Project

General

Profile

Download (25.9 KB) Statistics
| Branch: | Revision:

library / src / main / res / raw / main_vertex_shader.glsl @ 291705f6

1
//////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                          //
3
//                                                                                          //
4
// This file is part of Distorted.                                                          //
5
//                                                                                          //
6
// Distorted is free software: you can redistribute it and/or modify                        //
7
// it under the terms of the GNU General Public License as published by                     //
8
// the Free Software Foundation, either version 2 of the License, or                        //
9
// (at your option) any later version.                                                      //
10
//                                                                                          //
11
// Distorted is distributed in the hope that it will be useful,                             //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                           //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                            //
14
// GNU General Public License for more details.                                             //
15
//                                                                                          //
16
// You should have received a copy of the GNU General Public License                        // 
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                       //
18
//////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
uniform vec3 u_objD;                      // half of object width x half of object height X half the depth;
21
                                          // point (0,0,0) is the center of the object
22

    
23
uniform float u_Depth;                    // max absolute value of v.z ; beyond that the vertex would be culled by the near or far planes.
24
                                          // I read OpenGL ES has a built-in uniform variable gl_DepthRange.near = n, 
25
                                          // .far = f, .diff = f-n so maybe u_Depth is redundant
26
                                          // Update: this struct is only available in fragment shaders
27
                                
28
uniform mat4 u_MVPMatrix;                 // A constant representing the combined model/view/projection matrix.      		       
29
uniform mat4 u_MVMatrix;                  // A constant representing the combined model/view matrix.       		
30
		 
31
attribute vec3 a_Position;                // Per-vertex position information we will pass in.   				
32
attribute vec3 a_Normal;                  // Per-vertex normal information we will pass in.
33
attribute vec2 a_TexCoordinate;           // Per-vertex texture coordinate information we will pass in. 		
34
		  
35
varying vec3 v_Position;                  //      		
36
varying vec3 v_Normal;                    //
37
varying vec2 v_TexCoordinate;             //  		
38

    
39
uniform int vNumEffects;                  // total number of vertex effects
40

    
41
#if NUM_VERTEX>0
42
uniform int vType[NUM_VERTEX];            // their types.
43
uniform vec4 vUniforms[3*NUM_VERTEX];     // i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
44
                                          // The first vec4 is the Interpolated values,
45
                                          // next is half cache half Center, the third -  the Region.
46
#endif
47

    
48
#if NUM_VERTEX>0
49

    
50
//////////////////////////////////////////////////////////////////////////////////////////////
51
// HELPER FUNCTIONS
52
//////////////////////////////////////////////////////////////////////////////////////////////
53
// The trick below is the if-less version of the
54
//
55
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
56
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
57
// d = min(t,h);
58
//
59
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
60
//
61
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
62
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
63
//
64
//////////////////////////////////////////////////////////////////////////////////////////////
65
// return degree of the point as defined by the bitmap rectangle
66

    
67
float degree_bitmap(in vec2 S, in vec2 PS)
68
  {
69
  vec2 A = sign(PS)*u_objD.xy + S;
70

    
71
  vec2 signA = sign(A);                           //
72
  vec2 signA_SQ = signA*signA;                    // div = PS/A if A!=0, 0 otherwise.
73
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));//
74

    
75
  return 1.0-max(div.x,div.y);
76
  }
77

    
78
//////////////////////////////////////////////////////////////////////////////////////////////
79
// Return degree of the point as defined by the Region. Currently only supports circular regions.
80
//
81
// Let us first introduce some notation.
82
// Let 'PS' be the vector from point P (the current vertex) to point S (the center of the effect).
83
// Let region.xy be the vector from point S to point O (the center point of the region circle)
84
// Let region.z be the radius of the region circle.
85
// (This all should work regardless if S is inside or outside of the circle).
86
//
87
// Then, the degree of a point with respect to a given (circular!) Region is defined by:
88
//
89
// If P is outside the circle, return 0.
90
// Otherwise, let X be the point where the halfline SP meets the region circle - then return |PX|/||SX|,
91
// aka the 'degree' of point P.
92
//
93
// We solve the triangle OPX.
94
// We know the lengths |PO|, |OX| and the angle OPX, because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
95
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so PX = -a + sqrt(a^2 + OX^2 - PO^2)
96
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
97
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
98

