Project

General

Profile

Download (25.2 KB) Statistics
| Branch: | Revision:

library / src / main / java / org / distorted / library / type / Dynamic.java @ 07037b8a

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Distorted.                                                               //
5
//                                                                                               //
6
// Distorted is free software: you can redistribute it and/or modify                             //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Distorted is distributed in the hope that it will be useful,                                  //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                            //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.library.type;
21

    
22
import java.util.Random;
23
import java.util.Vector;
24

    
25
///////////////////////////////////////////////////////////////////////////////////////////////////
26
/** A class to interpolate between a list of Statics.
27
* <p><ul>
28
* <li>if there is only one Point, just jump to it.
29
* <li>if there are two Points, linearly bounce between them
30
* <li>if there are more, interpolate a loop (or a path!) between them.
31
* </ul>
32
*/
33

    
34
// The way Interpolation between more than 2 Points is done:
35
// 
36
// Def: let w[i] = (w[i](x), w[i](y), w[i](z)) be the direction and speed we have to be flying at Point P[i]
37
//
38
// time it takes to fly though one segment v[i] --> v[i+1] : 0.0 --> 1.0
39
// w[i] should be parallel to v[i+1] - v[i-1]   (cyclic notation)
40
// |w[i]| proportional to | P[i]-P[i+1] |
41
//
42
// Given that the flight route (X(t), Y(t), Z(t)) from P(i) to P(i+1)  (0<=t<=1) has to satisfy
43
// X(0) = P[i  ](x), Y(0)=P[i  ](y), Z(0)=P[i  ](z), X'(0) = w[i  ](x), Y'(0) = w[i  ](y), Z'(0) = w[i  ](z)
44
// X(1) = P[i+1](x), Y(1)=P[i+1](y), Z(1)=P[i+1](z), X'(1) = w[i+1](x), Y'(1) = w[i+1](y), Z'(1) = w[i+1](z)
45
//
46
// we have the solution:  X(t) = at^3 + bt^2 + ct + d where
47
// a =  2*P[i](x) +   w[i](x) - 2*P[i+1](x) + w[i+1](x)
48
// b = -3*P[i](x) - 2*w[i](x) + 3*P[i+1](x) - w[i+1](x)
49
// c = w[i](x)
50
// d = P[i](x)
51
//
52
// and similarly Y(t) and Z(t).
53

    
54
public abstract class Dynamic
55
  {
56
  /**
57
   * One revolution takes us from the first vector to the last and back to first through the shortest path. 
58
   */
59
  public static final int MODE_LOOP = 0; 
60
  /**
61
   * We come back from the last to the first vector through the same way we got there.
62
   */
63
  public static final int MODE_PATH = 1; 
64
  /**
65
   * We just jump back from the last point to the first.
66
   */
67
  public static final int MODE_JUMP = 2; 
68

    
69
  /**
70
   * The default mode of access. When in this mode, we are able to call interpolate() with points in time
71
   * in any random order. This means one single Dynamic can be used in many effects simultaneously.
72
   * On the other hand, when in this mode, it is not possible to smoothly interpolate when mDuration suddenly
73
   * changes.
74
   */
75
  public static final int ACCESS_RANDOM     = 0;
76
  /**
77
   * Set the mode to ACCESS_SEQUENTIAL if you need to change mDuration and you would rather have the Dynamic
78
   * keep on smoothly interpolating.
79
   * On the other hand, in this mode, a Dynamic can only be accessed in sequential manner, which means one
80
   * Dynamic can only be used in one effect at a time.
81
   */
82
  public static final int ACCESS_SEQUENTIAL = 1;
83

