48 |
48 |
#endif
|
49 |
49 |
|
50 |
50 |
#if NUM_VERTEX>0
|
|
51 |
|
|
52 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
53 |
// HELPER FUNCTIONS
|
|
54 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
55 |
// Let (v.x,v.y) be point P (the current vertex).
|
|
56 |
// Let vPoint[effect].xy be point S (the center of effect)
|
|
57 |
// Let vPoint[effect].xy + vRegion[effect].xy be point O (the center of the Region circle)
|
|
58 |
// Let X be the point where the halfline SP meets a) if region is non-null, the region circle b) otherwise, the edge of the bitmap.
|
|
59 |
//
|
|
60 |
// If P is inside the Region, this function returns |PX|/||SX|, aka the 'degree' of point P. Otherwise, it returns 0.
|
|
61 |
//
|
|
62 |
// We compute the point where half-line from S to P intersects the edge of the bitmap. If that's inside the circle, end. If not, we solve the
|
|
63 |
// the triangle with vertices at O, P and the point of intersection with the circle we are looking for X.
|
|
64 |
// We know the lengths |PO|, |OX| and the angle OPX , because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
|
|
65 |
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so
|
|
66 |
// PX = -a + sqrt(a^2 + OX^2 - PO^2) where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
|
|
67 |
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
|
|
68 |
//
|
|
69 |
// the trick below is the if-less version of the
|
|
70 |
//
|
|
71 |
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
|
|
72 |
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
|
|
73 |
// d = min(t,h);
|
|
74 |
//
|
|
75 |
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
|
|
76 |
//
|
|
77 |
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
|
|
78 |
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
|
|
79 |
//
|
|
80 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
81 |
// return degree of the point as defined by the bitmap rectangle
|
|
82 |
|
|
83 |
float degree_bitmap(in vec2 S, in vec2 PS)
|
|
84 |
{
|
|
85 |
vec2 A = sign(PS)*u_objD.xy + S;
|
|
86 |
float B = sign(A.x*A.y);
|
|
87 |
|
|
88 |
return B*B*(1.0 + min(-PS.x/A.x,-PS.y/A.y));
|
|
89 |
}
|
|
90 |
|
|
91 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
92 |
// return degree of the point as defined by the Region
|
|
93 |
// Currently only supports circles; .xy = vector from center of effect to the center of the circle, .z = radius
|
|
94 |
|
|
95 |
float degree_region(in vec3 region, in vec2 PS)
|
|
96 |
{
|
|
97 |
vec2 PO = PS + region.xy;
|
|
98 |
float D = region.z*region.z-dot(PO,PO); // D = |OX|^2 - |PO|^2
|
|
99 |
float ps_sq = dot(PS,PS);
|
|
100 |
float DOT = dot(PS,PO)/ps_sq;
|
|
101 |
|
|
102 |
return max(sign(D),0.0) / (1.0 + 1.0/(sqrt(DOT*DOT+D/ps_sq)-DOT)); // if D<=0 (i.e p is outside the Region) return 0.
|
|
103 |
}
|
|
104 |
|
|
105 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
106 |
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
|
|
107 |
|
|
108 |
float degree(in vec3 region, in vec2 S, in vec2 PS)
|
|
109 |
{
|
|
110 |
vec2 PO = PS + region.xy;
|
|
111 |
float D = region.z*region.z-dot(PO,PO); // D = |OX|^2 - |PO|^2
|
|
112 |
vec2 A = sign(PS)*u_objD.xy + S;
|
|
113 |
float B = sign(A.x*A.y);
|
|
114 |
float E = B*B*(1.0 + min(-PS.x/A.x,-PS.y/A.y));
|
|
115 |
float ps_sq = dot(PS,PS);
|
|
116 |
float DOT = dot(PS,PO)/ps_sq;
|
|
117 |
|
|
118 |
return max(sign(D),0.0) * min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D/ps_sq)-DOT)),E); // if D<=0 (i.e p is outside the Region) return 0.
|
|
119 |
}
|
|
120 |
|
|
121 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
122 |
// Clamp v.z to (-u_Depth,u_Depth) with the following function:
|
|
123 |
// define h to be, say, 0.7; let H=u_Depth
|
|
124 |
// if v.z < -hH then v.z = (-(1-h)^2 * H^2)/(v.z+(2h-1)H) -H (function satisfying f(-hH)=-hH, f'(-hH)=1, lim f(x) = -H)
|
|
125 |
// else if v.z > hH then v.z = (-(1-h)^2 * H^2)/(v.z-(2h-1)H) +H (function satisfying f(+hH)=+hH, f'(+hH)=1, lim f(x) = +H)
|
|
126 |
// else v.z = v.z
|
|
127 |
|
|
128 |
void restrict(inout float v)
|
|
129 |
{
|
|
130 |
const float h = 0.7;
|
|
131 |
float signV = 2.0*max(0.0,sign(v))-1.0;
|
|
132 |
float c = ((1.0-h)*(h-1.0)*u_Depth*u_Depth)/(v-signV*(2.0*h-1.0)*u_Depth) +signV*u_Depth;
|
|
133 |
float b = max(0.0,sign(abs(v)-h*u_Depth));
|
|
134 |
|
|
135 |
v = b*c+(1.0-b)*v; // Avoid branching: if abs(v)>h*u_Depth, then v=c; otherwise v=v.
