Revision faa3aed0
Added by Leszek Koltunski over 4 years ago
src/main/java/org/distorted/main/RubikSurfaceView.java | ||
---|---|---|
34 | 34 |
import org.distorted.library.type.Static3D; |
35 | 35 |
import org.distorted.library.type.Static4D; |
36 | 36 |
import org.distorted.objects.RubikObject; |
37 |
import org.distorted.objects.RubikMovementObject;
|
|
37 |
import org.distorted.objects.RubikMovement; |
|
38 | 38 |
import org.distorted.solvers.SolverMain; |
39 | 39 |
import org.distorted.states.RubikState; |
40 | 40 |
import org.distorted.states.RubikStatePlay; |
... | ... | |
71 | 71 |
|
72 | 72 |
private RubikRenderer mRenderer; |
73 | 73 |
private RubikPreRender mPreRender; |
74 |
private RubikMovementObject mMovement;
|
|
74 |
private RubikMovement mMovement; |
|
75 | 75 |
private boolean mDragging, mBeginningRotation, mContinuingRotation; |
76 | 76 |
private int mScreenWidth, mScreenHeight, mScreenMin; |
77 | 77 |
|
... | ... | |
140 | 140 |
|
141 | 141 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
142 | 142 |
|
143 |
void setMovement(RubikMovementObject movement)
|
|
143 |
void setMovement(RubikMovement movement) |
|
144 | 144 |
{ |
145 | 145 |
mMovement = movement; |
146 | 146 |
} |
src/main/java/org/distorted/objects/RubikCube.java | ||
---|---|---|
53 | 53 |
// the six axis that determine the faces |
54 | 54 |
static final Static3D[] FACE_AXIS = new Static3D[] |
55 | 55 |
{ |
56 |
new Static3D(1,0,0), new Static3D(-1,0,0),
|
|
57 |
new Static3D(0,1,0), new Static3D(0,-1,0),
|
|
58 |
new Static3D(0,0,1), new Static3D(0,0,-1)
|
|
56 |
new Static3D(-1,0,0), new Static3D(1,0,0),
|
|
57 |
new Static3D(0,-1,0), new Static3D(0,1,0),
|
|
58 |
new Static3D(0,0,-1), new Static3D(0,0,1)
|
|
59 | 59 |
}; |
60 | 60 |
|
61 | 61 |
private static final int[] FACE_COLORS = new int[] |
src/main/java/org/distorted/objects/RubikMovement.java | ||
---|---|---|
1 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
2 |
// Copyright 2020 Leszek Koltunski // |
|
3 |
// // |
|
4 |
// This file is part of Magic Cube. // |
|
5 |
// // |
|
6 |
// Magic Cube is free software: you can redistribute it and/or modify // |
|
7 |
// it under the terms of the GNU General Public License as published by // |
|
8 |
// the Free Software Foundation, either version 2 of the License, or // |
|
9 |
// (at your option) any later version. // |
|
10 |
// // |
|
11 |
// Magic Cube is distributed in the hope that it will be useful, // |
|
12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of // |
|
13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // |
|
14 |
// GNU General Public License for more details. // |
|
15 |
// // |
|
16 |
// You should have received a copy of the GNU General Public License // |
|
17 |
// along with Magic Cube. If not, see <http://www.gnu.org/licenses/>. // |
|
18 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
19 |
|
|
20 |
package org.distorted.objects; |
|
21 |
|
|
22 |
import org.distorted.library.type.Static2D; |
|
23 |
import org.distorted.library.type.Static3D; |
|
24 |
import org.distorted.library.type.Static4D; |
|
25 |
|
|
26 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
27 |
|
|
28 |
public abstract class RubikMovement |
|
29 |
{ |
|
30 |
private int mLastTouchedAxis; |
|
31 |
private float[] mPoint, mCamera, mTouch; |
|
32 |
private float[] mPoint2D, mMove2D; |
|
33 |
private float[][][] mCastAxis; |