    
84
  protected int mDimension;
85
  protected int numPoints;
86
  protected int mSegment;       // between which pair of points are we currently? (in case of PATH this is a bit complicated!)
87
  protected boolean cacheDirty; // VectorCache not up to date
88
  protected int mMode;          // LOOP, PATH or JUMP
89
  protected long mDuration;     // number of milliseconds it takes to do a full loop/path from first vector to the last and back to the first
90
  protected float mCount;       // number of loops/paths we will do; mCount = 1.5 means we go from the first vector to the last, back to first, and to the last again. 
91
  protected double mLastPos;
92
  protected int mAccessMode;
93

    
94
  protected class VectorNoise
95
    {
96
    float[][] n;
97

    
98
    VectorNoise()
99
      {
100
      n = new float[mDimension][NUM_NOISE];
101
      }
102

    
103
    void computeNoise()
104
      {
105
      n[0][0] = mRnd.nextFloat();
106
      for(int i=1; i<NUM_NOISE; i++) n[0][i] = n[0][i-1]+mRnd.nextFloat();
107

    
108
      float sum = n[0][NUM_NOISE-1] + mRnd.nextFloat();
109

    
110
      for(int i=0; i<NUM_NOISE; i++)
111
        {
112
        n[0][i] /=sum;
113
        for(int j=1; j<mDimension; j++) n[j][i] = mRnd.nextFloat()-0.5f;
114
        }
115
      }
116
    }
117

    
118
  protected Vector<VectorNoise> vn;
119
  protected float[] mFactor;
120
  protected float[] mNoise;
121
  protected float[][] baseV;
122

    
123
  ///////////////////////////////////////////////////////////////////////////////////////////////////
124
  // the coefficients of the X(t), Y(t) and Z(t) polynomials: X(t) = ax*T^3 + bx*T^2 + cx*t + dx  etc.
125
  // (tangent) is the vector tangent to the path.
126
  // (cached) is the original vector from vv (copied here so when interpolating we can see if it is
127
  // still valid and if not - rebuild the Cache
128

    
129
  protected class VectorCache
130
    {
131
    float[] a;
132
    float[] b;
133
    float[] c;
134
    float[] d;
135
    float[] tangent;
136
    float[] cached;
137

    
138
    VectorCache()
139
      {
140
      a = new float[mDimension];
141
      b = new float[mDimension];
142
      c = new float[mDimension];
143
      d = new float[mDimension];
144
      tangent = new float[mDimension];
145
      cached = new float[mDimension];
146
      }
147
    }
148

    
149
  protected Vector<VectorCache> vc;
150
  protected VectorCache tmp1, tmp2;
151

    
152
  private float[] buf;
153
  private float[] old;
154
  private static Random mRnd = new Random();
155
  private static final int NUM_NOISE = 5; // used iff mNoise>0.0. Number of intermediary points between each pair of adjacent vectors
156
                                          // where we randomize noise factors to make the way between the two vectors not so smooth.
157

    
158
///////////////////////////////////////////////////////////////////////////////////////////////////
159
// hide this from Javadoc
160
  
161
  protected Dynamic()
162
    {
163
    }
164

    
165
///////////////////////////////////////////////////////////////////////////////////////////////////
166

    
167
  protected Dynamic(int duration, float count, int dimension)
168
    {
169
    vc         = new Vector<>();
170
    vn         = null;
171
    numPoints  = 0;
172
    cacheDirty = false;
173
    mMode      = MODE_LOOP;
174
    mDuration  = duration;
175
    mCount     = count;
176
    mDimension = dimension;
177
    mSegment   = -1;
178
    mLastPos   = -1;
179
    mAccessMode= ACCESS_RANDOM;
180

    
181
    baseV      = new float[mDimension][mDimension];
182
    buf        = new float[mDimension];
183
    old        = new float[mDimension];
184
    }
185

    
186
///////////////////////////////////////////////////////////////////////////////////////////////////
187

    
188
  protected float noise(float time,int vecNum)
189
    {
190
    float lower, upper, len;
191
    float d = time*(NUM_NOISE+1);
192
    int index = (int)d;
193
    if( index>=NUM_NOISE+1 ) index=NUM_NOISE;
194
    VectorNoise tmpN = vn.elementAt(vecNum);
195

