Project

General

Profile

« Previous | Next » 

Revision faa3aed0

Added by Leszek Koltunski over 4 years ago

Introduce separate ROT_AXIS and FACE_AXIS ( step 2 )

View differences:

src/main/java/org/distorted/main/RubikSurfaceView.java
34 34
import org.distorted.library.type.Static3D;
35 35
import org.distorted.library.type.Static4D;
36 36
import org.distorted.objects.RubikObject;
37
import org.distorted.objects.RubikMovementObject;
37
import org.distorted.objects.RubikMovement;
38 38
import org.distorted.solvers.SolverMain;
39 39
import org.distorted.states.RubikState;
40 40
import org.distorted.states.RubikStatePlay;
......
71 71

  
72 72
    private RubikRenderer mRenderer;
73 73
    private RubikPreRender mPreRender;
74
    private RubikMovementObject mMovement;
74
    private RubikMovement mMovement;
75 75
    private boolean mDragging, mBeginningRotation, mContinuingRotation;
76 76
    private int mScreenWidth, mScreenHeight, mScreenMin;
77 77

  
......
140 140

  
141 141
///////////////////////////////////////////////////////////////////////////////////////////////////
142 142

  
143
    void setMovement(RubikMovementObject movement)
143
    void setMovement(RubikMovement movement)
144 144
      {
145 145
      mMovement = movement;
146 146
      }
src/main/java/org/distorted/objects/RubikCube.java
53 53
  // the six axis that determine the faces
54 54
  static final Static3D[] FACE_AXIS = new Static3D[]
55 55
         {
56
           new Static3D(1,0,0), new Static3D(-1,0,0),
57
           new Static3D(0,1,0), new Static3D(0,-1,0),
58
           new Static3D(0,0,1), new Static3D(0,0,-1)
56
           new Static3D(-1,0,0), new Static3D(1,0,0),
57
           new Static3D(0,-1,0), new Static3D(0,1,0),
58
           new Static3D(0,0,-1), new Static3D(0,0,1)
59 59
         };
60 60

  
61 61
  private static final int[] FACE_COLORS = new int[]
src/main/java/org/distorted/objects/RubikMovement.java
1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

  
20
package org.distorted.objects;
21

  
22
import org.distorted.library.type.Static2D;
23
import org.distorted.library.type.Static3D;
24
import org.distorted.library.type.Static4D;
25

  
26
///////////////////////////////////////////////////////////////////////////////////////////////////
27

  
28
public abstract class RubikMovement
29
  {
30
  private int mLastTouchedAxis;
31
  private float[] mPoint, mCamera, mTouch;
32
  private float[] mPoint2D, mMove2D;
33
  private float[][][] mCastAxis;
34
  private int mNumRotAxis, mNumFaceAxis;
35
  private float mDistanceCenterFace3D, mDistanceCenterFace2D;
36
  private Static3D[] mFaceAxis;
37

  
38
///////////////////////////////////////////////////////////////////////////////////////////////////
39

  
40
  abstract boolean isInsideFace(float[] point);
41

  
42
///////////////////////////////////////////////////////////////////////////////////////////////////
43

  
44
  RubikMovement(Static3D[] rotAxis, Static3D[] faceAxis, float distance3D, float distance2D)
45
    {
46
    mPoint = new float[3];
47
    mCamera= new float[3];
48
    mTouch = new float[3];
49

  
50
    mPoint2D = new float[2];
51
    mMove2D  = new float[2];
52

  
53
    mNumRotAxis = rotAxis.length;
54
    mFaceAxis   = faceAxis;
55
    mNumFaceAxis= mFaceAxis.length;
56

  
57
    mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces
58
    mDistanceCenterFace2D = distance2D; // distance from the center of a face to its edge
59

  
60
    // mCastAxis[1][2]{0,1} are the 2D coords of the 2nd axis cast onto the face defined by the
61
    // 1st pair (axis,lr)
62
    mCastAxis = new float[mNumFaceAxis][mNumRotAxis][2];
63