|
34 |
private int mNumRotAxis, mNumFaceAxis; |
|
35 |
private float mDistanceCenterFace3D, mDistanceCenterFace2D; |
|
36 |
private Static3D[] mFaceAxis; |
|
37 |
|
|
38 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
39 |
|
|
40 |
abstract boolean isInsideFace(float[] point); |
|
41 |
|
|
42 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
43 |
|
|
44 |
RubikMovement(Static3D[] rotAxis, Static3D[] faceAxis, float distance3D, float distance2D) |
|
45 |
{ |
|
46 |
mPoint = new float[3]; |
|
47 |
mCamera= new float[3]; |
|
48 |
mTouch = new float[3]; |
|
49 |
|
|
50 |
mPoint2D = new float[2]; |
|
51 |
mMove2D = new float[2]; |
|
52 |
|
|
53 |
mNumRotAxis = rotAxis.length; |
|
54 |
mFaceAxis = faceAxis; |
|
55 |
mNumFaceAxis= mFaceAxis.length; |
|
56 |
|
|
57 |
mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces |
|
58 |
mDistanceCenterFace2D = distance2D; // distance from the center of a face to its edge |
|
59 |
|
|
60 |
// mCastAxis[1][2]{0,1} are the 2D coords of the 2nd axis cast onto the face defined by the |
|
61 |
// 1st pair (axis,lr) |
|
62 |
mCastAxis = new float[mNumFaceAxis][mNumRotAxis][2]; |
|
63 |
|
|
64 |
for( int casted=0; casted<mNumRotAxis; casted++) |
|
65 |
{ |
|
66 |
Static3D a = rotAxis[casted]; |
|
67 |
mPoint[0]= a.get0(); |
|
68 |
mPoint[1]= a.get1(); |
|
69 |
mPoint[2]= a.get2(); |
|
70 |
|
|
71 |
for( int face=0; face<mNumFaceAxis; face++) |
|
72 |
{ |
|
73 |
convertTo2Dcoords( mPoint, mFaceAxis[face], mCastAxis[face][casted]); |
|
74 |
normalize2D(mCastAxis[face][casted]); |
|
75 |
} |
|
76 |
} |
|
77 |
} |
|
78 |
|
|
79 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
80 |
|
|
81 |
private void normalize2D(float[] vect) |
|
82 |
{ |
|
83 |
float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]); |
|
84 |
vect[0] /= len; |
|
85 |
vect[1] /= len; |
|
86 |
} |
|
87 |
|
|
88 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
89 |
// find the casted axis with which our move2D vector forms an angle closest to 90 deg. |
|
90 |
|
|
91 |
private int computeRotationIndex(int faceAxis, float[] move2D) |
|
92 |
{ |
|
93 |
float cosAngle, minCosAngle = Float.MAX_VALUE; |
|
94 |
int minIndex=-1; |
|
95 |
float m0 = move2D[0]; |
|
96 |
float m1 = move2D[1]; |
|
97 |
float len = (float)Math.sqrt(m0*m0 + m1*m1); |
|
98 |
float x,y; |
|
99 |
|
|
100 |
if( len!=0.0f ) |
|
101 |
{ |
|
102 |
m0 /= len; |
|
103 |
m1 /= len; |
|
104 |
} |
|
105 |
else |
|
106 |
{ |
|
107 |
m0 = 1.0f; // arbitrarily |
|
108 |
m1 = 0.0f; // |
|
109 |
} |
|
110 |
|
|
111 |
for(int rotAxis=0; rotAxis<mNumRotAxis; rotAxis++) |
|
112 |
{ |
|
113 |
x = mCastAxis[faceAxis][rotAxis][0]; |
|
114 |
y = mCastAxis[faceAxis][rotAxis][1]; |
|
115 |
|
|
116 |
if( x*x + y*y > 0.01f ) |
|
117 |
{ |
|
118 |
cosAngle = m0*x + m1*y; |
|
119 |
if( cosAngle<0 ) cosAngle = -cosAngle; |
|
120 |
|
|
121 |
if( cosAngle<minCosAngle ) |
|
122 |
{ |
|
123 |
minCosAngle=cosAngle; |
|
124 |
minIndex = rotAxis; |
|
125 |
} |
|
126 |
} |
|
127 |
} |
|
128 |
|
|
129 |
return minIndex; |
|
130 |
} |
|
131 |
|
|
132 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
133 |
|
|
134 |
private float computeOffset(float[] point, float[] axis) |
|
135 |
{ |
|
136 |
return point[0]*axis[0] + point[1]*axis[1] + mDistanceCenterFace2D; |
|
137 |
} |
|
138 |
|
|
139 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
140 |
|
|
141 |
