1
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
2
|
// Copyright 2016 Leszek Koltunski //
|
3
|
// //
|
4
|
// This file is part of Distorted. //
|
5
|
// //
|
6
|
// Distorted is free software: you can redistribute it and/or modify //
|
7
|
// it under the terms of the GNU General Public License as published by //
|
8
|
// the Free Software Foundation, either version 2 of the License, or //
|
9
|
// (at your option) any later version. //
|
10
|
// //
|
11
|
// Distorted is distributed in the hope that it will be useful, //
|
12
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
13
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
14
|
// GNU General Public License for more details. //
|
15
|
// //
|
16
|
// You should have received a copy of the GNU General Public License //
|
17
|
// along with Distorted. If not, see <http://www.gnu.org/licenses/>. //
|
18
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
19
|
|
20
|
uniform vec3 u_bmpD; // half of object width x half of object height X half the depth;
|
21
|
// point (0,0,0) is the center of the object
|
22
|
|
23
|
uniform float u_Depth; // max absolute value of v.z ; beyond that the vertex would be culled by the near or far planes.
|
24
|
// I read OpenGL ES has a built-in uniform variable gl_DepthRange.near = n,
|
25
|
// .far = f, .diff = f-n so maybe u_Depth is redundant
|
26
|
// Update: this struct is only available in fragment shaders
|
27
|
|
28
|
uniform mat4 u_MVPMatrix; // A constant representing the combined model/view/projection matrix.
|
29
|
uniform mat4 u_MVMatrix; // A constant representing the combined model/view matrix.
|
30
|
|
31
|
attribute vec3 a_Position; // Per-vertex position information we will pass in.
|
32
|
attribute vec4 a_Color; // Per-vertex color information we will pass in.
|
33
|
attribute vec3 a_Normal; // Per-vertex normal information we will pass in.
|
34
|
attribute vec2 a_TexCoordinate; // Per-vertex texture coordinate information we will pass in.
|
35
|
|
36
|
varying vec3 v_Position; //
|
37
|
varying vec4 v_Color; // Those will be passed into the fragment shader.
|
38
|
varying vec3 v_Normal; //
|
39
|
varying vec2 v_TexCoordinate; //
|
40
|
|
41
|
uniform int vNumEffects; // total number of vertex effects
|
42
|
|
43
|
#if NUM_VERTEX>0
|
44
|
uniform int vType[NUM_VERTEX]; // their types.
|
45
|
uniform vec3 vUniforms[3*NUM_VERTEX]; // i-th effect is 3 consecutive vec3's: [3*i], [3*i+1], [3*i+2].
|
46
|
// The first 3 floats are the Interpolated values,
|
47
|
// next 4 are the Region, next 2 are the Center.
|
48
|
#endif
|
49
|
|
50
|
#if NUM_VERTEX>0
|
51
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
52
|
// Deform the whole shape of the bitmap by force V
|
53
|
//
|
54
|
// If the point of application (Sx,Sy) is on the edge of the bitmap, then:
|
55
|
// a) ignore Vz
|
56
|
// b) change shape of the whole bitmap in the following way:
|
57
|
// Suppose the upper-left corner of the bitmap rectangle is point L, upper-right - R, force vector V is applied to point M on the upper edge,
|
58
|
// length of the bitmap = w, height = h, |LM| = Wl, |MR| = Wr, force vector V=(Vx,Vy). Also let H = h/(h+Vy)
|
59
|
//
|
60
|
// Let now L' and R' be points such that vec(LL') = Wr/w * vec(V) and vec(RR') = Wl/w * vec(V)