  
64
    for( int casted=0; casted<mNumRotAxis; casted++)
65
      {
66
      Static3D a = rotAxis[casted];
67
      mPoint[0]= a.get0();
68
      mPoint[1]= a.get1();
69
      mPoint[2]= a.get2();
70

  
71
      for( int face=0; face<mNumFaceAxis; face++)
72
        {
73
        convertTo2Dcoords( mPoint, mFaceAxis[face], mCastAxis[face][casted]);
74
        normalize2D(mCastAxis[face][casted]);
75
        }
76
      }
77
    }
78

  
79
///////////////////////////////////////////////////////////////////////////////////////////////////
80

  
81
  private void normalize2D(float[] vect)
82
    {
83
    float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]);
84
    vect[0] /= len;
85
    vect[1] /= len;
86
    }
87

  
88
///////////////////////////////////////////////////////////////////////////////////////////////////
89
// find the casted axis with which our move2D vector forms an angle closest to 90 deg.
90

  
91
  private int computeRotationIndex(int faceAxis, float[] move2D)
92
    {
93
    float cosAngle, minCosAngle = Float.MAX_VALUE;
94
    int minIndex=-1;
95
    float m0 = move2D[0];
96
    float m1 = move2D[1];
97
    float len = (float)Math.sqrt(m0*m0 + m1*m1);
98
    float x,y;
99

  
100
    if( len!=0.0f )
101
      {
102
      m0 /= len;
103
      m1 /= len;
104
      }
105
    else
106
      {
107
      m0 = 1.0f;  // arbitrarily
108
      m1 = 0.0f;  //
109
      }
110

  
111
    for(int rotAxis=0; rotAxis<mNumRotAxis; rotAxis++)
112
      {
113
      x = mCastAxis[faceAxis][rotAxis][0];
114
      y = mCastAxis[faceAxis][rotAxis][1];
115

  
116
      if( x*x + y*y > 0.01f )
117
        {
118
        cosAngle = m0*x + m1*y;
119
        if( cosAngle<0 ) cosAngle = -cosAngle;
120

  
121
        if( cosAngle<minCosAngle )
122
          {
123
          minCosAngle=cosAngle;
124
          minIndex = rotAxis;
125
          }
126
        }
127
      }
128

  
129
    return minIndex;
130
    }
131

  
132
///////////////////////////////////////////////////////////////////////////////////////////////////
133

  
134
  private float computeOffset(float[] point, float[] axis)
135
    {
136
    return point[0]*axis[0] + point[1]*axis[1] + mDistanceCenterFace2D;
137
    }
138

  
139
///////////////////////////////////////////////////////////////////////////////////////////////////
140

  
141
  private boolean faceIsVisible(Static3D faceAxis)
142
    {
143
    float castCameraOnAxis = mCamera[0]*faceAxis.get0() + mCamera[1]*faceAxis.get1() + mCamera[2]*faceAxis.get2();
144
    return castCameraOnAxis > mDistanceCenterFace3D;
145
    }
146

  
147
///////////////////////////////////////////////////////////////////////////////////////////////////
148
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
149
// compute point 'output[]' which:
150
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0)) [and this
151
//    distance is +-mDistanceCenterFace, depending if it is the face on the left or the right end of
152
//    the axis] (lr=0 or 1, so (2lr-1)*mDistanceCenterFace)
153
// 2) is co-linear with mCamera and mPoint
154
//
155
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)]
156

  
157
  private void castTouchPointOntoFace(Static3D faceAxis, float[] output)
158
    {
159
    float d0 = mPoint[0]-mCamera[0];
160
    float d1 = mPoint[1]-mCamera[1];
161
    float d2 = mPoint[2]-mCamera[2];
162
    float a0 = faceAxis.get0();
163
    float a1 = faceAxis.get1();
164
    float a2 = faceAxis.get2();
165