    
196
    float t = d-index;
197
    t = t*t*(3-2*t);
198

    
199
    switch(index)
200
      {
201
      case 0        : for(int i=0;i<mDimension-1;i++) mFactor[i] = mNoise[i+1]*tmpN.n[i+1][0]*t;
202
                      return time + mNoise[0]*(d*tmpN.n[0][0]-time);
203
      case NUM_NOISE: for(int i=0;i<mDimension-1;i++) mFactor[i] = mNoise[i+1]*tmpN.n[i+1][NUM_NOISE-1]*(1-t);
204
                      len = ((float)NUM_NOISE)/(NUM_NOISE+1);
205
                      lower = len + mNoise[0]*(tmpN.n[0][NUM_NOISE-1]-len);
206
                      return (1.0f-lower)*(d-NUM_NOISE) + lower;
207
      default       : float ya,yb;
208

    
209
                      for(int i=0;i<mDimension-1;i++)
210
                        {
211
                        yb = tmpN.n[i+1][index  ];
212
                        ya = tmpN.n[i+1][index-1];
213
                        mFactor[i] = mNoise[i+1]*((yb-ya)*t+ya);
214
                        }
215

    
216
                      len = ((float)index)/(NUM_NOISE+1);
217
                      lower = len + mNoise[0]*(tmpN.n[0][index-1]-len);
218
                      len = ((float)index+1)/(NUM_NOISE+1);
219
                      upper = len + mNoise[0]*(tmpN.n[0][index  ]-len);
220

    
221
                      return (upper-lower)*(d-index) + lower;
222
      }
223
    }
224

    
225
///////////////////////////////////////////////////////////////////////////////////////////////////
226
// debugging only
227

    
228
  private void printBase(String str)
229
    {
230
    String s;
231
    float t;
232

    
233
    for(int i=0; i<mDimension; i++)
234
      {
235
      s = "";
236

    
237
      for(int j=0; j<mDimension; j++)
238
        {
239
        t = ((int)(1000*baseV[i][j]))/(1000.0f);
240
        s+=(" "+t);
241
        }
242
      android.util.Log.e("dynamic", str+" base "+i+" : " + s);
243
      }
244
    }
245

    
246
///////////////////////////////////////////////////////////////////////////////////////////////////
247
// debugging only
248

    
249
  @SuppressWarnings("unused")
250
  private void checkBase()
251
    {
252
    float tmp, cosA;
253
    float[] len= new float[mDimension];
254
    boolean error=false;
255

    
256
    for(int i=0; i<mDimension; i++)
257
      {
258
      len[i] = 0.0f;
259

    
260
      for(int k=0; k<mDimension; k++)
261
        {
262
        len[i] += baseV[i][k]*baseV[i][k];
263
        }
264

    
265
      if( len[i] == 0.0f || len[0]/len[i] < 0.95f || len[0]/len[i]>1.05f )
266
        {
267
        android.util.Log.e("dynamic", "length of vector "+i+" : "+Math.sqrt(len[i]));
268
        error = true;
269
        }
270
      }
271

    
272
    for(int i=0; i<mDimension; i++)
273
      for(int j=i+1; j<mDimension; j++)
274
        {
275
        tmp = 0.0f;
276

    
277
        for(int k=0; k<mDimension; k++)
278
          {
279
          tmp += baseV[i][k]*baseV[j][k];
280
          }
281

    
282
        cosA = ( (len[i]==0.0f || len[j]==0.0f) ? 0.0f : tmp/(float)Math.sqrt(len[i]*len[j]));
283

    
284
        if( cosA > 0.05f || cosA < -0.05f )
285
          {
286
          android.util.Log.e("dynamic", "cos angle between vectors "+i+" and "+j+" : "+cosA);
287
          error = true;
288
          }
289
        }
290

    
291
    if( error ) printBase("");
292
    }
293

    
294
///////////////////////////////////////////////////////////////////////////////////////////////////
295