|
|
136 |
}
|
|
137 |
|
51 |
138 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
52 |
|
// Deform the whole shape of the bitmap by force V
|
|
139 |
// DEFORM EFFECT
|
|
140 |
//
|
|
141 |
// Deform the whole shape of the bitmap by force V
|
53 |
142 |
//
|
54 |
143 |
// If the point of application (Sx,Sy) is on the edge of the bitmap, then:
|
55 |
144 |
// a) ignore Vz
|
... | ... | |
117 |
206 |
}
|
118 |
207 |
|
119 |
208 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
120 |
|
// Let (v.x,v.y) be point P (the current vertex).
|
121 |
|
// Let vPoint[effect].xy be point S (the center of effect)
|
122 |
|
// Let vPoint[effect].xy + vRegion[effect].xy be point O (the center of the Region circle)
|
123 |
|
// Let X be the point where the halfline SP meets a) if region is non-null, the region circle b) otherwise, the edge of the bitmap.
|
124 |
|
//
|
125 |
|
// If P is inside the Region, this function returns |PX|/||SX|, aka the 'degree' of point P. Otherwise, it returns 0.
|
126 |
|
//
|
127 |
|
// We compute the point where half-line from S to P intersects the edge of the bitmap. If that's inside the circle, end. If not, we solve the
|
128 |
|
// the triangle with vertices at O, P and the point of intersection with the circle we are looking for X.
|
129 |
|
// We know the lengths |PO|, |OX| and the angle OPX , because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
|
130 |
|
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so
|
131 |
|
// PX = -a + sqrt(a^2 + OX^2 - PO^2) where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
|
132 |
|
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
|
133 |
|
//
|
134 |
|
// the trick below is the if-less version of the
|
135 |
|
//
|
136 |
|
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
|
137 |
|
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
|
138 |
|
// d = min(t,h);
|
139 |
|
//
|
140 |
|
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
|
141 |
|
//
|
142 |
|
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
|
143 |
|
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
|
144 |
|
//
|
145 |
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
146 |
|
// return degree of the point as defined by the bitmap rectangle
|
147 |
|
|
148 |
|
float degree_bitmap(in vec2 S, in vec2 PS)
|
149 |
|
{
|
150 |
|
vec2 A = sign(PS)*u_objD.xy + S;
|
151 |
|
float B = sign(A.x*A.y);
|
152 |
|
|
153 |
|
return B*B*(1.0 + min(-PS.x/A.x,-PS.y/A.y));
|
154 |
|
}
|
155 |
|
|
156 |
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
157 |
|
// return degree of the point as defined by the Region
|
158 |
|
// Currently only supports circles; .xy = vector from center of effect to the center of the circle, .z = radius
|
159 |
|
|
160 |
|
float degree_region(in vec3 region, in vec2 PS)
|
161 |
|
{
|
162 |
|
vec2 PO = PS + region.xy;
|
163 |
|
float D = region.z*region.z-dot(PO,PO); // D = |OX|^2 - |PO|^2
|
164 |
|
float ps_sq = dot(PS,PS);
|
165 |
|
float DOT = dot(PS,PO)/ps_sq;
|
166 |
|
|
167 |
|
return max(sign(D),0.0) / (1.0 + 1.0/(sqrt(DOT*DOT+D/ps_sq)-DOT)); // if D<=0 (i.e p is outside the Region) return 0.
|
168 |
|
}
|
169 |
|
|
170 |
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
171 |
|
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
|
172 |
|
|
173 |
|
float degree(in vec3 region, in vec2 S, in vec2 PS)
|
174 |
|
{
|
175 |
|
vec2 PO = PS + region.xy;
|
176 |
|
float D = region.z*region.z-dot(PO,PO); // D = |OX|^2 - |PO|^2
|
177 |
|
vec2 A = sign(PS)*u_objD.xy + S;
|
178 |
|
float B = sign(A.x*A.y);
|
179 |
|
float E = B*B*(1.0 + min(-PS.x/A.x,-PS.y/A.y));
|
180 |
|
float ps_sq = dot(PS,PS);
|
181 |
|
float DOT = dot(PS,PO)/ps_sq;
|
182 |
|
|
183 |
|
return max(sign(D),0.0) * min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D/ps_sq)-DOT)),E); // if D<=0 (i.e p is outside the Region) return 0.