private boolean faceIsVisible(Static3D faceAxis) |
|
142 |
{ |
|
143 |
float castCameraOnAxis = mCamera[0]*faceAxis.get0() + mCamera[1]*faceAxis.get1() + mCamera[2]*faceAxis.get2(); |
|
144 |
return castCameraOnAxis > mDistanceCenterFace3D; |
|
145 |
} |
|
146 |
|
|
147 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
148 |
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace, |
|
149 |
// compute point 'output[]' which: |
|
150 |
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0)) [and this |
|
151 |
// distance is +-mDistanceCenterFace, depending if it is the face on the left or the right end of |
|
152 |
// the axis] (lr=0 or 1, so (2lr-1)*mDistanceCenterFace) |
|
153 |
// 2) is co-linear with mCamera and mPoint |
|
154 |
// |
|
155 |
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)] |
|
156 |
|
|
157 |
private void castTouchPointOntoFace(Static3D faceAxis, float[] output) |
|
158 |
{ |
|
159 |
float d0 = mPoint[0]-mCamera[0]; |
|
160 |
float d1 = mPoint[1]-mCamera[1]; |
|
161 |
float d2 = mPoint[2]-mCamera[2]; |
|
162 |
float a0 = faceAxis.get0(); |
|
163 |
float a1 = faceAxis.get1(); |
|
164 |
float a2 = faceAxis.get2(); |
|
165 |
|
|
166 |
float denom = a0*d0 + a1*d1 + a2*d2; |
|
167 |
|
|
168 |
if( denom != 0.0f ) |
|
169 |
{ |
|
170 |
float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2]; |
|
171 |
float distance = mDistanceCenterFace3D; |
|
172 |
float alpha = (distance-axisCam)/denom; |
|
173 |
|
|
174 |
output[0] = mCamera[0] + d0*alpha; |
|
175 |
output[1] = mCamera[1] + d1*alpha; |
|
176 |
output[2] = mCamera[2] + d2*alpha; |
|
177 |
} |
|
178 |
} |
|
179 |
|
|
180 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
181 |
// Convert the 3D point3D into a 2D point on the same face surface, but in a different |
|
182 |
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects |
|
183 |
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the |
|
184 |
// original 3D Y axis and our 2D in-plane origin. |
|
185 |
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only |
|
186 |
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to |
|
187 |
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily |
|
188 |
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole) |
|
189 |
|
|
190 |
private void convertTo2Dcoords(float[] point3D, Static3D faceAxis, float[] output) |
|
191 |
{ |
|
192 |
float y0,y1,y2; // base Y vector of the 2D coord system |
|
193 |
float a0 = faceAxis.get0(); |
|
194 |
float a1 = faceAxis.get1(); |
|
195 |
float a2 = faceAxis.get2(); |
|
196 |
|
|
197 |
if( a0==0.0f && a2==0.0f ) |
|
198 |
{ |
|
199 |
y0=0; y1=0; y2=-a1; |
|
200 |
} |
|
201 |
else if( a1==0.0f ) |
|
202 |
{ |
|
203 |
y0=0; y1=1; y2=0; |
|
204 |
} |
|
205 |
else |
|
206 |
{ |
|
207 |
float norm = (float)(-a1/Math.sqrt(1-a1*a1)); |
|
208 |
y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2; |
|
209 |
} |
|
210 |
|
|
211 |
float x0 = y1*a2 - y2*a1; // |
|
212 |
float x1 = y2*a0 - y0*a2; // (2D coord baseY) x (axis) = 2D coord baseX |
|
213 |
float x2 = y0*a1 - y1*a0; // |
|
214 |
|
|
215 |
float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2; |
|
216 |
|
|
217 |
float origin0 = originAlpha*a0; // coords of the point where axis |
|
218 |
float origin1 = originAlpha*a1; // intersects surface plane i.e. |
|
219 |
float origin2 = originAlpha*a2; // the origin of our 2D coord system |
|
220 |
|