    
296
  private void checkAngle(int index)
297
    {
298
    float cosA = 0.0f;
299

    
300
    for(int k=0;k<mDimension; k++)
301
      cosA += baseV[index][k]*old[k];
302

    
303
    if( cosA<0.0f )
304
      {
305
/*
306
      /// DEBUGGING ////
307
      String s = index+" (";
308
      float t;
309

    
310
      for(int j=0; j<mDimension; j++)
311
        {
312
        t = ((int)(100*baseV[index][j]))/(100.0f);
313
        s+=(" "+t);
314
        }
315
      s += ") (";
316

    
317
      for(int j=0; j<mDimension; j++)
318
        {
319
        t = ((int)(100*old[j]))/(100.0f);
320
        s+=(" "+t);
321
        }
322
      s+= ")";
323

    
324
      android.util.Log.e("dynamic", "kat: " + s);
325
      /// END DEBUGGING ///
326
*/
327
      for(int j=0; j<mDimension; j++)
328
        baseV[index][j] = -baseV[index][j];
329
      }
330
    }
331

    
332
///////////////////////////////////////////////////////////////////////////////////////////////////
333
// helper function in case we are interpolating through exactly 2 points
334

    
335
  protected void computeOrthonormalBase2(Static1D curr, Static1D next)
336
    {
337
    switch(mDimension)
338
      {
339
      case 1: baseV[0][0] = (next.x-curr.x);
340
              break;
341
      case 2: Static2D curr2 = (Static2D)curr;
342
              Static2D next2 = (Static2D)next;
343
              baseV[0][0] = (next2.x-curr2.x);
344
              baseV[0][1] = (next2.y-curr2.y);
345
              break;
346
      case 3: Static3D curr3 = (Static3D)curr;
347
              Static3D next3 = (Static3D)next;
348
              baseV[0][0] = (next3.x-curr3.x);
349
              baseV[0][1] = (next3.y-curr3.y);
350
              baseV[0][2] = (next3.z-curr3.z);
351
              break;
352
      case 4: Static4D curr4 = (Static4D)curr;
353
              Static4D next4 = (Static4D)next;
354
              baseV[0][0] = (next4.x-curr4.x);
355
              baseV[0][1] = (next4.y-curr4.y);
356
              baseV[0][2] = (next4.z-curr4.z);
357
              baseV[0][3] = (next4.w-curr4.w);
358
              break;
359
      case 5: Static5D curr5 = (Static5D)curr;
360
              Static5D next5 = (Static5D)next;
361
              baseV[0][0] = (next5.x-curr5.x);
362
              baseV[0][1] = (next5.y-curr5.y);
363
              baseV[0][2] = (next5.z-curr5.z);
364
              baseV[0][3] = (next5.w-curr5.w);
365
              baseV[0][4] = (next5.v-curr5.v);
366
              break;
367
      default: throw new RuntimeException("Unsupported dimension");
368
      }
369

    
370
    if( baseV[0][0] == 0.0f )
371
      {
372
      baseV[1][0] = 1.0f;
373
      baseV[1][1] = 0.0f;
374
      }
375
    else
376
      {
377
      baseV[1][0] = 0.0f;
378
      baseV[1][1] = 1.0f;
379
      }
380

    
381
    for(int i=2; i<mDimension; i++)
382
      {
383
      baseV[1][i] = 0.0f;
384
      }
385

    
386
    computeOrthonormalBase();
387
    }
388

    
389
///////////////////////////////////////////////////////////////////////////////////////////////////
390
// helper function in case we are interpolating through more than 2 points
391

    
392
  protected void computeOrthonormalBaseMore(float time,VectorCache vc)
393
    {
394
    for(int i=0; i<mDimension; i++)
395
      {
396
      baseV[0][i] = (3*vc.a[i]*time+2*vc.b[i])*time+vc.c[i];   // first derivative, i.e. velocity vector
397
      old[i]      = baseV[1][i];
398
      baseV[1][i] =  6*vc.a[i]*time+2*vc.b[i];                 // second derivative,i.e. acceleration vector
399
      }
400

