Project

General

Profile

Download (11.6 KB) Statistics
| Branch: | Tag: | Revision:

magiccube / src / main / java / org / distorted / objects / RubikMovement.java @ 935f3663

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2020 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Magic Cube.                                                              //
5
//                                                                                               //
6
// Magic Cube is free software: you can redistribute it and/or modify                            //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Magic Cube is distributed in the hope that it will be useful,                                 //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Magic Cube.  If not, see <http://www.gnu.org/licenses/>.                           //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.objects;
21

    
22
import org.distorted.library.type.Static2D;
23
import org.distorted.library.type.Static3D;
24
import org.distorted.library.type.Static4D;
25

    
26
///////////////////////////////////////////////////////////////////////////////////////////////////
27

    
28
public abstract class RubikMovement
29
  {
30
  private int mLastTouchedFace, mNumFaceAxis;
31
  private float[] mPoint, mCamera, mTouch;
32
  private float[] mPoint2D, mMove2D;
33
  private float[][][] mCastedRotAxis;
34
  private Static4D[][] mCastedRotAxis4D;
35
  private int[] mEnabledRotAxis;
36
  private float mDistanceCenterFace3D, mDistanceCenterFace2D;
37
  private Static3D[] mFaceAxis;
38

    
39
///////////////////////////////////////////////////////////////////////////////////////////////////
40

    
41
  abstract boolean isInsideFace(float[] point);
42
  abstract void computeEnabledAxis(int face, float[] touchPoint, int[] enabledAxis);
43

    
44
///////////////////////////////////////////////////////////////////////////////////////////////////
45

    
46
  RubikMovement(Static3D[] rotAxis, Static3D[] faceAxis, float distance3D, float distance2D)
47
    {
48
    mPoint = new float[3];
49
    mCamera= new float[3];
50
    mTouch = new float[3];
51

    
52
    mPoint2D = new float[2];
53
    mMove2D  = new float[2];
54

    
55
    mFaceAxis   = faceAxis;
56
    mNumFaceAxis= mFaceAxis.length;
57

    
58
    mEnabledRotAxis = new int[rotAxis.length+1];
59

    
60
    mDistanceCenterFace3D = distance3D; // distance from the center of the object to each of its faces
61
    mDistanceCenterFace2D = distance2D; // distance from the center of a face to its edge
62

    
63
    // mCastedRotAxis[1][2]{0,1} are the 2D coords of the 2nd axis cast onto the face defined by the
64
    // 1st pair (axis,lr)
65
    mCastedRotAxis   = new float[mNumFaceAxis][rotAxis.length][2];
66
    mCastedRotAxis4D = new Static4D[mNumFaceAxis][rotAxis.length];
67

    
68
    float fx,fy,fz,f;
69

    
70
    for( int casted=0; casted<rotAxis.length; casted++)
71
      {
72
      Static3D a = rotAxis[casted];
73
      mPoint[0]= a.get0();
74
      mPoint[1]= a.get1();
75
      mPoint[2]= a.get2();
76

    
77
      for( int face=0; face<mNumFaceAxis; face++)
78
        {
79
        convertTo2Dcoords( mPoint, mFaceAxis[face], mCastedRotAxis[face][casted]);
80
        normalize2D(mCastedRotAxis[face][casted]);
81

    
82
        fx = faceAxis[face].get0();
83
        fy = faceAxis[face].get1();
84
        fz = faceAxis[face].get2();
85
        f  = mPoint[0]*fx + mPoint[1]*fy + mPoint[2]*fz;
86
        mCastedRotAxis4D[face][casted] = new Static4D( mPoint[0]-f*fx, mPoint[1]-f*fy, mPoint[2]-f*fz, 0);
87
        }
88
      }
89
    }
90

    
91
///////////////////////////////////////////////////////////////////////////////////////////////////
92

    
93
  private void normalize2D(float[] vect)
94
    {
95
    float len = (float)Math.sqrt(vect[0]*vect[0] + vect[1]*vect[1]);
96
    vect[0] /= len;
97
    vect[1] /= len;
98
    }
99

    
100
///////////////////////////////////////////////////////////////////////////////////////////////////
101
// find the casted axis with which our move2D vector forms an angle closest to 90 deg.
102

    
103
  private int computeRotationIndex(int faceAxis, float[] move2D, int[] enabled)
104
    {
105
    float cosAngle, minCosAngle = Float.MAX_VALUE;
106
    int minIndex=-1, index;
107
    float m0 = move2D[0];
108
    float m1 = move2D[1];
109
    float len = (float)Math.sqrt(m0*m0 + m1*m1);
110