|
61
|
// now let Vl be a point on the line segment L --> M+vec(V) such that Vl(y) = L'(y)
|
62
|
// and let Vr be a point on the line segment R --> M+vec(V) such that Vr(y) = R'(y)
|
63
|
//
|
64
|
// Now define points Fl and Fr, the points L and R will be moved to under force V, with Fl(y)=L'(y) and Fr(y)=R'(y) and |VrFr|/|VrR'| = |VlFl|/|VlL'| = H
|
65
|
// Now notice that |VrR'| = |VlL'| = Wl*Wr / w ( a little geometric puzzle! )
|
66
|
//
|
67
|
// Then points L,R under force V move by vectors vec(Fl), vec(Fr) where
|
68
|
// vec(Fl) = (Wr/w) * [ (Vx+Wl)-Wl*H, Vy ] = (Wr/w) * [ Wl*Vy / (h+Vy) + Vx, Vy ]
|
69
|
// vec(Fr) = (Wl/w) * [ (Vx-Wr)+Wr*H, Vy ] = (Wl/w) * [-Wr*Vy / (h+Vy) + Vx, Vy ]
|
70
|
//
|
71
|
// Lets now denote M+vec(v) = M'. The line segment LMR gets distorted to the curve Fl-M'-Fr. Let's now arbitrarilly decide that:
|
72
|
// a) at point Fl the curve has to be parallel to line LM'
|
73
|
// b) at point M' - to line LR
|
74
|
// c) at point Fr - to line M'R
|
75
|
//
|
76
|
// Now if Fl=(flx,fly) , M'=(mx,my) , Fr=(frx,fry); direction vector at Fl is (vx,vy) and at M' is (+c,0) where +c is some positive constant, then
|
77
|
// the parametric equations of the Fl--->M' section of the curve (which has to satisfy (X(0),Y(0)) = Fl, (X(1),Y(1))=M', (X'(0),Y'(0)) = (vx,vy), (X'(1),Y'(1)) = (+c,0)) is
|
78
|
//
|
79
|
// X(t) = ( (mx-flx)-vx )t^2 + vx*t + flx (*)
|
80
|
// Y(t) = ( vy - 2(my-fly) )t^3 + ( 3(my-fly) -2vy )t^2 + vy*t + fly
|
81
|
//
|
82
|
// Here we have to have X'(1) = 2(mx-flx)-vx which is positive <==> vx<2(mx-flx). We also have to have vy<2(my-fly) so that Y'(t)>0 (this is a must otherwise we have local loops!)
|
83
|
// Similarly for the Fr--->M' part of the curve we have the same equation except for the fact that this time we have to have X'(1)<0 so now we have to have vx>2(mx-flx).
|
84
|
//
|
85
|
// If we are stretching the left or right edge of the bitmap then the only difference is that we have to have (X'(1),Y'(1)) = (0,+-c) with + or - c depending on which part of the curve
|
86
|
// we are tracing. Then the parametric equation is
|
87
|
//
|
88
|
// X(t) = ( vx - 2(mx-flx) )t^3 + ( 3(mx-flx) -2vx )t^2 + vx*t + flx
|
89
|
// Y(t) = ( (my-fly)-vy )t^2 + vy*t + fly
|
90
|
//
|
91
|
// If we are dragging the top edge:
|
92
|
//
|
93
|
// Now point (x,u_bmpD.x) on the top edge will move by vector (X(t),Y(t)) where those functions are given by (*) and
|
94
|
// t = x < dSx ? (u_bmpD.x+x)/(u_bmpD.x+dSx) : (u_bmpD.x-x)/(u_bmpD.x-dSx)
|
95
|
// Any point (x,y) will move by vector (a*X(t),a*Y(t)) where a is (y+u_bmpD.y)/(2*u_bmpD.y)
|
96
|
|
97
|
void deform(in int effect, inout vec4 v)
|
98
|
{
|
99
|
vec2 p = vUniforms[effect+2].yz;
|
100
|
vec2 w = vUniforms[effect].xy; // w = vec(MM')
|
101
|
vec2 vert_vec, horz_vec;
|
102
|
vec2 signXY = sign(p-v.xy);
|
103
|
vec2 time = (u_bmpD.xy+signXY*v.xy)/(u_bmpD.xy+signXY*p);
|
104
|
vec2 factorV = vec2(0.5,0.5) + sign(p)*v.xy/(4.0*u_bmpD.xy);
|
105
|
vec2 factorD = (u_bmpD.xy-signXY*p)/(2.0*u_bmpD.xy);
|
106
|
vec2 vert_d = factorD.x*w;
|
107
|
vec2 horz_d = factorD.y*w;
|
108
|
vec2 corr = 0.33 / ( 1.0 + (4.0*u_bmpD.x*u_bmpD.x)/dot(w,w) ) * (p+w+signXY*u_bmpD.xy); // .x = the vector tangent to X(t) at Fl = 0.3*vec(LM') (or vec(RM') if signXY.x=-1).