    
401
    computeOrthonormalBase();
402
    }
403

    
404
///////////////////////////////////////////////////////////////////////////////////////////////////
405
// When this function gets called, baseV[0] and baseV[1] should have been filled with two mDimension-al
406
// vectors. This function then fills the rest of the baseV array with a mDimension-al Orthonormal base.
407
// (mDimension-2 vectors, pairwise orthogonal to each other and to the original 2). The function always
408
// leaves base[0] alone but generally speaking must adjust base[1] to make it orthogonal to base[0]!
409
// The whole baseV is then used to compute Noise.
410
//
411
// When computing noise of a point travelling along a N-dimensional path, there are three cases:
412
// a) we may be interpolating through 1 point, i.e. standing in place - nothing to do in this case
413
// b) we may be interpolating through 2 points, i.e. travelling along a straight line between them -
414
//    then pass the velocity vector in baseV[0] and anything linearly independent in base[1].
415
//    The output will then be discontinuous in dimensions>2 (sad corollary from the Hairy Ball Theorem)
416
//    but we don't care - we are travelling along a straight line, so velocity (aka baseV[0]!) does
417
//    not change.
418
// c) we may be interpolating through more than 2 points. Then interpolation formulas ensure the path
419
//    will never be a straight line, even locally -> we can pass in baseV[0] and baseV[1] the velocity
420
//    and the acceleration (first and second derivatives of the path) which are then guaranteed to be
421
//    linearly independent. Then we can ensure this is continuous in dimensions <=4. This leaves
422
//    dimension 5 (ATM WAVE is 5-dimensional) discontinuous -> WAVE will suffer from chaotic noise.
423
//
424
// Bear in mind here the 'normal' in 'orthonormal' means 'length equal to the length of the original
425
// velocity vector' (rather than the standard 1)
426

    
427
  protected void computeOrthonormalBase()
428
    {
429
    int last_non_zero=-1;
430
    float tmp;
431

    
432
    for(int i=0; i<mDimension; i++)
433
      if( baseV[0][i] != 0.0f )
434
        last_non_zero=i;
435

    
436
    if( last_non_zero==-1 )                                               ///
437
      {                                                                   //  velocity is the 0 vector -> two
438
      for(int i=0; i<mDimension-1; i++)                                   //  consecutive points we are interpolating
439
        for(int j=0; j<mDimension; j++)                                   //  through are identical -> no noise,
440
          baseV[i+1][j]= 0.0f;                                            //  set the base to 0 vectors.
441
      }                                                                   ///
442
    else
443
      {
444
      for(int i=1; i<mDimension; i++)                                     /// One iteration computes baseV[i][*]
445
        {                                                                 //  (aka b[i]), the i-th orthonormal vector.
446
        buf[i-1]=0.0f;                                                    //
447
                                                                          //  We can use (modified!) Gram-Schmidt.
448
        for(int k=0; k<mDimension; k++)                                   //
449
          {                                                               //
450
          if( i>=2 )                                                      //  b[0] = b[0]
451
            {                                                             //  b[1] = b[1] - (<b[1],b[0]>/<b[0],b[0]>)*b[0]
452
            old[k] = baseV[i][k];                                         //  b[2] = b[2] - (<b[2],b[0]>/<b[0],b[0]>)*b[0] - (<b[2],b[1]>/<b[1],b[1]>)*b[1]
453
            baseV[i][k]= (k==i-(last_non_zero>=i?1:0)) ? 1.0f : 0.0f;     //  b[3] = b[3] - (<b[3],b[0]>/<b[0],b[0]>)*b[0] - (<b[3],b[1]>/<b[1],b[1]>)*b[1] - (<b[3],b[2]>/<b[2],b[2]>)*b[2]
454
            }                                                             //  (...)
455
                                                                          //  then b[i] = b[i] / |b[i]|  ( Here really b[i] = b[i] / (|b[0]|/|b[i]|)
456
          tmp = baseV[i-1][k];                                            //
457
          buf[i-1] += tmp*tmp;                                            //
458
          }                                                               //
459
                                                                          //
460
        for(int j=0; j<i; j++)                                            //
461
          {                                                               //
462
          tmp = 0.0f;                                                     //
463
          for(int k=0;k<mDimension; k++) tmp += baseV[i][k]*baseV[j][k];  //
464
          tmp /= buf[j];                                                  //
465
          for(int k=0;k<mDimension; k++) baseV[i][k] -= tmp*baseV[j][k];  //
466
          }                                                               //
467
                                                                          //
468
        checkAngle(i);                                                    //
469
        }                                                                 /// end compute baseV[i][*]
470