  
166
    float denom = a0*d0 + a1*d1 + a2*d2;
167

  
168
    if( denom != 0.0f )
169
      {
170
      float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2];
171
      float distance = mDistanceCenterFace3D;
172
      float alpha = (distance-axisCam)/denom;
173

  
174
      output[0] = mCamera[0] + d0*alpha;
175
      output[1] = mCamera[1] + d1*alpha;
176
      output[2] = mCamera[2] + d2*alpha;
177
      }
178
    }
179

  
180
///////////////////////////////////////////////////////////////////////////////////////////////////
181
// Convert the 3D point3D into a 2D point on the same face surface, but in a different
182
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects
183
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the
184
// original 3D Y axis and our 2D in-plane origin.
185
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only
186
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to
187
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily
188
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole)
189

  
190
  private void convertTo2Dcoords(float[] point3D, Static3D faceAxis, float[] output)
191
    {
192
    float y0,y1,y2; // base Y vector of the 2D coord system
193
    float a0 = faceAxis.get0();
194
    float a1 = faceAxis.get1();
195
    float a2 = faceAxis.get2();
196

  
197
    if( a0==0.0f && a2==0.0f )
198
      {
199
      y0=0; y1=0; y2=-a1;
200
      }
201
    else if( a1==0.0f )
202
      {
203
      y0=0; y1=1; y2=0;
204
      }
205
    else
206
      {
207
      float norm = (float)(-a1/Math.sqrt(1-a1*a1));
208
      y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2;
209
      }
210

  
211
    float x0 = y1*a2 - y2*a1;  //
212
    float x1 = y2*a0 - y0*a2;  // (2D coord baseY) x (axis) = 2D coord baseX
213
    float x2 = y0*a1 - y1*a0;  //
214

  
215
    float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2;
216

  
217
    float origin0 = originAlpha*a0; // coords of the point where axis
218
    float origin1 = originAlpha*a1; // intersects surface plane i.e.
219
    float origin2 = originAlpha*a2; // the origin of our 2D coord system
220

  
221
    float v0 = point3D[0] - origin0;
222
    float v1 = point3D[1] - origin1;
223
    float v2 = point3D[2] - origin2;
224

  
225
    output[0] = v0*x0 + v1*x1 + v2*x2;
226
    output[1] = v0*y0 + v1*y1 + v2*y2;
227
    }
228

  
229
///////////////////////////////////////////////////////////////////////////////////////////////////
230
// PUBLIC API
231
///////////////////////////////////////////////////////////////////////////////////////////////////
232

  
233
  public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera)
234
    {
235
    float objectRatio = RubikObject.getObjectRatio();
236

  
237
    mPoint[0]  = rotatedTouchPoint.get0()/objectRatio;
238
    mPoint[1]  = rotatedTouchPoint.get1()/objectRatio;
239
    mPoint[2]  = rotatedTouchPoint.get2()/objectRatio;
240

  
241
    mCamera[0] = rotatedCamera.get0()/objectRatio;
242
    mCamera[1] = rotatedCamera.get1()/objectRatio;
243
    mCamera[2] = rotatedCamera.get2()/objectRatio;
244

  
245
    for( mLastTouchedAxis=0; mLastTouchedAxis<mNumFaceAxis; mLastTouchedAxis++)
246
      {
247
      if( faceIsVisible(mFaceAxis[mLastTouchedAxis]) )
248
        {
249
        castTouchPointOntoFace(mFaceAxis[mLastTouchedAxis], mTouch);
250
        convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedAxis], mPoint2D);
251
        if( isInsideFace(mPoint2D) ) return true;
252
        }
253
      }
254

  
255
    return false;
256
    }
257

  
258
///////////////////////////////////////////////////////////////////////////////////////////////////
259

  
260
  public Static2D newRotation(Static4D rotatedTouchPoint)
261
    {
262
    float objectRatio = RubikObject.getObjectRatio();
263