    
99
float degree_region(in vec4 region, in vec2 PS)
100
  {
101
  vec2 PO  = PS + region.xy;
102
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
103

    
104
  if( D<=0.0 ) return 0.0;
105

    
106
  float ps_sq = dot(PS,PS);
107
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
108
                                                         // Important: if we want to write
109
                                                         // b = 1/a if a!=0, b=1 otherwise
110
                                                         // we need to write that as
111
                                                         // b = 1 / ( a-(sign(a)-1) )
112
                                                         // [ and NOT 1 / ( a + 1 - sign(a) ) ]
113
                                                         // because the latter, if 0<a<2^-24,
114
                                                         // will suffer from round-off error and in this case
115
                                                         // a + 1.0 = 1.0 !! so 1 / (a+1-sign(a)) = 1/0 !
116
  float DOT  = dot(PS,PO)*one_over_ps_sq;
117

    
118
  return 1.0 / (1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
119
  }
120

    
121
//////////////////////////////////////////////////////////////////////////////////////////////
122
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
123

    
124
float degree(in vec4 region, in vec2 S, in vec2 PS)
125
  {
126
  vec2 PO  = PS + region.xy;
127
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
128

    
129
  if( D<=0.0 ) return 0.0;
130

    
131
  vec2 A = sign(PS)*u_objD.xy + S;
132
  vec2 signA = sign(A);
133
  vec2 signA_SQ = signA*signA;
134
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));
135
  float E = 1.0-max(div.x,div.y);
136

    
137
  float ps_sq = dot(PS,PS);
138
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
139
  float DOT  = dot(PS,PO)*one_over_ps_sq;
140

    
141
  return min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT)),E);
142
  }
143

    
144
//////////////////////////////////////////////////////////////////////////////////////////////
145
// Clamp v.z to (-u_Depth,u_Depth) with the following function:
146
// define h to be, say, 0.7; let H=u_Depth
147
//      if v.z < -hH then v.z = (-(1-h)^2 * H^2)/(v.z+(2h-1)H) -H   (function satisfying f(-hH)=-hH, f'(-hH)=1, lim f(x) = -H)
148
// else if v.z >  hH then v.z = (-(1-h)^2 * H^2)/(v.z-(2h-1)H) +H   (function satisfying f(+hH)=+hH, f'(+hH)=1, lim f(x) = +H)
149
// else v.z = v.z
150

    
151
void restrictZ(inout float v)
152
  {
153
  const float h = 0.7;
154
  float signV = 2.0*max(0.0,sign(v))-1.0;
155
  float c = ((1.0-h)*(h-1.0)*u_Depth*u_Depth)/(v-signV*(2.0*h-1.0)*u_Depth) +signV*u_Depth;
156
  float b = max(0.0,sign(abs(v)-h*u_Depth));
157

    
158
  v = b*c+(1.0-b)*v; // Avoid branching: if abs(v)>h*u_Depth, then v=c; otherwise v=v.
159
  }
160

