Project

General

Profile

Download (17.8 KB) Statistics
| Branch: | Revision:

examples / src / main / java / org / distorted / examples / rubik / RubikSurfaceView.java @ af8b42cc

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2019 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Distorted.                                                               //
5
//                                                                                               //
6
// Distorted is free software: you can redistribute it and/or modify                             //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Distorted is distributed in the hope that it will be useful,                                  //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                            //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.examples.rubik;
21

    
22
import android.app.ActivityManager;
23
import android.content.Context;
24
import android.content.pm.ConfigurationInfo;
25
import android.opengl.GLSurfaceView;
26
import android.util.AttributeSet;
27
import android.view.MotionEvent;
28

    
29
import org.distorted.library.type.Static4D;
30

    
31
///////////////////////////////////////////////////////////////////////////////////////////////////
32

    
33
class RubikSurfaceView extends GLSurfaceView
34
{
35
    // Moving the finger from the middle of the vertical screen to the right edge will rotate a
36
    // given face by SWIPING_SENSITIVITY/2 degrees.
37
    private final static int SWIPING_SENSITIVITY = 240;
38

    
39
    private final static int NONE   =-1;
40
    private final static int FRONT  = 0;  // has to be 6 consecutive ints
41
    private final static int BACK   = 1;  // FRONT ... BOTTOM
42
    private final static int LEFT   = 2;  //
43
    private final static int RIGHT  = 3;  //
44
    private final static int TOP    = 4;  //
45
    private final static int BOTTOM = 5;  //
46

    
47
    static final int VECTX = 0;  //
48
    static final int VECTY = 1;  // don't change this
49
    static final int VECTZ = 2;  //
50

    
51
    private static final int[] VECT = {VECTX,VECTY,VECTZ};
52

    
53
    private boolean mDragging, mBeginningRotation, mContinuingRotation;
54
    private int mX, mY;
55
    private Static4D mQuatCurrent, mQuatAccumulated;
56
    private int mRotationVect;
57
    private RubikRenderer mRenderer;
58

    
59
    private float[] mPoint, mCamera, mTouchPointCastOntoFace, mDiff, mTouchPoint; // all in screen space
60
    private int mLastTouchedFace;
61
    private int mScreenWidth, mScreenHeight, mScreenMin;
62
    private float mCameraDistance;
63

    
64
///////////////////////////////////////////////////////////////////////////////////////////////////
65

    
66
    public RubikSurfaceView(Context context, AttributeSet attrs)
67
      {
68
      super(context,attrs);
69

    
70
      if(!isInEditMode())
71
        {
72
        mRotationVect = VECT[0];
73

    
74
        mPoint = new float[3];
75
        mCamera= new float[3];
76
        mDiff  = new float[3];
77
        mTouchPoint = new float[3];
78
        mTouchPointCastOntoFace = new float[3];
79

    
80
        mScreenWidth = mScreenHeight = mScreenMin = 0;
81

    
82
        mRenderer = new RubikRenderer(this);
83
        mRenderer.createCube(RubikActivity.DEFAULT_SIZE);
84

    
85
        mQuatCurrent     = new Static4D(0,0,0,1);
86
        mQuatAccumulated = mRenderer.initializeQuat();
87

    
88
        final ActivityManager activityManager     = (ActivityManager) context.getSystemService(Context.ACTIVITY_SERVICE);
89
        final ConfigurationInfo configurationInfo = activityManager.getDeviceConfigurationInfo();
90
        setEGLContextClientVersion( (configurationInfo.reqGlEsVersion>>16) >= 3 ? 3:2 );
91
        setRenderer(mRenderer);
92
        }
93
      }
94

    
95
///////////////////////////////////////////////////////////////////////////////////////////////////
96

    
97
    @Override
98
    public boolean onTouchEvent(MotionEvent event)
99
      {
100
      int action = event.getAction();
101
      int x = (int)event.getX();
102
      int y = (int)event.getY();
103

    
104
      switch(action)
105
         {
106
         case MotionEvent.ACTION_DOWN: mX = x;
107
                                       mY = y;
108
                                       mLastTouchedFace = faceTouched(x,y);
109

    
110
                                       if( mLastTouchedFace != NONE )
111
                                         {
112
                                         mDragging           = false;
113
                                         mBeginningRotation  = mRenderer.canRotate();
114
                                         mContinuingRotation = false;
115
                                         }
116
                                       else
117
                                         {
118
                                         mDragging           = true;
119
                                         mBeginningRotation  = false;
120
                                         mContinuingRotation = false;
121
                                         }
122
                                       break;
123
         case MotionEvent.ACTION_MOVE: if( mDragging )
124
                                         {
125
                                         mQuatCurrent.set(quatFromDrag(mX-x,mY-y));
126
                                         mRenderer.setQuatCurrent(mQuatCurrent);
127
                                         }
128
                                       if( mBeginningRotation )
129
                                         {
130
                                         int minimumDistToStartRotating = (mScreenMin*mScreenMin)/100;
131