|
109
|
// .y = the vector tangent to X(t) at Fb = 0.3*vec(BM') (or vec(TM') if signXY.y=-1)
|
110
|
// the scalar: make the length of the speed vectors at Fl and Fr be 0 when force vector 'w' is zero
|
111
|
vert_vec.x = ( w.x-vert_d.x-corr.x )*time.x*time.x + corr.x*time.x + vert_d.x;
|
112
|
horz_vec.y = (-w.y+horz_d.y+corr.y )*time.y*time.y - corr.y*time.y - horz_d.y;
|
113
|
vert_vec.y = (-3.0*vert_d.y+2.0*w.y )*time.x*time.x*time.x + (-3.0*w.y+5.0*vert_d.y )*time.x*time.x - vert_d.y*time.x - vert_d.y;
|
114
|
horz_vec.x = ( 3.0*horz_d.x-2.0*w.x )*time.y*time.y*time.y + ( 3.0*w.x-5.0*horz_d.x )*time.y*time.y + horz_d.x*time.y + horz_d.x;
|
115
|
|
116
|
v.xy += (factorV.y*vert_vec + factorV.x*horz_vec);
|
117
|
}
|
118
|
|
119
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
120
|
// Let (v.x,v.y) be point P (the current vertex).
|
121
|
// Let vPoint[effect].xy be point S (the center of effect)
|
122
|
// Let vPoint[effect].xy + vRegion[effect].xy be point O (the center of the Region circle)
|
123
|
// Let X be the point where the halfline SP meets a) if region is non-null, the region circle b) otherwise, the edge of the bitmap.
|
124
|
//
|
125
|
// If P is inside the Region, this function returns |PX|/||SX|, aka the 'degree' of point P. Otherwise, it returns 0.
|
126
|
//
|
127
|
// We compute the point where half-line from S to P intersects the edge of the bitmap. If that's inside the circle, end. If not, we solve the
|
128
|
// the triangle with vertices at O, P and the point of intersection with the circle we are looking for X.
|
129
|
// We know the lengths |PO|, |OX| and the angle OPX , because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
|
130
|
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so
|
131
|
// PX = -a + sqrt(a^2 + OX^2 - PO^2) where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
|
132
|
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
|
133
|
//
|
134
|
// the trick below is the if-less version of the
|
135
|
//
|
136
|
// t = dx<0.0 ? (u_bmpD.x-v.x) / (u_bmpD.x-ux) : (u_bmpD.x+v.x) / (u_bmpD.x+ux);
|
137
|
// h = dy<0.0 ? (u_bmpD.y-v.y) / (u_bmpD.y-uy) : (u_bmpD.y+v.y) / (u_bmpD.y+uy);
|
138
|
// d = min(t,h);
|
139
|
//
|
140
|
// float d = min(-ps.x/(sign(ps.x)*u_bmpD.x+p.x),-ps.y/(sign(ps.y)*u_bmpD.y+p.y))+1.0;
|
141
|
|
142
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
143
|
// return degree of the point as defined by the bitmap rectangle
|
144
|
|
145
|
float degree_bitmap(in vec2 S, in vec2 PS)
|
146
|
{
|
147
|
return min(-PS.x/(sign(PS.x)*u_bmpD.x+S.x),-PS.y/(sign(PS.y)*u_bmpD.y+S.y))+1.0;
|
148
|
}
|
149
|
|
150
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
151
|
// return degree of the point as defined by the Region
|
152
|
// Currently only supports circles; .xy = vector from center of effect to the center of the circle, .z = radius
|
153
|
|
154
|
float degree_region(in vec3 region, in vec2 PS)
|
155
|
{
|
156
|
vec2 PO = PS + region.xy;
|
157
|
float D = region.z*region.z-dot(PO,PO); // D = |OX|^2 - |PO|^2
|
158
|
float ps_sq = dot(PS,PS);
|
159
|
float DOT = dot(PS,PO)/ps_sq;
|
160
|
|
161
|
return max(sign(D),0.0) / (1.0 + 1.0/(sqrt(DOT*DOT+D/ps_sq)-DOT)); // if D<=0 (i.e p is outside the Region) return 0.