    
161
//////////////////////////////////////////////////////////////////////////////////////////////
162
// DEFORM EFFECT
163
//
164
// Deform the whole shape of the Object by force V
165
// 
166
// If the point of application (Sx,Sy) is on the edge of the Object, then:
167
// a) ignore Vz
168
// b) change shape of the whole Object in the following way:
169
//    Suppose the upper-left corner of the Object rectangle is point L, upper-right - R, force vector V is applied to point M on the upper edge,
170
//    width of the Object = w, height = h, |LM| = Wl, |MR| = Wr, force vector V=(Vx,Vy). Also let H = h/(h+Vy)
171
//
172
//    Let now L' and R' be points such that vec(LL') = Wr/w * vec(V) and vec(RR') = Wl/w * vec(V)
173
//    now let Vl be a point on the line segment L --> M+vec(V) such that Vl(y) = L'(y)
174
//    and let Vr be a point on the line segment R --> M+vec(V) such that Vr(y) = R'(y)
175
//    
176
//    Now define points Fl and Fr, the points L and R will be moved to under force V, with Fl(y)=L'(y) and Fr(y)=R'(y) and |VrFr|/|VrR'| = |VlFl|/|VlL'| = H
177
//    Now notice that |VrR'| = |VlL'| = Wl*Wr / w   ( a little geometric puzzle! )
178
//
179
//    Then points L,R under force V move by vectors vec(Fl), vec(Fr) where
180
//    vec(Fl) = (Wr/w) * [ (Vx+Wl)-Wl*H, Vy ] = (Wr/w) * [ Wl*Vy / (h+Vy) + Vx, Vy ]
181
//    vec(Fr) = (Wl/w) * [ (Vx-Wr)+Wr*H, Vy ] = (Wl/w) * [-Wr*Vy / (h+Vy) + Vx, Vy ]
182
//
183
//    Lets now denote M+vec(V) = M'. The line segment LMR gets distorted to the curve Fl-M'-Fr. Let's now arbitrarilly decide that:
184
//    a) at point Fl the curve has to be parallel to line LM'
185
//    b) at point M' - to line LR
186
//    c) at point Fr - to line M'R
187
//
188
//    Now if Fl=(flx,fly) , M'=(mx,my) , Fr=(frx,fry); direction vector at Fl is (vx,vy) and at M' is (+c,0) where +c is some positive constant, then 
189
//    the parametric equations of the Fl--->M' section of the curve (which has to satisfy (X(0),Y(0)) = Fl, (X(1),Y(1))=M', (X'(0),Y'(0)) = (vx,vy), (X'(1),Y'(1)) = (+c,0)) is
190
//
191
//    X(t) = ( (mx-flx)-vx )t^2 + vx*t + flx                                  (*)
192
//    Y(t) = ( vy - 2(my-fly) )t^3 + ( 3(my-fly) -2vy )t^2 + vy*t + fly
193
//
194
//    Here we have to have X'(1) = 2(mx-flx)-vx which is positive <==> vx<2(mx-flx). We also have to have vy<2(my-fly) so that Y'(t)>0 (this is a must otherwise we have local loops!) 
195
//    Similarly for the Fr--->M' part of the curve we have the same equation except for the fact that this time we have to have X'(1)<0 so now we have to have vx>2(mx-flx).
196
//
197
//    If we are stretching the left or right edge of the bitmap then the only difference is that we have to have (X'(1),Y'(1)) = (0,+-c) with + or - c depending on which part of the curve
198
//    we are tracing. Then the parametric equation is
199
//
200
//    X(t) = ( vx - 2(mx-flx) )t^3 + ( 3(mx-flx) -2vx )t^2 + vx*t + flx
201
//    Y(t) = ( (my-fly)-vy )t^2 + vy*t + fly
202
//
203
//    If we are dragging the top edge:    
204
//
205
//    Now point (x,u_objD.x) on the top edge will move by vector (X(t),Y(t)) where those functions are given by (*) and
206
//    t =  x < dSx ? (u_objD.x+x)/(u_objD.x+dSx) : (u_objD.x-x)/(u_objD.x-dSx)    (this is 'vec2 time' below in the code)
207
//    Any point (x,y) will move by vector (a*X(t),a*Y(t)) where a is (y+u_objD.y)/(2*u_objD.y)
208
  
209
void deform(in int effect, inout vec4 v)
210
  {
211
  vec2 center = vUniforms[effect+1].zw;
212
  vec2 force = vUniforms[effect].xy;    // force = vec(MM')
213
  vec2 vert_vec, horz_vec; 
214
  vec2 signXY = sign(center-v.xy);
215
  vec2 time = (u_objD.xy+signXY*v.xy)/(u_objD.xy+signXY*center);
216
  vec2 factorV = vec2(0.5,0.5) + (center*v.xy)/(4.0*u_objD.xy*u_objD.xy);
217
  vec2 factorD = (u_objD.xy-signXY*center)/(2.0*u_objD.xy);
218
  vec2 vert_d = factorD.x*force;
219
  vec2 horz_d = factorD.y*force;
220
  float dot = dot(force,force);
221
  vec2 corr = 0.33 * (center+force+signXY*u_objD.xy) * dot / ( dot + (4.0*u_objD.x*u_objD.x) ); // .x = the vector tangent to X(t) at Fl = 0.3*vec(LM')  (or vec(RM') if signXY.x=-1).
222
                                                                                                // .y = the vector tangent to X(t) at Fb = 0.3*vec(BM')  (or vec(TM') if signXY.y=-1)
223
                                                                                                // the scalar: make the length of the speed vectors at Fl and Fr be 0 when force vector 'force' is zero
224
  vert_vec.x = ( force.x-vert_d.x-corr.x )*time.x*time.x + corr.x*time.x + vert_d.x;
225
  horz_vec.y = (-force.y+horz_d.y+corr.y )*time.y*time.y - corr.y*time.y - horz_d.y;
226
  vert_vec.y = (-3.0*vert_d.y+2.0*force.y )*time.x*time.x*time.x + (-3.0*force.y+5.0*vert_d.y )*time.x*time.x - vert_d.y*time.x - vert_d.y;
227
  horz_vec.x = ( 3.0*horz_d.x-2.0*force.x )*time.y*time.y*time.y + ( 3.0*force.x-5.0*horz_d.x )*time.y*time.y + horz_d.x*time.y + horz_d.x;
228
  