  
264
    mPoint[0] = rotatedTouchPoint.get0()/objectRatio;
265
    mPoint[1] = rotatedTouchPoint.get1()/objectRatio;
266
    mPoint[2] = rotatedTouchPoint.get2()/objectRatio;
267

  
268
    castTouchPointOntoFace(mFaceAxis[mLastTouchedAxis], mTouch);
269
    convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedAxis], mMove2D);
270

  
271
    mMove2D[0] -= mPoint2D[0];
272
    mMove2D[1] -= mPoint2D[1];
273

  
274
    int rotIndex = computeRotationIndex(mLastTouchedAxis, mMove2D);
275
    float offset = computeOffset(mPoint2D, mCastAxis[mLastTouchedAxis][rotIndex]);
276

  
277
    return new Static2D(rotIndex,offset);
278
    }
279

  
280
///////////////////////////////////////////////////////////////////////////////////////////////////
281

  
282
  public int getTouchedFace()
283
    {
284
    return mLastTouchedAxis;
285
    }
286

  
287
///////////////////////////////////////////////////////////////////////////////////////////////////
288

  
289
  public float[] getTouchedPoint3D()
290
    {
291
    return mTouch;
292
    }
293
  }
src/main/java/org/distorted/objects/RubikMovementCube.java
21 21

  
22 22
///////////////////////////////////////////////////////////////////////////////////////////////////
23 23

  
24
class RubikMovementCube extends RubikMovementObject
24
class RubikMovementCube extends RubikMovement
25 25
{
26 26
  RubikMovementCube()
27 27
    {
src/main/java/org/distorted/objects/RubikMovementDino.java
21 21

  
22 22
///////////////////////////////////////////////////////////////////////////////////////////////////
23 23

  
24
class RubikMovementDino extends RubikMovementObject
24
class RubikMovementDino extends RubikMovement
25 25
{
26 26
  RubikMovementDino()
27 27
    {
src/main/java/org/distorted/objects/RubikMovementObject.java
1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

  
20
package org.distorted.objects;
21

  
22
import org.distorted.library.type.Static2D;
23
import org.distorted.library.type.Static3D;
24
import org.distorted.library.type.Static4D;
25

  
26
///////////////////////////////////////////////////////////////////////////////////////////////////
27

  
28
public abstract class RubikMovementObject
29
  {
30
  private int mLastTouchedAxis;
31
  private float[] mPoint, mCamera, mTouch;
32
  private float[] mPoint2D, mMove2D;
33
  private float[][][] mCastAxis;
34
  private int mLastTouchedLR;
35
  private int mNumRotAxis, mNumFaceAxis, mNumFacesPerAxis;
36
  private float mDistanceCenterFace3D, mDistanceCenterFace2D;
37
  private Static3D[] mRotAxis, mFaceAxis;
38

  
39
///////////////////////////////////////////////////////////////////////////////////////////////////
40

  
41
  abstract boolean isInsideFace(float[] point);
42

  
43
///////////////////////////////////////////////////////////////////////////////////////////////////
44

  
45
  RubikMovementObject(Static3D[] rotAxis, Static3D[] faceAxis, float distance3D, float distance2D)
46
    {
47
    mPoint = new float[3];
48
    mCamera= new float[3];
49
    mTouch = new float[3];
50

  
51
    mPoint2D = new float[2];
52
    mMove2D  = new float[2];
53

  
54
    mRotAxis    = rotAxis;
55
    mNumRotAxis = mRotAxis.length;
56
    mFaceAxis   = faceAxis;
57
    mNumFaceAxis= mFaceAxis.length;
58

  
59
    mNumFacesPerAxis = mNumFaceAxis / mNumRotAxis;
60
    mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces
61
    mDistanceCenterFace2D = distance2D; // distance from the center of a face to its edge
62

  
63
    // mCastAxis[1][2]{0,1} are the 2D coords of the 2nd axis cast onto the face defined by the
64
    // 1st pair (axis,lr)
65
    mCastAxis = new float[mNumFaceAxis][mNumRotAxis][2];
66