|
221 |
float v0 = point3D[0] - origin0; |
|
222 |
float v1 = point3D[1] - origin1; |
|
223 |
float v2 = point3D[2] - origin2; |
|
224 |
|
|
225 |
output[0] = v0*x0 + v1*x1 + v2*x2; |
|
226 |
output[1] = v0*y0 + v1*y1 + v2*y2; |
|
227 |
} |
|
228 |
|
|
229 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
230 |
// PUBLIC API |
|
231 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
232 |
|
|
233 |
public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera) |
|
234 |
{ |
|
235 |
float objectRatio = RubikObject.getObjectRatio(); |
|
236 |
|
|
237 |
mPoint[0] = rotatedTouchPoint.get0()/objectRatio; |
|
238 |
mPoint[1] = rotatedTouchPoint.get1()/objectRatio; |
|
239 |
mPoint[2] = rotatedTouchPoint.get2()/objectRatio; |
|
240 |
|
|
241 |
mCamera[0] = rotatedCamera.get0()/objectRatio; |
|
242 |
mCamera[1] = rotatedCamera.get1()/objectRatio; |
|
243 |
mCamera[2] = rotatedCamera.get2()/objectRatio; |
|
244 |
|
|
245 |
for( mLastTouchedAxis=0; mLastTouchedAxis<mNumFaceAxis; mLastTouchedAxis++) |
|
246 |
{ |
|
247 |
if( faceIsVisible(mFaceAxis[mLastTouchedAxis]) ) |
|
248 |
{ |
|
249 |
castTouchPointOntoFace(mFaceAxis[mLastTouchedAxis], mTouch); |
|
250 |
convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedAxis], mPoint2D); |
|
251 |
if( isInsideFace(mPoint2D) ) return true; |
|
252 |
} |
|
253 |
} |
|
254 |
|
|
255 |
return false; |
|
256 |
} |
|
257 |
|
|
258 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
259 |
|
|
260 |
public Static2D newRotation(Static4D rotatedTouchPoint) |
|
261 |
{ |
|
262 |
float objectRatio = RubikObject.getObjectRatio(); |
|
263 |
|
|
264 |
mPoint[0] = rotatedTouchPoint.get0()/objectRatio; |
|
265 |
mPoint[1] = rotatedTouchPoint.get1()/objectRatio; |
|
266 |
mPoint[2] = rotatedTouchPoint.get2()/objectRatio; |
|
267 |
|
|
268 |
castTouchPointOntoFace(mFaceAxis[mLastTouchedAxis], mTouch); |
|
269 |
convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedAxis], mMove2D); |
|
270 |
|
|
271 |
mMove2D[0] -= mPoint2D[0]; |
|
272 |
mMove2D[1] -= mPoint2D[1]; |
|
273 |
|
|
274 |
int rotIndex = computeRotationIndex(mLastTouchedAxis, mMove2D); |
|
275 |
float offset = computeOffset(mPoint2D, mCastAxis[mLastTouchedAxis][rotIndex]); |
|
276 |
|
|
277 |
return new Static2D(rotIndex,offset); |
|
278 |
} |
|
279 |
|
|
280 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
281 |
|
|
282 |
public int getTouchedFace() |
|
283 |
{ |
|
284 |
return mLastTouchedAxis; |
|
285 |
} |
|
286 |
|
|
287 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
288 |
|
|
289 |
public float[] getTouchedPoint3D() |
|
290 |
{ |
|
291 |
return mTouch; |
|
292 |
} |
|
293 |
} |
src/main/java/org/distorted/objects/RubikMovementCube.java | ||
---|---|---|
21 | 21 |
|
22 | 22 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
23 | 23 |
|
24 |
class RubikMovementCube extends RubikMovementObject
|
|
24 |
class RubikMovementCube extends RubikMovement |
|
25 | 25 |
{ |
26 | 26 |
RubikMovementCube() |
27 | 27 |
{ |
src/main/java/org/distorted/objects/RubikMovementDino.java | ||
---|---|---|
21 | 21 |
|
22 | 22 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
23 | 23 |
|
24 |
class RubikMovementDino extends RubikMovementObject
|
|
24 |
class RubikMovementDino extends RubikMovement |
|
25 | 25 |
{ |
26 | 26 |
RubikMovementDino() |
27 | 27 |
{ |
src/main/java/org/distorted/objects/RubikMovementObject.java | ||