229
  v.xy += (factorV.y*vert_vec + factorV.x*horz_vec);
230
  }
231

    
232
//////////////////////////////////////////////////////////////////////////////////////////////
233
// DISTORT EFFECT
234
//
235
// Point (Px,Py) gets moved by vector (Wx,Wy,Wz) where Wx/Wy = Vx/Vy i.e. Wx=aVx and Wy=aVy where 
236
// a=Py/Sy (N --> when (Px,Py) is above (Sx,Sy)) or a=Px/Sx (W) or a=(w-Px)/(w-Sx) (E) or a=(h-Py)/(h-Sy) (S) 
237
// It remains to be computed which of the N,W,E or S case we have: answer: a = min[ Px/Sx , Py/Sy , (w-Px)/(w-Sx) , (h-Py)/(h-Sy) ]
238
// Computations above are valid for screen (0,0)x(w,h) but here we have (-w/2,-h/2)x(w/2,h/2)
239
//  
240
// the vertical part
241
// Let |(v.x,v.y),(ux,uy)| = |PS|, ux-v.x=dx,uy-v.y=dy, f(x) (0<=x<=|SX|) be the shape of the side of the bubble.
242
// H(v.x,v.y) = |PS|>|SX| ? 0 : f(|PX|)
243
// N(v.x,v.y) = |PS|>|SX| ? (0,0,1) : ( -(dx/|PS|)sin(beta), -(dy/|PS|)sin(beta), cos(beta) ) where tan(beta) is f'(|PX|) 
244
// ( i.e. normalize( dx, dy, -|PS|/f'(|PX|))         
245
//
246
// Now we also have to take into account the effect horizontal move by V=(u_dVx[i],u_dVy[i]) will have on the normal vector.
247
// Solution: 
248
// 1. Decompose the V into two subcomponents, one parallel to SX and another perpendicular.
249
// 2. Convince yourself (draw!) that the perpendicular component has no effect on normals.
250
// 3. The parallel component changes the length of |SX| by the factor of a=(|SX|-|Vpar|)/|SX| (where the length
251
//    can be negative depending on the direction)
252
// 4. that in turn leaves the x and y parts of the normal unchanged and multiplies the z component by a!
253
//
254
// |Vpar| = (u_dVx[i]*dx - u_dVy[i]*dy) / sqrt(ps_sq) = (Vx*dx-Vy*dy)/ sqrt(ps_sq)  (-Vy because y is inverted)
255
// a =  (|SX| - |Vpar|)/|SX| = 1 - |Vpar|/((sqrt(ps_sq)/(1-d)) = 1 - (1-d)*|Vpar|/sqrt(ps_sq) = 1-(1-d)*(Vx*dx-Vy*dy)/ps_sq 
256
//
257
// Side of the bubble
258
// 
259
// choose from one of the three bubble shapes: the cone, the thin bubble and the thick bubble          
260
// Case 1: 
261
// f(t) = t, i.e. f(x) = uz * x/|SX|   (a cone)
262
// -|PS|/f'(|PX|) = -|PS|*|SX|/uz but since ps_sq=|PS|^2 and d=|PX|/|SX| then |PS|*|SX| = ps_sq/(1-d)
263
// so finally -|PS|/f'(|PX|) = -ps_sq/(uz*(1-d))
264
//                    
265
// Case 2: 
266
// f(t) = 3t^2 - 2t^3 --> f(0)=0, f'(0)=0, f'(1)=0, f(1)=1 (the bell curve)
267
// here we have t = x/|SX| which makes f'(|PX|) = 6*uz*|PS|*|PX|/|SX|^3.
268
// so -|PS|/f'(|PX|) = (-|SX|^3)/(6uz|PX|) =  (-|SX|^2) / (6*uz*d) but
269
// d = |PX|/|SX| and ps_sq = |PS|^2 so |SX|^2 = ps_sq/(1-d)^2
270
// so finally -|PS|/f'(|PX|) = -ps_sq/ (6uz*d*(1-d)^2)
271
//                  
272
// Case 3:
273
// f(t) = 3t^4-8t^3+6t^2 would be better as this satisfies f(0)=0, f'(0)=0, f'(1)=0, f(1)=1,
274
// f(0.5)=0.7 and f'(t)= t(t-1)^2 >=0 for t>=0 so this produces a fuller, thicker bubble!
275
// then -|PS|/f'(|PX|) = (-|PS|*|SX)) / (12uz*d*(d-1)^2) but |PS|*|SX| = ps_sq/(1-d) (see above!) 
276
// so finally -|PS|/f'(|PX|) = -ps_sq/ (12uz*d*(1-d)^3)  
277
//
278
// Now, new requirement: we have to be able to add up normal vectors, i.e. distort already distorted surfaces.
279
// If a surface is given by z = f(x,y), then the normal vector at (x0,y0) is given by (-df/dx (x0,y0), -df/dy (x0,y0), 1 ).
280
// so if we have two surfaces defined by f1(x,y) and f2(x,y) with their normals expressed as (f1x,f1y,1) and (f2x,f2y,1) 
281
// then the normal to g = f1+f2 is simply given by (f1x+f2x,f1y+f2y,1), i.e. if the third components are equal, then we
282
// can simply add up the first and second components.
283
//
284
// Thus we actually want to compute N(v.x,v.y) = a*(-(dx/|PS|)*f'(|PX|), -(dy/|PS|)*f'(|PX|), 1) and keep adding
285
// the first two components. (a is the horizontal part)
286
        