  
67
    for( int casted=0; casted<mNumRotAxis; casted++)
68
      {
69
      Static3D a = mRotAxis[casted];
70
      mPoint[0]= a.get0();
71
      mPoint[1]= a.get1();
72
      mPoint[2]= a.get2();
73

  
74
      for( int surface=0; surface<mNumRotAxis; surface++)
75
        for(int lr=0; lr<mNumFacesPerAxis; lr++)
76
          {
77
          int index = surface*mNumFacesPerAxis + lr;
78

  
79
          if( casted!=surface )
80
            {
81
            convertTo2Dcoords( mPoint, mRotAxis[surface], lr, mPoint2D);
82
            mCastAxis[index][casted][0] = mPoint2D[0];
83
            mCastAxis[index][casted][1] = mPoint2D[1];
84
            normalize2D(mCastAxis[index][casted]);
85
            }
86
          else
87
            {
88
            mCastAxis[index][casted][0] = 0;
89
            mCastAxis[index][casted][1] = 0;
90
            }
91
          }
92
      }
93
    }
94

  
95
///////////////////////////////////////////////////////////////////////////////////////////////////
96

  
97
  private void normalize2D(float[] vect)
98
    {
99
    float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]);
100
    vect[0] /= len;
101
    vect[1] /= len;
102
    }
103

  
104
///////////////////////////////////////////////////////////////////////////////////////////////////
105
// find the casted axis with which our move2D vector forms an angle closest to 90 deg.
106

  
107
  private int computeRotationIndex(int axis, int lr, float[] move2D)
108
    {
109
    float cosAngle, minCosAngle = Float.MAX_VALUE;
110
    int minIndex=-1;
111
    int index = axis*mNumFacesPerAxis + lr;
112
    float m0 = move2D[0];
113
    float m1 = move2D[1];
114
    float len = (float)Math.sqrt(m0*m0 + m1*m1);
115

  
116
    if( len!=0.0f )
117
      {
118
      m0 /= len;
119
      m1 /= len;
120
      }
121
    else
122
      {
123
      m0 = 1.0f;  // arbitrarily
124
      m1 = 0.0f;  //
125
      }
126

  
127
    for(int i=0; i<mNumRotAxis; i++)
128
      {
129
      if( axis != i )
130
        {
131
        cosAngle = m0*mCastAxis[index][i][0] +  m1*mCastAxis[index][i][1];
132
        if( cosAngle<0 ) cosAngle = -cosAngle;
133

  
134
        if( cosAngle<minCosAngle )
135
          {
136
          minCosAngle=cosAngle;
137
          minIndex = i;
138
          }
139
        }
140
      }
141

  
142
    return minIndex;
143
    }
144

  
145
///////////////////////////////////////////////////////////////////////////////////////////////////
146

  
147
  private float computeOffset(float[] point, float[] axis)
148
    {
149
    return point[0]*axis[0] + point[1]*axis[1] + mDistanceCenterFace2D;
150
    }
151

  
152
///////////////////////////////////////////////////////////////////////////////////////////////////
153

  
154
  private boolean faceIsVisible(Static3D axis, int lr)
155
    {
156
    float castCameraOnAxis = mCamera[0]*axis.get0() + mCamera[1]*axis.get1() + mCamera[2]*axis.get2();
157
    return (2*lr-1)*castCameraOnAxis > mDistanceCenterFace3D;
158
    }
159

  
160
///////////////////////////////////////////////////////////////////////////////////////////////////
161
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
162
// compute point 'output[]' which:
163
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0)) [and this
164
//    distance is +-mDistanceCenterFace, depending if it is the face on the left or the right end of
165
//    the axis] (lr=0 or 1, so (2lr-1)*mDistanceCenterFace)
166
// 2) is co-linear with mCamera and mPoint
167
//
168
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)]
169