---|---|---|
1 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
2 |
// Copyright 2020 Leszek Koltunski // |
|
3 |
// // |
|
4 |
// This file is part of Magic Cube. // |
|
5 |
// // |
|
6 |
// Magic Cube is free software: you can redistribute it and/or modify // |
|
7 |
// it under the terms of the GNU General Public License as published by // |
|
8 |
// the Free Software Foundation, either version 2 of the License, or // |
|
9 |
// (at your option) any later version. // |
|
10 |
// // |
|
11 |
// Magic Cube is distributed in the hope that it will be useful, // |
|
12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of // |
|
13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // |
|
14 |
// GNU General Public License for more details. // |
|
15 |
// // |
|
16 |
// You should have received a copy of the GNU General Public License // |
|
17 |
// along with Magic Cube. If not, see <http://www.gnu.org/licenses/>. // |
|
18 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
19 |
|
|
20 |
package org.distorted.objects; |
|
21 |
|
|
22 |
import org.distorted.library.type.Static2D; |
|
23 |
import org.distorted.library.type.Static3D; |
|
24 |
import org.distorted.library.type.Static4D; |
|
25 |
|
|
26 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
27 |
|
|
28 |
public abstract class RubikMovementObject |
|
29 |
{ |
|
30 |
private int mLastTouchedAxis; |
|
31 |
private float[] mPoint, mCamera, mTouch; |
|
32 |
private float[] mPoint2D, mMove2D; |
|
33 |
private float[][][] mCastAxis; |
|
34 |
private int mLastTouchedLR; |
|
35 |
private int mNumRotAxis, mNumFaceAxis, mNumFacesPerAxis; |
|
36 |
private float mDistanceCenterFace3D, mDistanceCenterFace2D; |
|
37 |
private Static3D[] mRotAxis, mFaceAxis; |
|
38 |
|
|
39 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
40 |
|
|
41 |
abstract boolean isInsideFace(float[] point); |
|
42 |
|
|
43 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
44 |
|
|
45 |
RubikMovementObject(Static3D[] rotAxis, Static3D[] faceAxis, float distance3D, float distance2D) |
|
46 |
{ |
|
47 |
mPoint = new float[3]; |
|
48 |
mCamera= new float[3]; |
|
49 |
mTouch = new float[3]; |
|
50 |
|
|
51 |
mPoint2D = new float[2]; |
|
52 |
mMove2D = new float[2]; |
|
53 |
|
|
54 |
mRotAxis = rotAxis; |
|
55 |
mNumRotAxis = mRotAxis.length; |
|
56 |
mFaceAxis = faceAxis; |
|
57 |
mNumFaceAxis= mFaceAxis.length; |
|
58 |
|
|
59 |
mNumFacesPerAxis = mNumFaceAxis / mNumRotAxis; |
|
60 |
mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces |
|
61 |
mDistanceCenterFace2D = distance2D; // distance from the center of a face to its edge |
|
62 |
|
|
63 |
// mCastAxis[1][2]{0,1} are the 2D coords of the 2nd axis cast onto the face defined by the |
|
64 |
// 1st pair (axis,lr) |
|
65 |
mCastAxis = new float[mNumFaceAxis][mNumRotAxis][2]; |
|
66 |
|
|
67 |
for( int casted=0; casted<mNumRotAxis; casted++) |
|
68 |
{ |
|
69 |
Static3D a = mRotAxis[casted]; |
|
70 |
mPoint[0]= a.get0(); |
|
71 |
mPoint[1]= a.get1(); |
|
72 |
mPoint[2]= a.get2(); |
|
73 |
|
|
74 |
for( int surface=0; surface<mNumRotAxis; surface++) |
|
75 |
for(int lr=0; lr<mNumFacesPerAxis; lr++) |
|
76 |
{ |
|
77 |
int index = surface*mNumFacesPerAxis + lr; |
|
78 |
|
|
79 |
if( casted!=surface ) |
|
80 |
{ |
|
81 |
convertTo2Dcoords( mPoint, mRotAxis[surface], lr, mPoint2D); |
|
82 |
mCastAxis[index][casted][0] = mPoint2D[0]; |
|
83 |