    
132
                                         if( (mX-x)*(mX-x)+(mY-y)*(mY-y) > minimumDistToStartRotating )
133
                                           {
134
                                           addNewRotation(x,y);
135
                                           mBeginningRotation = false;
136
                                           mContinuingRotation= true;
137
                                           }
138
                                         }
139
                                       else if( mContinuingRotation )
140
                                         {
141
                                         continueRotation(x,y);
142
                                         }
143
                                       break;
144
         case MotionEvent.ACTION_UP  : if( mDragging )
145
                                         {
146
                                         mQuatAccumulated.set(quatMultiply(mQuatCurrent, mQuatAccumulated));
147
                                         mQuatCurrent.set(0f, 0f, 0f, 1f);
148
                                         mRenderer.setQuatCurrent(mQuatCurrent);
149
                                         mRenderer.setQuatAccumulated(mQuatAccumulated);
150
                                         }
151

    
152
                                       if( mContinuingRotation )
153
                                         {
154
                                         finishRotation();
155
                                         }
156

    
157
                                       break;
158
         }
159

    
160
      return true;
161
      }
162

    
163
///////////////////////////////////////////////////////////////////////////////////////////////////
164

    
165
    void setNewCubeSize(int newCubeSize)
166
      {
167
      mRenderer.createCube(newCubeSize);
168
      }
169

    
170
///////////////////////////////////////////////////////////////////////////////////////////////////
171

    
172
    void scrambleCube()
173
      {
174
      mRenderer.scrambleCube();
175
      }
176

    
177
///////////////////////////////////////////////////////////////////////////////////////////////////
178

    
179
    void setScreenSize(int width, int height)
180
      {
181
      mScreenWidth = width;
182
      mScreenHeight= height;
183

    
184
      mScreenMin = width<height ? width:height;
185
      }
186

    
187
///////////////////////////////////////////////////////////////////////////////////////////////////
188

    
189
    void setCameraDist(float distance)
190
      {
191
      mCameraDistance = distance;
192
      }
193

    
194
///////////////////////////////////////////////////////////////////////////////////////////////////
195

    
196
    private int faceTouched(int xTouch, int yTouch)
197
      {
198
      float cubeHalfSize= mRenderer.returnCubeSizeInScreenSpace()*0.5f;
199

    
200
      convertTouchPointToScreenSpace(xTouch,yTouch);
201
      convertCameraPointToScreenSpace();
202

    
203
      for(int face=FRONT; face<=BOTTOM; face++)
204
        {
205
        if( faceIsVisible(face,cubeHalfSize) )
206
          {
207
          castTouchPointOntoFace(face,cubeHalfSize, mTouchPointCastOntoFace);
208

    
209
          float qX= (mTouchPointCastOntoFace[0]+cubeHalfSize) / (2*cubeHalfSize);
210
          float qY= (mTouchPointCastOntoFace[1]+cubeHalfSize) / (2*cubeHalfSize);
211
          float qZ= (mTouchPointCastOntoFace[2]+cubeHalfSize) / (2*cubeHalfSize);
212

    
213
          if( qX<=1 && qX>=0 && qY<=1 && qY>=0 && qZ<=1 && qZ>=0 ) return face;
214
          }
215
        }
216

    
217
      return NONE;
218
      }
219

    
220
///////////////////////////////////////////////////////////////////////////////////////////////////
221

    
222
    private void addNewRotation(int x, int y)
223
      {
224
      float cubeHalfSize= mRenderer.returnCubeSizeInScreenSpace()*0.5f;
225

    
226
      convertTouchPointToScreenSpace(x,y);
227
      castTouchPointOntoFace(mLastTouchedFace,cubeHalfSize,mDiff);
228

    
229
      mDiff[0] -= mTouchPointCastOntoFace[0];
230
      mDiff[1] -= mTouchPointCastOntoFace[1];
231
      mDiff[2] -= mTouchPointCastOntoFace[2];
232

    
233
      int xAxis = retFaceXaxis(mLastTouchedFace);
234
      int yAxis = retFaceYaxis(mLastTouchedFace);
235
      mRotationVect = (isVertical( mDiff[xAxis], mDiff[yAxis]) ? VECT[xAxis]:VECT[yAxis]);
236
      float offset= (mTouchPointCastOntoFace[mRotationVect]+cubeHalfSize)/(2*cubeHalfSize);
237

    
238
      mTouchPoint[0] = mPoint[0];
239
      mTouchPoint[1] = mPoint[1];
240
      mTouchPoint[2] = mPoint[2];
241

    
242
      mRenderer.getCube().addNewRotation(mRotationVect,offset);
243
      }
244