  
170
  private void castTouchPointOntoFace(Static3D axis, int lr, float[] output)
171
    {
172
    float d0 = mPoint[0]-mCamera[0];
173
    float d1 = mPoint[1]-mCamera[1];
174
    float d2 = mPoint[2]-mCamera[2];
175
    float a0 = axis.get0();
176
    float a1 = axis.get1();
177
    float a2 = axis.get2();
178

  
179
    float denom = a0*d0 + a1*d1 + a2*d2;
180

  
181
    if( denom != 0.0f )
182
      {
183
      float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2];
184
      float distance = (2*lr-1)*mDistanceCenterFace3D;
185
      float alpha = (distance-axisCam)/denom;
186

  
187
      output[0] = mCamera[0] + d0*alpha;
188
      output[1] = mCamera[1] + d1*alpha;
189
      output[2] = mCamera[2] + d2*alpha;
190
      }
191
    }
192

  
193
///////////////////////////////////////////////////////////////////////////////////////////////////
194
// Convert the 3D point3D into a 2D point on the same face surface, but in a different
195
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects
196
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the
197
// original 3D Y axis and our 2D in-plane origin.
198
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only
199
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to
200
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily
201
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole)
202

  
203
  private void convertTo2Dcoords(float[] point3D, Static3D axis, int lr, float[] output)
204
    {
205
    float y0,y1,y2; // base Y vector of the 2D coord system
206
    float a0 = axis.get0();
207
    float a1 = axis.get1();
208
    float a2 = axis.get2();
209

  
210
    if( lr==0 )
211
      {
212
      a0=-a0; a1=-a1; a2=-a2;
213
      }
214

  
215
    if( a0==0.0f && a2==0.0f )
216
      {
217
      y0=0; y1=0; y2=-a1;
218
      }
219
    else if( a1==0.0f )
220
      {
221
      y0=0; y1=1; y2=0;
222
      }
223
    else
224
      {
225
      float norm = (float)(-a1/Math.sqrt(1-a1*a1));
226
      y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2;
227
      }
228

  
229
    float x0 = y1*a2 - y2*a1;  //
230
    float x1 = y2*a0 - y0*a2;  // (2D coord baseY) x (axis) = 2D coord baseX
231
    float x2 = y0*a1 - y1*a0;  //
232

  
233
    float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2;
234

  
235
    float origin0 = originAlpha*a0; // coords of the point where axis
236
    float origin1 = originAlpha*a1; // intersects surface plane i.e.
237
    float origin2 = originAlpha*a2; // the origin of our 2D coord system
238

  
239
    float v0 = point3D[0] - origin0;
240
    float v1 = point3D[1] - origin1;
241
    float v2 = point3D[2] - origin2;
242

  
243
    output[0] = v0*x0 + v1*x1 + v2*x2;
244
    output[1] = v0*y0 + v1*y1 + v2*y2;
245
    }
246

  
247
///////////////////////////////////////////////////////////////////////////////////////////////////
248
// PUBLIC API
249
///////////////////////////////////////////////////////////////////////////////////////////////////
250

  
251
  public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera)
252
    {
253
    float objectRatio = RubikObject.getObjectRatio();
254

  
255
    mPoint[0]  = rotatedTouchPoint.get0()/objectRatio;
256
    mPoint[1]  = rotatedTouchPoint.get1()/objectRatio;
257
    mPoint[2]  = rotatedTouchPoint.get2()/objectRatio;
258

  
259
    mCamera[0] = rotatedCamera.get0()/objectRatio;
260
    mCamera[1] = rotatedCamera.get1()/objectRatio;
261
    mCamera[2] = rotatedCamera.get2()/objectRatio;
262

  
263
    for( mLastTouchedAxis=0; mLastTouchedAxis<mNumRotAxis; mLastTouchedAxis++)
264
      {
265
      for( mLastTouchedLR=0; mLastTouchedLR<mNumFacesPerAxis; mLastTouchedLR++)
266
        {
267
        if( faceIsVisible(mRotAxis[mLastTouchedAxis], mLastTouchedLR) )
268
          {
269
          castTouchPointOntoFace(mRotAxis[mLastTouchedAxis], mLastTouchedLR, mTouch);
270
          convertTo2Dcoords(mTouch, mRotAxis[mLastTouchedAxis], mLastTouchedLR, mPoint2D);
271

