////////////////////////////////////
330

    
331
  public Static2D newRotation(int numLayers, Static4D rotatedTouchPoint, float objectRatio)
332
    {
333
    mPoint[0] = rotatedTouchPoint.get0()/objectRatio;
334
    mPoint[1] = rotatedTouchPoint.get1()/objectRatio;
335
    mPoint[2] = rotatedTouchPoint.get2()/objectRatio;
336

    
337
    castTouchPointOntoFace(mFaceAxis[mLastTouchedFace], mTouch);
338
    convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedFace], mMove2D);
339

    
340
    mMove2D[0] -= mPoint2D[0];
341
    mMove2D[1] -= mPoint2D[1];
342

    
343
    computeEnabledAxis(mLastTouchedFace, mPoint2D, mEnabledRotAxis);
344
    int rotIndex = computeRotationIndex(mLastTouchedFace, mMove2D, mEnabledRotAxis);
345
    float offset = computeOffset(mPoint2D, mCastedRotAxis[mLastTouchedFace][rotIndex]);
346
    int row      = computeRowFromOffset(mLastTouchedFace,rotIndex,numLayers,offset);
347

    
348
    return new Static2D(rotIndex,row);
349
    }
350

    
351
///////////////////////////////////////////////////////////////////////////////////////////////////
352

    
353
  public Static4D getCastedRotAxis(int rotIndex)
354
    {
355
    return mCastedRotAxis4D[mLastTouchedFace][rotIndex];
356
    }
357

    
358
///////////////////////////////////////////////////////////////////////////////////////////////////
359

    
360
  public int getTouchedFace()
361
    {
362
    return mLastTouchedFace;
363
    }
364

    
365
///////////////////////////////////////////////////////////////////////////////////////////////////
366

    
367
  public float[] getTouchedPoint3D()
368
    {
369
    return mTouch;
370
    }
371
  }
(2-2/48)