    
245
///////////////////////////////////////////////////////////////////////////////////////////////////
246

    
247
    private boolean isVertical(float x, float y)
248
      {
249
      return (y>x) ? (y>=-x) : (y< -x);
250
      }
251

    
252
///////////////////////////////////////////////////////////////////////////////////////////////////
253

    
254
    private void continueRotation(int x, int y)
255
      {
256
      convertTouchPointToScreenSpace(x,y);
257

    
258
      mDiff[0] = mPoint[0]-mTouchPoint[0];
259
      mDiff[1] = mPoint[1]-mTouchPoint[1];
260
      mDiff[2] = mPoint[2]-mTouchPoint[2];
261

    
262
      int xAxis= retFaceXaxis(mLastTouchedFace);
263
      int yAxis= retFaceYaxis(mLastTouchedFace);
264
      int sign = retFaceRotationSign(mLastTouchedFace);
265
      float angle = (mRotationVect==xAxis ? mDiff[yAxis] : -mDiff[xAxis]);
266

    
267
      mRenderer.getCube().continueRotation(SWIPING_SENSITIVITY*sign*angle/mScreenMin);
268
      }
269

    
270
///////////////////////////////////////////////////////////////////////////////////////////////////
271

    
272
    private void finishRotation()
273
      {
274
      mRenderer.finishRotation();
275
      }
276

    
277
///////////////////////////////////////////////////////////////////////////////////////////////////
278
// return quat1*quat2
279

    
280
    static Static4D quatMultiply( Static4D quat1, Static4D quat2 )
281
      {
282
      float qx = quat1.get1();
283
      float qy = quat1.get2();
284
      float qz = quat1.get3();
285
      float qw = quat1.get4();
286

    
287
      float rx = quat2.get1();
288
      float ry = quat2.get2();
289
      float rz = quat2.get3();
290
      float rw = quat2.get4();
291

    
292
      float tx = rw*qx - rz*qy + ry*qz + rx*qw;
293
      float ty = rw*qy + rz*qx + ry*qw - rx*qz;
294
      float tz = rw*qz + rz*qw - ry*qx + rx*qy;
295
      float tw = rw*qw - rz*qz - ry*qy - rx*qx;
296

    
297
      return new Static4D(tx,ty,tz,tw);
298
      }
299

    
300
///////////////////////////////////////////////////////////////////////////////////////////////////
301
// rotate 'vector' by quat^(-1)  ( i.e. return (quat^-1)*vector*quat )
302

    
303
    static Static4D rotateVectorByInvertedQuat(Static4D vector, Static4D quat)
304
      {
305
      float qx = quat.get1();
306
      float qy = quat.get2();
307
      float qz = quat.get3();
308
      float qw = quat.get4();
309

    
310
      Static4D quatInverted= new Static4D(-qx,-qy,-qz,qw);
311
      Static4D tmp = quatMultiply(quatInverted,vector);
312

    
313
      return quatMultiply(tmp,quat);
314
      }
315

    
316
///////////////////////////////////////////////////////////////////////////////////////////////////
317
// rotate 'vector' by quat  ( i.e. return quat*vector*(quat^-1) )
318

    
319
    static Static4D rotateVectorByQuat(Static4D vector, Static4D quat)
320
      {
321
      float qx = quat.get1();
322
      float qy = quat.get2();
323
      float qz = quat.get3();
324
      float qw = quat.get4();
325

    
326
      Static4D quatInverted= new Static4D(-qx,-qy,-qz,qw);
327
      Static4D tmp = quatMultiply(quat,vector);
328

    
329
      return quatMultiply(tmp,quatInverted);
330
      }
331

    
332
///////////////////////////////////////////////////////////////////////////////////////////////////
333

    
334
    private Static4D quatFromDrag(float dragX, float dragY)
335
      {
336
      float axisX = dragY;  // inverted X and Y - rotation axis is
337
      float axisY = dragX;  // perpendicular to (dragX,dragY)   Why not (-dragY, dragX) ? because Y axis is also inverted!
338
      float axisZ = 0;
339
      float axisL = (float)Math.sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
340

    
341
      if( axisL>0 )
342
        {
343
        axisX /= axisL;
344
        axisY /= axisL;
345
        axisZ /= axisL;
346

    
347
        float cosA = (float)Math.cos(axisL*Math.PI/mScreenMin);
348
        float sinA = (float)Math.sqrt(1-cosA*cosA);
349

    
350
        return new Static4D(axisX*sinA, axisY*sinA, axisZ*sinA, cosA);
351
        }
352

    
353
      return new Static4D(0f, 0f, 0f, 1f);
354
      }
355

    
356
///////////////////////////////////////////////////////////////////////////////////////////////////
357