|
184 |
|
}
|
185 |
|
|
186 |
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
187 |
|
// Distort effect
|
|
209 |
// DISTORT EFFECT
|
188 |
210 |
//
|
189 |
211 |
// Point (Px,Py) gets moved by vector (Wx,Wy,Wz) where Wx/Wy = Vx/Vy i.e. Wx=aVx and Wy=aVy where
|
190 |
212 |
// a=Py/Sy (N --> when (Px,Py) is above (Sx,Sy)) or a=Px/Sx (W) or a=(w-Px)/(w-Sx) (E) or a=(h-Py)/(h-Sy) (S)
|
... | ... | |
260 |
282 |
}
|
261 |
283 |
|
262 |
284 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
263 |
|
// sink effect
|
|
285 |
// SINK EFFECT
|
|
286 |
//
|
264 |
287 |
// Pull P=(v.x,v.y) towards S=vPoint[effect] with P' = P + (1-h)d(S-P)
|
265 |
288 |
// when h>1 we are pushing points away from S: P' = P + (1/h-1)d(S-P)
|
266 |
289 |
|
... | ... | |
275 |
298 |
}
|
276 |
299 |
|
277 |
300 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
278 |
|
// Swirl
|
|
301 |
// SWIRL EFFECT
|
279 |
302 |
//
|
280 |
303 |
// Let d be the degree of the current vertex V with respect to center of the effect S and Region vRegion.
|
281 |
304 |
// This effect rotates the current vertex V by vInterpolated.x radians clockwise around the circle dilated
|
... | ... | |
297 |
320 |
P.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2)); // if d2=1 (i.e P=S) we should have P unchanged. How to do it?
|
298 |
321 |
}
|
299 |
322 |
|
300 |
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
301 |
|
// Clamp v.z to (-u_Depth,u_Depth) with the following function:
|
302 |
|
// define h to be, say, 0.7; let H=u_Depth
|
303 |
|
// if v.z < -hH then v.z = (-(1-h)^2 * H^2)/(v.z+(2h-1)H) -H (function satisfying f(-hH)=-hH, f'(-hH)=1, lim f(x) = -H)
|
304 |
|
// else if v.z > hH then v.z = (-(1-h)^2 * H^2)/(v.z-(2h-1)H) +H (function satisfying f(+hH)=+hH, f'(+hH)=1, lim f(x) = +H)
|
305 |
|
// else v.z = v.z
|
306 |
|
|
307 |
|
void restrict(inout float v)
|
308 |
|
{
|
309 |
|
const float h = 0.7;
|
310 |
|
float signV = 2.0*max(0.0,sign(v))-1.0;
|
311 |
|
float c = ((1.0-h)*(h-1.0)*u_Depth*u_Depth)/(v-signV*(2.0*h-1.0)*u_Depth) +signV*u_Depth;
|
312 |
|
float b = max(0.0,sign(abs(v)-h*u_Depth));
|
313 |
|
|
314 |
|
v = b*c+(1.0-b)*v; // Avoid branching: if abs(v)>h*u_Depth, then v=c; otherwise v=v.
|
315 |
|
}
|
316 |
323 |
#endif
|
317 |
324 |
|
318 |
325 |
//////////////////////////////////////////////////////////////////////////////////////////////
|
... | ... | |
325 |
332 |
#if NUM_VERTEX>0
|
326 |
333 |
for(int i=0; i<vNumEffects; i++)
|
327 |
334 |
{
|
328 |
|
//switch(vType[i])
|
329 |
|
// {
|
330 |
|
// case DISTORT: distort(3*i,v,n); break;
|
331 |
|
// case DEFORM : deform(3*i,v) ; break;
|
332 |
|
// case SINK : sink(3*i,v) ; break;
|
333 |
|
// case SWIRL : swirl(3*i,v) ; break;
|
334 |
|
// }
|
335 |
|
|
336 |
335 |
if( vType[i]==DISTORT) distort(3*i,v,n);
|
337 |
|
else if( vType[i]==DEFORM ) deform(3*i,v);
|
338 |
|
else if( vType[i]==SINK ) sink(3*i,v);
|
339 |
|
else if( vType[i]==SWIRL ) swirl(3*i,v);
|
|
336 |
else if( vType[i]==DEFORM ) deform (3*i,v);
|
|
337 |
else if( vType[i]==SINK ) sink (3*i,v);
|
|
338 |
else if( vType[i]==SWIRL ) swirl (3*i,v);
|
340 |
339 |
}
|
341 |
340 |
|
342 |
341 |
restrict(v.z);
|
Progress with Vertex3D