mCastAxis[index][casted][1] = mPoint2D[1]; |
|
84 |
normalize2D(mCastAxis[index][casted]); |
|
85 |
} |
|
86 |
else |
|
87 |
{ |
|
88 |
mCastAxis[index][casted][0] = 0; |
|
89 |
mCastAxis[index][casted][1] = 0; |
|
90 |
} |
|
91 |
} |
|
92 |
} |
|
93 |
} |
|
94 |
|
|
95 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
96 |
|
|
97 |
private void normalize2D(float[] vect) |
|
98 |
{ |
|
99 |
float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]); |
|
100 |
vect[0] /= len; |
|
101 |
vect[1] /= len; |
|
102 |
} |
|
103 |
|
|
104 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
105 |
// find the casted axis with which our move2D vector forms an angle closest to 90 deg. |
|
106 |
|
|
107 |
private int computeRotationIndex(int axis, int lr, float[] move2D) |
|
108 |
{ |
|
109 |
float cosAngle, minCosAngle = Float.MAX_VALUE; |
|
110 |
int minIndex=-1; |
|
111 |
int index = axis*mNumFacesPerAxis + lr; |
|
112 |
float m0 = move2D[0]; |
|
113 |
float m1 = move2D[1]; |
|
114 |
float len = (float)Math.sqrt(m0*m0 + m1*m1); |
|
115 |
|
|
116 |
if( len!=0.0f ) |
|
117 |
{ |
|
118 |
m0 /= len; |
|
119 |
m1 /= len; |
|
120 |
} |
|
121 |
else |
|
122 |
{ |
|
123 |
m0 = 1.0f; // arbitrarily |
|
124 |
m1 = 0.0f; // |
|
125 |
} |
|
126 |
|
|
127 |
for(int i=0; i<mNumRotAxis; i++) |
|
128 |
{ |
|
129 |
if( axis != i ) |
|
130 |
{ |
|
131 |
cosAngle = m0*mCastAxis[index][i][0] + m1*mCastAxis[index][i][1]; |
|
132 |
if( cosAngle<0 ) cosAngle = -cosAngle; |
|
133 |
|
|
134 |
if( cosAngle<minCosAngle ) |
|
135 |
{ |
|
136 |
minCosAngle=cosAngle; |
|
137 |
minIndex = i; |
|
138 |
} |
|
139 |
} |
|
140 |
} |
|
141 |
|
|
142 |
return minIndex; |
|
143 |
} |
|
144 |
|
|
145 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
146 |
|
|
147 |
private float computeOffset(float[] point, float[] axis) |
|
148 |
{ |
|
149 |
return point[0]*axis[0] + point[1]*axis[1] + mDistanceCenterFace2D; |
|
150 |
} |
|
151 |
|
|
152 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
153 |
|
|
154 |
private boolean faceIsVisible(Static3D axis, int lr) |
|
155 |
{ |
|
156 |
float castCameraOnAxis = mCamera[0]*axis.get0() + mCamera[1]*axis.get1() + mCamera[2]*axis.get2(); |
|
157 |
return (2*lr-1)*castCameraOnAxis > mDistanceCenterFace3D; |
|
158 |
} |
|
159 |
|
|
160 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
161 |
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace, |
|
162 |
// compute point 'output[]' which: |
|
163 |
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0)) [and this |
|
164 |
// distance is +-mDistanceCenterFace, depending if it is the face on the left or the right end of |
|
165 |
// the axis] (lr=0 or 1, so (2lr-1)*mDistanceCenterFace) |
|
166 |
// 2) is co-linear with mCamera and mPoint |
|
167 |
// |
|
168 |
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)] |
|
169 |
|
|
170 |
private void castTouchPointOntoFace(Static3D axis, int lr, float[] output) |
|
171 |
{ |
|
172 |
float d0 = mPoint[0]-mCamera[0]; |
|
173 |
float d1 = mPoint[1]-mCamera[1]; |
|
174 |
float d2 = mPoint[2]-mCamera[2]; |
|
175 |
float a0 = axis.get0(); |
|
176 |
float a1 = axis.get1(); |
|
177 |
float a2 = axis.get2(); |
|
178 |
|
|
179 |
float denom = a0*d0 + a1*d1 + a2*d2; |
|
180 |
|
|
181 |
if( denom != 0.0f ) |
|
182 |
{ |
|
183 |
float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2]; |
|
184 |
float distance = (2*lr-1)*mDistanceCenterFace3D; |