    
358
    private boolean faceIsVisible(int face, float cubeHalfSize)
359
      {
360
      int sign = retFaceSign(face);
361
      int zAxis= retFaceZaxis(face);
362

    
363
      return sign*mCamera[zAxis] > cubeHalfSize;
364
      }
365

    
366
///////////////////////////////////////////////////////////////////////////////////////////////////
367

    
368
    private void convertTouchPointToScreenSpace(int x, int y)
369
      {
370
      float halfScrWidth  = mScreenWidth *0.5f;
371
      float halfScrHeight = mScreenHeight*0.5f;
372
      Static4D touchPoint = new Static4D(x-halfScrWidth, halfScrHeight-y, 0, 0);
373
      Static4D rotatedTouchPoint= rotateVectorByInvertedQuat(touchPoint, mQuatAccumulated);
374

    
375
      mPoint[0] = rotatedTouchPoint.get1();
376
      mPoint[1] = rotatedTouchPoint.get2();
377
      mPoint[2] = rotatedTouchPoint.get3();
378
      }
379

    
380
///////////////////////////////////////////////////////////////////////////////////////////////////
381

    
382
    private void convertCameraPointToScreenSpace()
383
      {
384
      Static4D cameraPoint = new Static4D(0, 0, mCameraDistance, 0);
385
      Static4D rotatedCamera= rotateVectorByInvertedQuat(cameraPoint, mQuatAccumulated);
386

    
387
      mCamera[0] = rotatedCamera.get1();
388
      mCamera[1] = rotatedCamera.get2();
389
      mCamera[2] = rotatedCamera.get3();
390
      }
391

    
392
///////////////////////////////////////////////////////////////////////////////////////////////////
393
// given precomputed mCamera and mPoint, respectively camera and touch point positions in ScreenSpace,
394
// cast this touch point onto the surface defined by the 'face' and write the cast coords to 'output'.
395
// Center of the 'face' = (0,0), third coord always +- cubeHalfSize.
396

    
397
    private void castTouchPointOntoFace(int face, float cubeHalfSize, float[] output)
398
      {
399
      int sign = retFaceSign(face);
400
      int zAxis= retFaceZaxis(face);
401
      float diff = mPoint[zAxis]-mCamera[zAxis];
402

    
403
      float ratio =  diff!=0.0f ? (sign*cubeHalfSize-mCamera[zAxis])/diff : 0.0f;
404

    
405
      output[0] = (mPoint[0]-mCamera[0])*ratio + mCamera[0];
406
      output[1] = (mPoint[1]-mCamera[1])*ratio + mCamera[1];
407
      output[2] = (mPoint[2]-mCamera[2])*ratio + mCamera[2];
408
      }
409

    
410
///////////////////////////////////////////////////////////////////////////////////////////////////
411

    
412
    private int retFaceSign(int face)
413
      {
414
      return (face==FRONT || face==RIGHT || face==TOP) ? 1:-1;
415
      }
416

    
417
///////////////////////////////////////////////////////////////////////////////////////////////////
418

    
419
    private int retFaceRotationSign(int face)
420
      {
421
      return (face==BACK || face==RIGHT || face==TOP) ? 1:-1;
422
      }
423

    
424
///////////////////////////////////////////////////////////////////////////////////////////////////
425
// retFace{X,Y,Z}axis: 3 functions which return which real AXIS gets mapped to which when we look
426
// directly at a given face. For example, when we look at the RIGHT face of the cube (with TOP still
427
// in the top) then the 'real' X axis becomes the 'Z' axis, thus retFaceZaxis(RIGHT) = VECTX.
428

    
429
    private int retFaceXaxis(int face)
430
      {
431
      switch(face)
432
        {
433
        case FRONT :
434
        case BACK  : return VECTX;
435
        case LEFT  :
436
        case RIGHT : return VECTZ;
437
        case TOP   :
438
        case BOTTOM: return VECTX;
439
        }
440

    
441
      return -1;
442
      }
443

    
444
///////////////////////////////////////////////////////////////////////////////////////////////////
445

    
446
    private int retFaceYaxis(int face)
447
      {
448
      switch(face)
449
        {
450
        case FRONT :
451
        case BACK  : return VECTY;
452
        case LEFT  :
453
        case RIGHT : return VECTY;
454
        case TOP   :
455
        case BOTTOM: return VECTZ;
456
        }
457

    
458
      return -1;
459
      }
460

    
461
///////////////////////////////////////////////////////////////////////////////////////////////////
462

    
463
    private int retFaceZaxis(int face)
464
      {
465
      switch(face)
466
        {
467
        case FRONT :
468
        case BACK  : return VECTZ;
469
        case LEFT  :
470
        case RIGHT : return VECTX;
471
        case TOP   :
472
        case BOTTOM: return VECTY;
473
        }
474

    
475
      return -1;
476
      }
477
}
478

    
(4-4/4)