    
471
      buf[mDimension-1]=0.0f;                                             /// Normalize
472
      for(int k=0; k<mDimension; k++)                                     //
473
        {                                                                 //
474
        tmp = baseV[mDimension-1][k];                                     //
475
        buf[mDimension-1] += tmp*tmp;                                     //
476
        }                                                                 //
477
                                                                          //
478
      for(int i=1; i<mDimension; i++)                                     //
479
        {                                                                 //
480
        tmp = (float)Math.sqrt(buf[0]/buf[i]);                            //
481
        for(int k=0;k<mDimension; k++) baseV[i][k] *= tmp;                //
482
        }                                                                 /// End Normalize
483
      }
484

    
485
    //printBase("end");
486
    //checkBase();
487
    }
488

    
489
///////////////////////////////////////////////////////////////////////////////////////////////////
490
// internal debugging only!
491

    
492
  public String print()
493
    {
494
    return "duration="+mDuration+" count="+mCount+" Noise[0]="+mNoise[0]+" numVectors="+numPoints+" mMode="+mMode;
495
    }
496

    
497
///////////////////////////////////////////////////////////////////////////////////////////////////
498

    
499
  abstract void interpolate(float[] buffer, int offset, float time);
500

    
501
///////////////////////////////////////////////////////////////////////////////////////////////////
502
// PUBLIC API
503
///////////////////////////////////////////////////////////////////////////////////////////////////
504

    
505
/**
506
 * Sets the mode of the interpolation to Loop, Path or Jump.
507
 * <ul>
508
 * <li>Loop is when we go from the first point all the way to the last, and the back to the first through 
509
 * the shortest way.
510
 * <li>Path is when we come back from the last point back to the first the same way we got there.
511
 * <li>Jump is when we go from first to last and then jump back to the first.
512
 * </ul>
513
 * 
514
 * @param mode {@link Dynamic#MODE_LOOP}, {@link Dynamic#MODE_PATH} or {@link Dynamic#MODE_JUMP}.
515
 */
516
  public void setMode(int mode)
517
    {
518
    mMode = mode;  
519
    }
520

    
521
///////////////////////////////////////////////////////////////////////////////////////////////////
522
/**
523
 * Returns the number of Statics this Dynamic has been fed with.
524
 *   
525
 * @return the number of Statics we are currently interpolating through.
526
 */
527
  public synchronized int getNumPoints()
528
    {
529
    return numPoints;  
530
    }
531

    
532
///////////////////////////////////////////////////////////////////////////////////////////////////
533
/**
534
 * Controls how many times we want to interpolate.
535
 * <p>
536
 * Count equal to 1 means 'go from the first Static to the last and back'. Does not have to be an
537
 * integer - i.e. count=1.5 would mean 'start at the first Point, go to the last, come back to the first, 
538
 * go to the last again and stop'.
539
 * Count<=0 means 'go on interpolating indefinitely'.
540
 * 
541
 * @param count the number of times we want to interpolate between our collection of Statics.
542
 */
543
  public void setCount(float count)
544
    {
545
    mCount = count;  
546
    }
547