|
162
|
}
|
163
|
|
164
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
165
|
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
|
166
|
|
167
|
float degree(in vec3 region, in vec2 S, in vec2 PS)
|
168
|
{
|
169
|
vec2 PO = PS + region.xy;
|
170
|
float D = region.z*region.z-dot(PO,PO); // D = |OX|^2 - |PO|^2
|
171
|
float E = min(-PS.x/(sign(PS.x)*u_bmpD.x+S.x),-PS.y/(sign(PS.y)*u_bmpD.y+S.y))+1.0;
|
172
|
float ps_sq = dot(PS,PS);
|
173
|
float DOT = dot(PS,PO)/ps_sq;
|
174
|
|
175
|
return max(sign(D),0.0) * min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D/ps_sq)-DOT)),E); // if D<=0 (i.e p is outside the Region) return 0.
|
176
|
}
|
177
|
|
178
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
179
|
// Distort effect
|
180
|
//
|
181
|
// Point (Px,Py) gets moved by vector (Wx,Wy,Wz) where Wx/Wy = Vx/Vy i.e. Wx=aVx and Wy=aVy where
|
182
|
// a=Py/Sy (N --> when (Px,Py) is above (Sx,Sy)) or a=Px/Sx (W) or a=(w-Px)/(w-Sx) (E) or a=(h-Py)/(h-Sy) (S)
|
183
|
// It remains to be computed which of the N,W,E or S case we have: answer: a = min[ Px/Sx , Py/Sy , (w-Px)/(w-Sx) , (h-Py)/(h-Sy) ]
|
184
|
// Computations above are valid for screen (0,0)x(w,h) but here we have (-w/2,-h/2)x(w/2,h/2)
|
185
|
//
|
186
|
// the vertical part
|
187
|
// Let |(v.x,v.y),(ux,uy)| = |PS|, ux-v.x=dx,uy-v.y=dy, f(x) (0<=x<=|SX|) be the shape of the side of the bubble.
|
188
|
// H(v.x,v.y) = |PS|>|SX| ? 0 : f(|PX|)
|
189
|
// N(v.x,v.y) = |PS|>|SX| ? (0,0,1) : ( -(dx/|PS|)sin(beta), -(dy/|PS|)sin(beta), cos(beta) ) where tan(beta) is f'(|PX|)
|
190
|
// ( i.e. normalize( dx, dy, -|PS|/f'(|PX|))
|
191
|
//
|
192
|
// Now we also have to take into account the effect horizontal move by V=(u_dVx[i],u_dVy[i]) will have on the normal vector.
|
193
|
// Solution:
|
194
|
// 1. Decompose the V into two subcomponents, one parallel to SX and another perpendicular.
|
195
|
// 2. Convince yourself (draw!) that the perpendicular component has no effect on normals.
|
196
|
// 3. The parallel component changes the length of |SX| by the factor of a=(|SX|-|Vpar|)/|SX| (where the length can be negative depending on the direction)
|
197
|
// 4. that in turn leaves the x and y parts of the normal unchanged and multiplies the z component by a!
|
198
|
//
|
199
|
// |Vpar| = (u_dVx[i]*dx - u_dVy[i]*dy) / sqrt(ps_sq) = (Vx*dx-Vy*dy)/ sqrt(ps_sq) (-Vy because y is inverted)
|
200
|
// a = (|SX| - |Vpar|)/|SX| = 1 - |Vpar|/((sqrt(ps_sq)/(1-d)) = 1 - (1-d)*|Vpar|/sqrt(ps_sq) = 1-(1-d)*(Vx*dx-Vy*dy)/ps_sq
|
201
|
//
|
202
|
// Side of the bubble
|
203
|
//
|
204
|
// choose from one of the three bubble shapes: the cone, the thin bubble and the thick bubble
|
205
|
// Case 1:
|
206
|
// f(t) = t, i.e. f(x) = uz * x/|SX| (a cone)
|
207
|
// -|PS|/f'(|PX|) = -|PS|*|SX|/uz but since ps_sq=|PS|^2 and d=|PX|/|SX| then |PS|*|SX| = ps_sq/(1-d)
|
208
|
// so finally -|PS|/f'(|PX|) = -ps_sq/(uz*(1-d))
|
209
|
//
|
210
|
// Case 2:
|
211
|
// f(t) = 3t^2 - 2t^3 --> f(0)=0, f'(0)=0, f'(1)=0, f(1)=1 (the bell curve)
|
212
|
// here we have t = x/|SX| which makes f'(|PX|) = 6*uz*|PS|*|PX|/|SX|^3.