287
void distort(in int effect, inout vec4 v, inout vec4 n)
288
  {
289
  vec2 center = vUniforms[effect+1].zw;
290
  vec2 ps = center-v.xy;
291
  vec3 force = vUniforms[effect].xyz;
292
  float d = degree(vUniforms[effect+2],center,ps);
293
  float denom = dot(ps+(1.0-d)*force.xy,ps);
294
  float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));          // = denom==0 ? 1000:1/denom;
295

    
296
  //v.z += force.z*d;                                                  // cone
297
  //b = -(force.z*(1.0-d))*one_over_denom;                             //
298
        
299
  //v.z += force.z*d*d*(3.0-2.0*d);                                    // thin bubble
300
  //b = -(6.0*force.z*d*(1.0-d)*(1.0-d))*one_over_denom;               //
301
        
302
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                            // thick bubble
303
  float b = -(12.0*force.z*d*(1.0-d)*(1.0-d)*(1.0-d))*one_over_denom;  //
304
                
305
  v.xy += d*force.xy;
306
  n.xy += n.z*b*ps;
307
  }
308
 
309
//////////////////////////////////////////////////////////////////////////////////////////////
310
// SINK EFFECT
311
//
312
// Pull P=(v.x,v.y) towards S=vPoint[effect] with P' = P + (1-h)d(S-P)
313
// when h>1 we are pushing points away from S: P' = P + (1/h-1)d(S-P)
314
 
315
void sink(in int effect,inout vec4 v)
316
  {
317
  vec2 center = vUniforms[effect+1].zw;
318
  vec2 ps = center-v.xy;
319
  float h = vUniforms[effect].x;
320
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
321
  
322
  v.xy += t*ps;           
323
  }
324

    
325
//////////////////////////////////////////////////////////////////////////////////////////////
326
// SWIRL EFFECT
327
//
328
// Let d be the degree of the current vertex V with respect to center of the effect S and Region vRegion.
329
// This effect rotates the current vertex V by vInterpolated.x radians clockwise around the circle dilated 
330
// by (1-d) around the center of the effect S.
331