    
111
    if( len!=0.0f )
112
      {
113
      m0 /= len;
114
      m1 /= len;
115
      }
116
    else
117
      {
118
      m0 = 1.0f;  // arbitrarily
119
      m1 = 0.0f;  //
120
      }
121

    
122
    int numAxis = enabled[0];
123

    
124
    for(int axis=1; axis<=numAxis; axis++)
125
      {
126
      index = enabled[axis];
127
      cosAngle = m0*mCastedRotAxis[faceAxis][index][0] + m1*mCastedRotAxis[faceAxis][index][1];
128
      if( cosAngle<0 ) cosAngle = -cosAngle;
129

    
130
      if( cosAngle<minCosAngle )
131
        {
132
        minCosAngle=cosAngle;
133
        minIndex = index;
134
        }
135
      }
136

    
137
    return minIndex;
138
    }
139

    
140
///////////////////////////////////////////////////////////////////////////////////////////////////
141

    
142
  private float computeOffset(float[] point, float[] axis)
143
    {
144
    return point[0]*axis[0] + point[1]*axis[1] + mDistanceCenterFace2D;
145
    }
146

    
147
///////////////////////////////////////////////////////////////////////////////////////////////////
148

    
149
  private boolean faceIsVisible(Static3D faceAxis)
150
    {
151
    float castCameraOnAxis = mCamera[0]*faceAxis.get0() + mCamera[1]*faceAxis.get1() + mCamera[2]*faceAxis.get2();
152
    return castCameraOnAxis > mDistanceCenterFace3D;
153
    }
154

    
155
///////////////////////////////////////////////////////////////////////////////////////////////////
156
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
157
// compute point 'output[]' which:
158
// 1) lies on a face of the Object, i.e. surface defined by (axis, distance from (0,0,0)) [and this
159
//    distance is +-mDistanceCenterFace, depending if it is the face on the left or the right end of
160
//    the axis] (lr=0 or 1, so (2lr-1)*mDistanceCenterFace)
161
// 2) is co-linear with mCamera and mPoint
162
//
163
// output = camera + alpha*(point-camera), where alpha = [dist-axis*camera] / [axis*(point-camera)]
164

    
165
  private void castTouchPointOntoFace(Static3D faceAxis, float[] output)
166
    {
167
    float d0 = mPoint[0]-mCamera[0];
168
    float d1 = mPoint[1]-mCamera[1];
169
    float d2 = mPoint[2]-mCamera[2];
170
    float a0 = faceAxis.get0();
171
    float a1 = faceAxis.get1();
172
    float a2 = faceAxis.get2();
173

    
174
    float denom = a0*d0 + a1*d1 + a2*d2;
175

    
176
    if( denom != 0.0f )
177
      {
178
      float axisCam = a0*mCamera[0] + a1*mCamera[1] + a2*mCamera[2];
179
      float distance = mDistanceCenterFace3D;
180
      float alpha = (distance-axisCam)/denom;
181

    
182
      output[0] = mCamera[0] + d0*alpha;
183
      output[1] = mCamera[1] + d1*alpha;
184
      output[2] = mCamera[2] + d2*alpha;
185
      }
186
    }
187

    
188
///////////////////////////////////////////////////////////////////////////////////////////////////
189
// Convert the 3D point3D into a 2D point on the same face surface, but in a different
190
// coordinate system: a in-plane 2D coord where the origin is in the point where the axis intersects
191
// the surface, and whose Y axis points 'north' i.e. is in the plane given by the 3D origin, the
192
// original 3D Y axis and our 2D in-plane origin.
193
// If those 3 points constitute a degenerate triangle which does not define a plane - which can only
194
// happen if axis is vertical (or in theory when 2D origin and 3D origin meet, but that would have to
195
// mean that the distance between the center of the Object and its faces is 0) - then we arbitrarily
196
// decide that 2D Y = (0,0,-1) in the North Pole and (0,0,1) in the South Pole)
197

    
198
  private void convertTo2Dcoords(float[] point3D, Static3D faceAxis, float[] output)
199
    {
200
    float y0,y1,y2; // base Y vector of the 2D coord system
201
    float a0 = faceAxis.get0();
202
    float a1 = faceAxis.get1();
203
    float a2 = faceAxis.get2();
204