|
213
|
// so -|PS|/f'(|PX|) = (-|SX|^3)/(6uz|PX|) = (-|SX|^2) / (6*uz*d) but
|
214
|
// d = |PX|/|SX| and ps_sq = |PS|^2 so |SX|^2 = ps_sq/(1-d)^2
|
215
|
// so finally -|PS|/f'(|PX|) = -ps_sq/ (6uz*d*(1-d)^2)
|
216
|
//
|
217
|
// Case 3:
|
218
|
// f(t) = 3t^4-8t^3+6t^2 would be better as this safisfies f(0)=0, f'(0)=0, f'(1)=0, f(1)=1 and f(0.5)=0.7 and f'(t)= t(t-1)^2 >=0 for t>=0
|
219
|
// so this produces a fuller, thicker bubble!
|
220
|
// then -|PS|/f'(|PX|) = (-|PS|*|SX)) / (12uz*d*(d-1)^2) but |PS|*|SX| = ps_sq/(1-d) (see above!)
|
221
|
// so finally -|PS|/f'(|PX|) = -ps_sq/ (12uz*d*(1-d)^3)
|
222
|
//
|
223
|
// Now, new requirement: we have to be able to add up normal vectors, i.e. distort already distorted surfaces.
|
224
|
// If a surface is given by z = f(x,y), then the normal vector at (x0,y0) is given by (df/dx (x0,y0), df/dy (x0,y0), 1 ).
|
225
|
// so if we have two surfaces defined by f1(x,y) and f2(x,y) with their normals expressed as (f1x,f1y,1) and (f2x,f2y,1)
|
226
|
// then the normal to g = f1+f2 is simply given by (f1x+f2x,f1y+f2y,1), i.e. if the third component is 1, then we can simply
|
227
|
// add up the first and second components.
|
228
|
//
|
229
|
// Thus we actually want to compute N(v.x,v.y) = a*(-(dx/|PS|)*f'(|PX|), -(dy/|PS|)*f'(|PX|), 1) and keep adding the first two components.
|
230
|
// (a is the horizontal part)
|
231
|
|
232
|
void distort(in int effect, inout vec4 v, inout vec4 n)
|
233
|
{
|
234
|
vec2 point = vUniforms[effect+2].yz;
|
235
|
vec2 ps = point-v.xy;
|
236
|
float d = degree(vUniforms[effect+1],point,ps);
|
237
|
vec2 w = vec2(vUniforms[effect].x, -vUniforms[effect].y);
|
238
|
float dt = dot(ps,ps);
|
239
|
float uz = vUniforms[effect].z; // height of the bubble
|
240
|
|
241
|
//v.z += uz*d; // cone
|
242
|
//b = -(uz*(1.0-d)) / (dt + (1.0-d)*dot(w,ps) + (sign(dt)-1.0) ); //
|
243
|
|
244
|
//v.z += uz*d*d*(3.0-2.0*d); // thin bubble
|
245
|
//b = -(6.0*uz*d*(1.0-d)*(1.0-d)) / (dt + (1.0-d)*dot(w,ps) + (sign(dt)-1.0) ); //
|
246
|
|
247
|
v.z += uz*d*d*(3.0*d*d -8.0*d +6.0); // thick bubble
|
248
|
float b = -(12.0*uz*d*(1.0-d)*(1.0-d)*(1.0-d)) / (dt + (1.0-d)*dot(w,ps) + (sign(dt)-1.0) ); // the last part - (sign-1) is to avoid b being a NaN when ps=(0,0)
|
249
|
|
250
|
v.xy += d*w;
|
251
|
n.xy += b*ps;
|
252
|
}
|
253
|
|
254
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
255
|
// sink effect
|
256
|
// Pull P=(v.x,v.y) towards S=vPoint[effect] with P' = P + (1-h)d(S-P)
|
257
|
// when h>1 we are pushing points away from S: P' = P + (1/h-1)d(S-P)
|
258
|
|
259
|
void sink(in int effect,inout vec4 v)
|
260
|
{
|
261
|
vec2 point = vUniforms[effect+2].yz;
|
262
|
vec2 ps = point-v.xy;
|
263
|
float h = vUniforms[effect].x;
|
264
|
float t = degree(vUniforms[effect+1],point,ps) * (1.0-h)/max(1.0,h);
|
265
|
|
266
|
v.xy += t*ps;
|
267
|
}
|
268
|
|
269
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
270
|
// Swirl
|
271
|
//
|
272
|
// Let d be the degree of the current vertex V with respect to center of the effect S and Region vRegion.