  
272
          if( isInsideFace(mPoint2D) ) return true;
273
          }
274
        }
275
      }
276

  
277
    return false;
278
    }
279

  
280
///////////////////////////////////////////////////////////////////////////////////////////////////
281

  
282
  public Static2D newRotation(Static4D rotatedTouchPoint)
283
    {
284
    float objectRatio = RubikObject.getObjectRatio();
285

  
286
    mPoint[0] = rotatedTouchPoint.get0()/objectRatio;
287
    mPoint[1] = rotatedTouchPoint.get1()/objectRatio;
288
    mPoint[2] = rotatedTouchPoint.get2()/objectRatio;
289

  
290
    castTouchPointOntoFace(mRotAxis[mLastTouchedAxis], mLastTouchedLR, mTouch);
291
    convertTo2Dcoords(mTouch, mRotAxis[mLastTouchedAxis], mLastTouchedLR, mMove2D);
292

  
293
    mMove2D[0] -= mPoint2D[0];
294
    mMove2D[1] -= mPoint2D[1];
295

  
296
    int rotIndex = computeRotationIndex(mLastTouchedAxis, mLastTouchedLR, mMove2D);
297
    int index    = mLastTouchedAxis*mNumFacesPerAxis+mLastTouchedLR;
298
    float offset = computeOffset(mPoint2D, mCastAxis[index][rotIndex]);
299

  
300
    return new Static2D(rotIndex,offset);
301
    }
302

  
303
///////////////////////////////////////////////////////////////////////////////////////////////////
304

  
305
  public int getTouchedFace()
306
    {
307
    return mNumFacesPerAxis==2 ? 2*mLastTouchedAxis + 1 - mLastTouchedLR : mLastTouchedAxis;
308
    }
309

  
310
///////////////////////////////////////////////////////////////////////////////////////////////////
311

  
312
  public float[] getTouchedPoint3D()
313
    {
314
    return mTouch;
315
    }
316
  }
src/main/java/org/distorted/objects/RubikMovementPyraminx.java
21 21

  
22 22
///////////////////////////////////////////////////////////////////////////////////////////////////
23 23

  
24
class RubikMovementPyraminx extends RubikMovementObject
24
class RubikMovementPyraminx extends RubikMovement
25 25
{
26 26
  private static final float SQ6 = (float)Math.sqrt(6);
27 27
  private static final float SQ3 = (float)Math.sqrt(3);
src/main/java/org/distorted/objects/RubikObjectList.java
71 71

  
72 72
  private final int[] mObjectSizes, mMaxLevels, mSmallIconIDs, mMediumIconIDs, mBigIconIDs, mHugeIconIDs, mResourceIDs;
73 73
  private final Class<? extends RubikObject> mObjectClass;
74
  private final RubikMovementObject mObjectMovementClass;
74
  private final RubikMovement mObjectMovementClass;
75 75
  private static final RubikObjectList[] objects;
76 76
  private static int mNumAll;
77 77

  
......
283 283

  
284 284
///////////////////////////////////////////////////////////////////////////////////////////////////
285 285

  
286
  RubikObjectList(int[][] info, Class<? extends RubikObject> object , RubikMovementObject movement)
286
  RubikObjectList(int[][] info, Class<? extends RubikObject> object , RubikMovement movement)
287 287
    {
288 288
    int length = info.length;
289 289

  
......
373 373

  
374 374
///////////////////////////////////////////////////////////////////////////////////////////////////
375 375

  
376
  public RubikMovementObject getObjectMovementClass()
376
  public RubikMovement getObjectMovementClass()
377 377
    {
378 378
    return mObjectMovementClass;
379 379
    }

Also available in: Unified diff