    
332
void swirl(in int effect, inout vec4 v)
333
  {
334
  vec2 center  = vUniforms[effect+1].zw;
335
  vec2 PS = center-v.xy;
336
  vec4 SO = vUniforms[effect+2];
337
  float d1_circle = degree_region(SO,PS);
338
  float d1_bitmap = degree_bitmap(center,PS);
339

    
340
  float alpha = vUniforms[effect].x;
341
  float sinA = sin(alpha);
342
  float cosA = cos(alpha);
343

    
344
  vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around center.
345
  vec4 SG = (1.0-d1_circle)*SO;                                // coordinates of the dilated circle P is going to get rotated around
346
  float d2 = max(0.0,degree(SG,center,PS2));                   // make it a max(0,deg) because otherwise when center=left edge of the
347
                                                               // bitmap some points end up with d2<0 and they disappear off view.
348
  v.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2));        // if d2=1 (i.e P=center) we should have P unchanged. How to do it?
349
  }
350

    
351
//////////////////////////////////////////////////////////////////////////////////////////////
352
// WAVE EFFECT
353
//
354
// Directional sinusoidal wave effect.
355
//
356
// This is an effect from a (hopefully!) generic family of effects of the form (vec3 V: |V|=1 , f(x,y) )  (*)
357
// i.e. effects defined by a unit vector and an arbitrary function. Those effects are defined to move each
358
// point (x,y,0) of the XY plane to the point (x,y,0) + V*f(x,y).
359
//
360
// In this case V is defined by angles A and B (sines and cosines of which are precomputed in
361
// EffectQueueVertex and passed in the uniforms).
362
// Let's move V to start at the origin O, let point C be the endpoint of V, and let C' be C's projection
363
// to the XY plane. Then A is defined to be the angle C0C' and angle B is the angle C'O(axisY).
364
//
365
// Also, in this case f(x,y) = amplitude*sin(x/length), with those 2 parameters passed in uniforms.
366
//
367
//////////////////////////////////////////////////////////////////////////////////////////////
368
// How to compute any generic effect of type (*)
369
//////////////////////////////////////////////////////////////////////////////////////////////
370
//
371
// By definition, the vertices move by f(x,y)*V.
372
//
373
// Normals are much more complicated.
374
// Let angle X be the angle (0,Vy,Vz)(0,Vy,0)(Vx,Vy,Vz).
375
// Let angle Y be the angle (Vx,0,Vz)(Vx,0,0)(Vx,Vy,Vz).
376
//
377
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
378
// has 2 tangent vectors given by
379
//
380
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
381
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
382
//
383
// and then obviously the normal N is given by N= SX x SY .
384
//
385
// We still need to remember the note from the distort function about adding up normals:
386
// we first need to 'normalize' the normals to make their third components equal, and then we
387
// simply add up the first and the second component while leaving the third unchanged.
388
//
389
// How to see facts (**) and (***) ? Briefly:
390
// a) compute the 2D analogon and conclude that in this case the tangent SX is given by
391
//    SX = ( cosA*f'(x) +1, sinA*f'(x) )    (where A is the angle vector V makes with X axis )
392
// b) cut the resulting surface with plane P which
393
//    - includes vector V
394
//    - crosses plane XY along line parallel to X axis
395
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
396
//    and our surface (I am talking about the tangent vector which belongs to P) is given by
397
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
398
//
399
//    Matrix of rotation:
400
//
401
//    |sinY|  cosY
402
//    -cosY  |sinY|
403
//
404
// d) compute the above and see that this is equal precisely to SX from (**).
405
// e) repeat points b,c,d in direction Y and come up with (***).
406
//
407
//////////////////////////////////////////////////////////////////////////////////////////////
408
// Note: we should avoid passing certain combinations of parameters to this function. One such known
409
// combination is ( A: small but positive, B: any, amplitude >= length ).
410
// In this case, certain 'unlucky' points have their normals almost horizontal (they got moved by (almost!)
411
// amplitude, and other point length (i.e. <=amplitude) away got moved by 0, so the slope in this point is
412
// very steep). Visual effect is: vast majority of surface pretty much unchanged, but random 'unlucky'
413
// points very dark)
414
//
415
// Generally speaking I'd keep to amplitude < length, as the opposite case has some other problems as well.
416