|
273
|
// This effect rotates the current vertex V by vInterpolated.x radians clockwise around the circle dilated
|
274
|
// by (1-d) around the center of the effect S.
|
275
|
|
276
|
void swirl(in int effect, inout vec4 P)
|
277
|
{
|
278
|
vec2 S = vUniforms[effect+2].yz;
|
279
|
vec2 PS = S-P.xy;
|
280
|
vec3 SO = vUniforms[effect+1];
|
281
|
float d1_circle = degree_region(SO,PS);
|
282
|
float d1_bitmap = degree_bitmap(S,PS);
|
283
|
float sinA = vUniforms[effect].y; // sin(A) precomputed in EffectListVertex.postprocess
|
284
|
float cosA = vUniforms[effect].z; // cos(A) precomputed in EffectListVertex.postprocess
|
285
|
vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around S.
|
286
|
vec3 SG = (1.0-d1_circle)*SO; // coordinates of the dilated circle P is going to get rotated around
|
287
|
float d2 = max(0.0,degree(SG,S,PS2)); // make it a max(0,deg) because when S=left edge of the bitmap, otherwise
|
288
|
// some points end up with d2<0 and they disappear off view.
|
289
|
P.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2)); // if d2=1 (i.e P=S) we should have P unchanged. How to do it?
|
290
|
}
|
291
|
|
292
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
293
|
// Clamp v.z to (-u_Depth,u_Depth) with the following function:
|
294
|
// define h to be, say, 0.7; let H=u_Depth
|
295
|
// if v.z < -hH then v.z = (-(1-h)^2 * H^2)/(v.z+(2h-1)H) -H (function satisfying f(-hH)=-hH, f'(-hH)=1, lim f(x) = -H)
|
296
|
// else if v.z > hH then v.z = (-(1-h)^2 * H^2)/(v.z-(2h-1)H) +H (function satisfying f(+hH)=+hH, f'(+hH)=1, lim f(x) = +H)
|
297
|
// else v.z = v.z
|
298
|
|
299
|
void restrict(inout float v)
|
300
|
{
|
301
|
const float h = 0.7;
|
302
|
float signV = 2.0*max(0.0,sign(v))-1.0;
|
303
|
float c = ((1.0-h)*(h-1.0)*u_Depth*u_Depth)/(v-signV*(2.0*h-1.0)*u_Depth) +signV*u_Depth;
|
304
|
float b = max(0.0,sign(abs(v)-h*u_Depth));
|
305
|
|
306
|
v = b*c+(1.0-b)*v; // Avoid branching: if abs(v)>h*u_Depth, then v=c; otherwise v=v.
|
307
|
}
|
308
|
#endif
|
309
|
|
310
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
311
|
|
312
|
void main()
|
313
|
{
|
314
|
vec4 v = vec4( 2.0*u_bmpD*a_Position,1.0 );
|
315
|
vec4 n = vec4(a_Normal,0.0);
|
316
|
|
317
|
#if NUM_VERTEX>0
|
318
|
for(int i=0; i<vNumEffects; i++)
|
319
|
{
|
320
|
//switch(vType[i])
|
321
|
// {
|
322
|
// case DISTORT: distort(3*i,v,n); break;
|
323
|
// case DEFORM : deform(3*i,v) ; break;
|
324
|
// case SINK : sink(3*i,v) ; break;
|
325
|
// case SWIRL : swirl(3*i,v) ; break;
|
326
|
// }
|
327
|
|
328
|
if( vType[i]==DISTORT) distort(3*i,v,n);
|
329
|
else if( vType[i]==DEFORM ) deform(3*i,v);
|
330
|
else if( vType[i]==SINK ) sink(3*i,v);
|
331
|
else if( vType[i]==SWIRL ) swirl(3*i,v);
|
332
|
}
|
333
|
|
334
|
restrict(v.z);
|
335
|
#endif
|
336
|
|
337
|
v_Position = vec3(u_MVMatrix*v);
|
338
|
v_Color = a_Color;
|
339
|
v_TexCoordinate = a_TexCoordinate;
|
340
|
v_Normal = normalize(vec3(u_MVMatrix*n));
|
341
|
gl_Position = u_MVPMatrix*v;
|
342
|
}
|