    
548
///////////////////////////////////////////////////////////////////////////////////////////////////
549
/**
550
 * Sets the time it takes to do one full interpolation.
551
 * 
552
 * @param duration Time, in milliseconds, it takes to do one full interpolation, i.e. go from the first 
553
 *                 Point to the last and back. 
554
 */
555
  public void setDuration(long duration)
556
    {
557
    mDuration = duration;
558
    }
559

    
560

    
561
///////////////////////////////////////////////////////////////////////////////////////////////////
562
/**
563
 * Sets the access mode this Dynamic will be working in.
564
 *
565
 * @param mode {@link Dynamic#ACCESS_RANDOM} or {@link Dynamic#ACCESS_SEQUENTIAL}.
566
 */
567
  public void setAccessMode(int mode)
568
    {
569
    mAccessMode = mode;
570
    mLastPos = -1;
571
    }
572

    
573
///////////////////////////////////////////////////////////////////////////////////////////////////
574
/**
575
 * Writes the results of interpolation between the Points at time 'time' to the passed float buffer.
576
 *
577
 * @param buffer Float buffer we will write the results to.
578
 * @param offset Offset in the buffer where to write the result.
579
 * @param time Time of interpolation. Time=0.0 would return the first Point, Time=0.5 - the last,
580
 *             time=1.0 - the first again, and time 0.1 would be 1/5 of the way between the first and the last Points.
581
 */
582
  public void interpolateMain(float[] buffer, int offset, long time)
583
    {
584
    if( mDuration<=0.0f )
585
      {
586
      interpolate(buffer,offset,mCount-(int)mCount);
587
      }
588
    else
589
      {
590
      double pos = (double)time/mDuration;
591

    
592
      if( pos<=mCount || mCount<=0.0f )
593
        {
594
        interpolate(buffer,offset, (float)(pos-(int)pos) );
595
        }
596
      }
597
    }
598

    
599
///////////////////////////////////////////////////////////////////////////////////////////////////
600
/**
601
 * Writes the results of interpolation between the Points at time 'time' to the passed float buffer.
602
 * <p>
603
 * This version differs from the previous in that it returns a boolean value which indicates whether
604
 * the interpolation is finished.
605
 *
606
 * @param buffer Float buffer we will write the results to.
607
 * @param offset Offset in the buffer where to write the result.
608
 * @param time Time of interpolation. Time=0.0 would return the first Point, Time=0.5 - the last,
609
 *             time=1.0 - the first again, and time 0.1 would be 1/5 of the way between the first and the last Points.
610
 * @param step Time difference between now and the last time we called this function. Needed to figure out
611
 *             if the previous time we were called the effect wasn't finished yet, but now it is.
612
 * @return true if the interpolation reached its end.
613
 */
614
  public boolean interpolateMain(float[] buffer, int offset, long time, long step)
615
    {
616
    if( mDuration<=0.0f )
617
      {
618
      interpolate(buffer,offset,mCount-(int)mCount);
619
      return false;
620
      }
621

    
622
    double pos;
623

    
624
    if( mAccessMode==ACCESS_SEQUENTIAL )
625
      {
626
      pos = mLastPos<0 ? (double)time/mDuration : (double)step/mDuration + mLastPos;
627
      mLastPos = pos;
628
      }
629
    else
630
      {
631
      pos = (double)time/mDuration;
632
      }
633

    
634
    if( pos<=mCount || mCount<=0.0f )
635
      {
636
      interpolate(buffer,offset, (float)(pos-(int)pos) );
637

    
638
      if( time+step > mDuration*mCount && mCount>0.0f )
639
        {
640
        interpolate(buffer,offset,mCount-(int)mCount);
641
        return true;
642
        }
643
      }
644

    
645
    return false;
646
    }
647

    
648
///////////////////////////////////////////////////////////////////////////////////////////////////
649
  }
(6-6/17)