    
417
void wave(in int effect, inout vec4 v, inout vec4 n)
418
  {
419
  vec2 center     = vUniforms[effect+1].zw;
420
  float amplitude = vUniforms[effect  ].x;
421
  float length    = vUniforms[effect  ].y;
422

    
423
  vec2 ps = center - v.xy;
424
  float deg = amplitude*degree_region(vUniforms[effect+2],ps);
425

    
426
  if( deg != 0.0 && length != 0.0 )
427
    {
428
    float phase = vUniforms[effect  ].z;
429
    float alpha = vUniforms[effect  ].w;
430
    float beta  = vUniforms[effect+1].x;
431

    
432
    float sinA = sin(alpha);
433
    float cosA = cos(alpha);
434
    float sinB = sin(beta);
435
    float cosB = cos(beta);
436

    
437
    float angle= 1.578*(ps.x*cosB-ps.y*sinB) / length + phase;
438

    
439
    vec3 dir= vec3(sinB*cosA,cosB*cosA,sinA);
440

    
441
    v.xyz += sin(angle)*deg*dir;
442

    
443
    if( n.z != 0.0 )
444
      {
445
      float sqrtX = sqrt(dir.y*dir.y + dir.z*dir.z);
446
      float sqrtY = sqrt(dir.x*dir.x + dir.z*dir.z);
447

    
448
      float sinX = ( sqrtY==0.0 ? 0.0 : dir.z / sqrtY);
449
      float cosX = ( sqrtY==0.0 ? 1.0 : dir.x / sqrtY);
450
      float sinY = ( sqrtX==0.0 ? 0.0 : dir.z / sqrtX);
451
      float cosY = ( sqrtX==0.0 ? 1.0 : dir.y / sqrtX);
452

    
453
      float abs_z = dir.z <0.0 ? -(sinX*sinY) : (sinX*sinY);
454

    
455
      float tmp = 1.578*cos(angle)*deg/length;
456

    
457
      float fx =-cosB*tmp;
458
      float fy = sinB*tmp;
459

    
460
      vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,abs_z*fx);
461
      vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,abs_z*fy);
462

    
463
      vec3 normal = cross(sx,sy);
464

    
465
      if( normal.z<=0.0 )                   // Why this bizarre shit rather than the straightforward
466
        {                                   //
467
        normal.x= 0.0;                      // if( normal.z>0.0 )
468
        normal.y= 0.0;                      //   {
469
        normal.z= 1.0;                      //   n.x = (n.x*normal.z + n.z*normal.x);
470
        }                                   //   n.y = (n.y*normal.z + n.z*normal.y);
471
                                            //   n.z = (n.z*normal.z);
472
                                            //   }
473
      n.x = (n.x*normal.z + n.z*normal.x);  //
474
      n.y = (n.y*normal.z + n.z*normal.y);  // ? Because if we do the above, my shitty Nexus4 crashes
475
      n.z = (n.z*normal.z);                 // during shader compilation!
476
      }
477
    }
478
  }
479

    
480
#endif
481

    
482
//////////////////////////////////////////////////////////////////////////////////////////////
483
  		  
484
void main()                                                 	
485
  {              
486
  vec4 v = vec4( 2.0*u_objD*a_Position,1.0 );
487
  vec4 n = vec4(a_Normal,0.0);
488

    
489
#if NUM_VERTEX>0
490
  for(int i=0; i<vNumEffects; i++)
491
    {
492
         if( vType[i]==DISTORT) distort(3*i,v,n);
493
    else if( vType[i]==DEFORM ) deform (3*i,v);
494
    else if( vType[i]==SINK   ) sink   (3*i,v);
495
    else if( vType[i]==SWIRL  ) swirl  (3*i,v);
496
    else if( vType[i]==WAVE   ) wave   (3*i,v,n);
497
    }
498
 
499
  restrictZ(v.z);
500
#endif
501
   
502
  v_Position      = v.xyz;
503
  v_TexCoordinate = a_TexCoordinate;
504
  v_Normal        = normalize(vec3(u_MVMatrix*n));
505
  gl_Position     = u_MVPMatrix*v;      
506
  }                               
(2-2/2)