|
185 |
float alpha = (distance-axisCam)/denom; |
|
186 |
|
|
187 |
output[0] = mCamera[0] + d0*alpha; |
|
188 |
output[1] = mCamera[1] + d1*alpha; |
|
189 |
output[2] = mCamera[2] + d2*alpha; |
|
190 |
} |
|
191 |
} |
|
192 |
|
|
193 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
194 |
// Convert the 3D point3D into a 2D point on the same face surface, but in a different |
|
195 |
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects |
|
196 |
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the |
|
197 |
// original 3D Y axis and our 2D in-plane origin. |
|
198 |
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only |
|
199 |
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to |
|
200 |
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily |
|
201 |
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole) |
|
202 |
|
|
203 |
private void convertTo2Dcoords(float[] point3D, Static3D axis, int lr, float[] output) |
|
204 |
{ |
|
205 |
float y0,y1,y2; // base Y vector of the 2D coord system |
|
206 |
float a0 = axis.get0(); |
|
207 |
float a1 = axis.get1(); |
|
208 |
float a2 = axis.get2(); |
|
209 |
|
|
210 |
if( lr==0 ) |
|
211 |
{ |
|
212 |
a0=-a0; a1=-a1; a2=-a2; |
|
213 |
} |
|
214 |
|
|
215 |
if( a0==0.0f && a2==0.0f ) |
|
216 |
{ |
|
217 |
y0=0; y1=0; y2=-a1; |
|
218 |
} |
|
219 |
else if( a1==0.0f ) |
|
220 |
{ |
|
221 |
y0=0; y1=1; y2=0; |
|
222 |
} |
|
223 |
else |
|
224 |
{ |
|
225 |
float norm = (float)(-a1/Math.sqrt(1-a1*a1)); |
|
226 |
y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2; |
|
227 |
} |
|
228 |
|
|
229 |
float x0 = y1*a2 - y2*a1; // |
|
230 |
float x1 = y2*a0 - y0*a2; // (2D coord baseY) x (axis) = 2D coord baseX |
|
231 |
float x2 = y0*a1 - y1*a0; // |
|
232 |
|
|
233 |
float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2; |
|
234 |
|
|
235 |
float origin0 = originAlpha*a0; // coords of the point where axis |
|
236 |
float origin1 = originAlpha*a1; // intersects surface plane i.e. |
|
237 |
float origin2 = originAlpha*a2; // the origin of our 2D coord system |
|
238 |
|
|
239 |
float v0 = point3D[0] - origin0; |
|
240 |
float v1 = point3D[1] - origin1; |
|
241 |
float v2 = point3D[2] - origin2; |
|
242 |
|
|
243 |
output[0] = v0*x0 + v1*x1 + v2*x2; |
|
244 |
output[1] = v0*y0 + v1*y1 + v2*y2; |
|
245 |
} |
|
246 |
|
|
247 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
248 |
// PUBLIC API |
|
249 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
250 |
|
|
251 |
public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera) |
|
252 |
{ |
|
253 |
float objectRatio = RubikObject.getObjectRatio(); |
|
254 |
|
|
255 |
mPoint[0] = rotatedTouchPoint.get0()/objectRatio; |
|
256 |
mPoint[1] = rotatedTouchPoint.get1()/objectRatio; |
|
257 |
mPoint[2] = rotatedTouchPoint.get2()/objectRatio; |
|
258 |
|
|
259 |
mCamera[0] = rotatedCamera.get0()/objectRatio; |
|
260 |
mCamera[1] = rotatedCamera.get1()/objectRatio; |
|
261 |
mCamera[2] = rotatedCamera.get2()/objectRatio; |
|
262 |
|
|
263 |
for( mLastTouchedAxis=0; mLastTouchedAxis<mNumRotAxis; mLastTouchedAxis++) |
|
264 |
{ |
|
265 |
for( mLastTouchedLR=0; mLastTouchedLR<mNumFacesPerAxis; mLastTouchedLR++) |
|
266 |
{ |
|
267 |
if( faceIsVisible(mRotAxis[mLastTouchedAxis], mLastTouchedLR) ) |
|
268 |
{ |
|
269 |
castTouchPointOntoFace(mRotAxis[mLastTouchedAxis], mLastTouchedLR, mTouch); |