    
205
    if( a0==0.0f && a2==0.0f )
206
      {
207
      y0=0; y1=0; y2=-a1;
208
      }
209
    else if( a1==0.0f )
210
      {
211
      y0=0; y1=1; y2=0;
212
      }
213
    else
214
      {
215
      float norm = (float)(-a1/Math.sqrt(1-a1*a1));
216
      y0 = norm*a0; y1= norm*(a1-1/a1); y2=norm*a2;
217
      }
218

    
219
    float x0 = y1*a2 - y2*a1;  //
220
    float x1 = y2*a0 - y0*a2;  // (2D coord baseY) x (axis) = 2D coord baseX
221
    float x2 = y0*a1 - y1*a0;  //
222

    
223
    float originAlpha = point3D[0]*a0 + point3D[1]*a1 + point3D[2]*a2;
224

    
225
    float origin0 = originAlpha*a0; // coords of the point where axis
226
    float origin1 = originAlpha*a1; // intersects surface plane i.e.
227
    float origin2 = originAlpha*a2; // the origin of our 2D coord system
228

    
229
    float v0 = point3D[0] - origin0;
230
    float v1 = point3D[1] - origin1;
231
    float v2 = point3D[2] - origin2;
232

    
233
    output[0] = v0*x0 + v1*x1 + v2*x2;
234
    output[1] = v0*y0 + v1*y1 + v2*y2;
235
    }
236

    
237
///////////////////////////////////////////////////////////////////////////////////////////////////
238
// PUBLIC API
239
///////////////////////////////////////////////////////////////////////////////////////////////////
240

    
241
  public boolean faceTouched(Static4D rotatedTouchPoint, Static4D rotatedCamera)
242
    {
243
    float objectRatio = RubikObject.getObjectRatio();
244

    
245
    mPoint[0]  = rotatedTouchPoint.get0()/objectRatio;
246
    mPoint[1]  = rotatedTouchPoint.get1()/objectRatio;
247
    mPoint[2]  = rotatedTouchPoint.get2()/objectRatio;
248

    
249
    mCamera[0] = rotatedCamera.get0()/objectRatio;
250
    mCamera[1] = rotatedCamera.get1()/objectRatio;
251
    mCamera[2] = rotatedCamera.get2()/objectRatio;
252

    
253
    for( mLastTouchedFace=0; mLastTouchedFace<mNumFaceAxis; mLastTouchedFace++)
254
      {
255
      if( faceIsVisible(mFaceAxis[mLastTouchedFace]) )
256
        {
257
        castTouchPointOntoFace(mFaceAxis[mLastTouchedFace], mTouch);
258
        convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedFace], mPoint2D);
259
        if( isInsideFace(mPoint2D) ) return true;
260
        }
261
      }
262

    
263
    return false;
264
    }
265

    
266
///////////////////////////////////////////////////////////////////////////////////////////////////
267

    
268
  public Static2D newRotation(Static4D rotatedTouchPoint)
269
    {
270
    float objectRatio = RubikObject.getObjectRatio();
271

    
272
    mPoint[0] = rotatedTouchPoint.get0()/objectRatio;
273
    mPoint[1] = rotatedTouchPoint.get1()/objectRatio;
274
    mPoint[2] = rotatedTouchPoint.get2()/objectRatio;
275

    
276
    castTouchPointOntoFace(mFaceAxis[mLastTouchedFace], mTouch);
277
    convertTo2Dcoords(mTouch, mFaceAxis[mLastTouchedFace], mMove2D);
278

    
279
    mMove2D[0] -= mPoint2D[0];
280
    mMove2D[1] -= mPoint2D[1];
281

    
282
    computeEnabledAxis(mLastTouchedFace, mPoint2D, mEnabledRotAxis);
283
    int rotIndex = computeRotationIndex(mLastTouchedFace, mMove2D, mEnabledRotAxis);
284
    float offset = computeOffset(mPoint2D, mCastedRotAxis[mLastTouchedFace][rotIndex]);
285

    
286
    return new Static2D(rotIndex,offset);
287
    }
288

    
289
///////////////////////////////////////////////////////////////////////////////////////////////////
290

    
291
  public Static4D getCastedRotAxis(int rotIndex)
292
    {
293
    return mCastedRotAxis4D[mLastTouchedFace][rotIndex];
294
    }
295

    
296
///////////////////////////////////////////////////////////////////////////////////////////////////
297

    
298
  public int getTouchedFace()
299
    {
300
    return mLastTouchedFace;
301
    }
302

    
303
///////////////////////////////////////////////////////////////////////////////////////////////////
304

    
305
  public float[] getTouchedPoint3D()
306
    {
307
    return mTouch;
308
    }
309
  }
(4-4/10)