|
270 |
convertTo2Dcoords(mTouch, mRotAxis[mLastTouchedAxis], mLastTouchedLR, mPoint2D); |
|
271 |
|
|
272 |
if( isInsideFace(mPoint2D) ) return true; |
|
273 |
} |
|
274 |
} |
|
275 |
} |
|
276 |
|
|
277 |
return false; |
|
278 |
} |
|
279 |
|
|
280 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
281 |
|
|
282 |
public Static2D newRotation(Static4D rotatedTouchPoint) |
|
283 |
{ |
|
284 |
float objectRatio = RubikObject.getObjectRatio(); |
|
285 |
|
|
286 |
mPoint[0] = rotatedTouchPoint.get0()/objectRatio; |
|
287 |
mPoint[1] = rotatedTouchPoint.get1()/objectRatio; |
|
288 |
mPoint[2] = rotatedTouchPoint.get2()/objectRatio; |
|
289 |
|
|
290 |
castTouchPointOntoFace(mRotAxis[mLastTouchedAxis], mLastTouchedLR, mTouch); |
|
291 |
convertTo2Dcoords(mTouch, mRotAxis[mLastTouchedAxis], mLastTouchedLR, mMove2D); |
|
292 |
|
|
293 |
mMove2D[0] -= mPoint2D[0]; |
|
294 |
mMove2D[1] -= mPoint2D[1]; |
|
295 |
|
|
296 |
int rotIndex = computeRotationIndex(mLastTouchedAxis, mLastTouchedLR, mMove2D); |
|
297 |
int index = mLastTouchedAxis*mNumFacesPerAxis+mLastTouchedLR; |
|
298 |
float offset = computeOffset(mPoint2D, mCastAxis[index][rotIndex]); |
|
299 |
|
|
300 |
return new Static2D(rotIndex,offset); |
|
301 |
} |
|
302 |
|
|
303 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
304 |
|
|
305 |
public int getTouchedFace() |
|
306 |
{ |
|
307 |
return mNumFacesPerAxis==2 ? 2*mLastTouchedAxis + 1 - mLastTouchedLR : mLastTouchedAxis; |
|
308 |
} |
|
309 |
|
|
310 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
311 |
|
|
312 |
public float[] getTouchedPoint3D() |
|
313 |
{ |
|
314 |
return mTouch; |
|
315 |
} |
|
316 |
} |
src/main/java/org/distorted/objects/RubikMovementPyraminx.java | ||
---|---|---|
21 | 21 |
|
22 | 22 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
23 | 23 |
|
24 |
class RubikMovementPyraminx extends RubikMovementObject
|
|
24 |
class RubikMovementPyraminx extends RubikMovement |
|
25 | 25 |
{ |
26 | 26 |
private static final float SQ6 = (float)Math.sqrt(6); |
27 | 27 |
private static final float SQ3 = (float)Math.sqrt(3); |
src/main/java/org/distorted/objects/RubikObjectList.java | ||
---|---|---|
71 | 71 |
|
72 | 72 |
private final int[] mObjectSizes, mMaxLevels, mSmallIconIDs, mMediumIconIDs, mBigIconIDs, mHugeIconIDs, mResourceIDs; |
73 | 73 |
private final Class<? extends RubikObject> mObjectClass; |
74 |
private final RubikMovementObject mObjectMovementClass;
|
|
74 |
private final RubikMovement mObjectMovementClass; |
|
75 | 75 |
private static final RubikObjectList[] objects; |
76 | 76 |
private static int mNumAll; |
77 | 77 |
|
... | ... | |
283 | 283 |
|
284 | 284 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
285 | 285 |
|
286 |
RubikObjectList(int[][] info, Class<? extends RubikObject> object , RubikMovementObject movement)
|
|
286 |
RubikObjectList(int[][] info, Class<? extends RubikObject> object , RubikMovement movement) |
|
287 | 287 |
{ |
288 | 288 |
int length = info.length; |
289 | 289 |
|
... | ... | |
373 | 373 |
|
374 | 374 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
375 | 375 |
|
376 |
public RubikMovementObject getObjectMovementClass()
|
|
376 |
public RubikMovement getObjectMovementClass() |
|
377 | 377 |
{ |
378 | 378 |
return mObjectMovementClass; |
379 | 379 |
} |
Also available in: Unified diff
Introduce separate ROT_AXIS and FACE_AXIS ( step 2 )