Revision 375b3950
Added by Leszek Koltunski over 6 years ago
src/main/java/org/distorted/library/main/DistortedEffects.java | ||
---|---|---|
70 | 70 |
|
71 | 71 |
/// BLIT DEPTH PROGRAM /// |
72 | 72 |
private static DistortedProgram mBlitDepthProgram; |
73 |
private static int mBlitDepthTextureH; |
|
74 |
private static int mBlitDepthDepthTextureH; |
|
75 |
private static int mBlitDepthDepthH; |
|
76 |
private static int mBlitDepthTexCorrH; |
|
73 | 77 |
private static int mBlitDepthSizeH; |
78 |
private static int mBlitDepthNumRecordsH; |
|
74 | 79 |
|
75 | 80 |
private static int[] mLinkedListSSBO = new int[1]; |
76 | 81 |
private static int[] mAtomicCounter = new int[1]; |
... | ... | |
83 | 88 |
|
84 | 89 |
private static int mBufferSize=(0x1<<23); // 8 million entries |
85 | 90 |
|
86 |
private static IntBuffer mIntBuffer; |
|
87 |
|
|
88 |
private static ByteBuffer mBuf, mAtomicBuf; |
|
89 |
private static IntBuffer mIntBuf, mAtomicIntBuf; |
|
90 |
|
|
91 | 91 |
/// BLIT DEPTH RENDER PROGRAM /// |
92 | 92 |
private static DistortedProgram mBlitDepthRenderProgram; |
93 |
private static int mBlitDepthRenderDepthTextureH; |
|
94 |
private static int mBlitDepthRenderDepthH; |
|
95 |
private static int mBlitDepthRenderTexCorrH; |
|
93 | 96 |
private static int mBlitDepthRenderSizeH; |
94 | 97 |
|
95 | 98 |
/// NORMAL PROGRAM ///// |
... | ... | |
184 | 187 |
} |
185 | 188 |
|
186 | 189 |
int blitDepthProgramH = mBlitDepthProgram.getProgramHandle(); |
190 |
mBlitDepthTextureH = GLES31.glGetUniformLocation( blitDepthProgramH, "u_Texture"); |
|
191 |
mBlitDepthDepthTextureH = GLES31.glGetUniformLocation( blitDepthProgramH, "u_DepthTexture"); |
|
192 |
mBlitDepthDepthH = GLES31.glGetUniformLocation( blitDepthProgramH, "u_Depth"); |
|
193 |
mBlitDepthTexCorrH = GLES31.glGetUniformLocation( blitDepthProgramH, "u_TexCorr"); |
|
187 | 194 |
mBlitDepthSizeH = GLES31.glGetUniformLocation( blitDepthProgramH, "u_Size"); |
188 |
|
|
189 |
mIntBuffer = ByteBuffer.allocateDirect(4).order(ByteOrder.nativeOrder()).asIntBuffer(); |
|
190 |
mIntBuffer.put(0,0); |
|
195 |
mBlitDepthNumRecordsH = GLES31.glGetUniformLocation( blitDepthProgramH, "u_numRecords"); |
|
191 | 196 |
|
192 | 197 |
if( mLinkedListSSBO[0]<0 ) |
193 | 198 |
{ |
... | ... | |
203 | 208 |
GLES31.glGenBuffers(1,mAtomicCounter,0); |
204 | 209 |
GLES31.glBindBufferBase(GLES31.GL_ATOMIC_COUNTER_BUFFER, 0, mAtomicCounter[0]); |
205 | 210 |
GLES31.glBindBuffer(GLES31.GL_ATOMIC_COUNTER_BUFFER, mAtomicCounter[0] ); |
206 |
GLES31.glBufferData(GLES31.GL_ATOMIC_COUNTER_BUFFER, 4, mIntBuffer, GLES31.GL_DYNAMIC_DRAW);
|
|
211 |
GLES31.glBufferData(GLES31.GL_ATOMIC_COUNTER_BUFFER, 4, null, GLES31.GL_DYNAMIC_DRAW);
|
|
207 | 212 |
GLES31.glBindBuffer(GLES31.GL_ATOMIC_COUNTER_BUFFER, 0); |
208 | 213 |
} |
209 | 214 |
|
... | ... | |
222 | 227 |
} |
223 | 228 |
|
224 | 229 |
int blitDepthRenderProgramH = mBlitDepthRenderProgram.getProgramHandle(); |
230 |
mBlitDepthRenderDepthTextureH = GLES31.glGetUniformLocation( blitDepthRenderProgramH, "u_DepthTexture"); |
|
231 |
mBlitDepthRenderDepthH = GLES31.glGetUniformLocation( blitDepthRenderProgramH, "u_Depth"); |
|
232 |
mBlitDepthRenderTexCorrH = GLES31.glGetUniformLocation( blitDepthRenderProgramH, "u_TexCorr"); |
|
225 | 233 |
mBlitDepthRenderSizeH = GLES31.glGetUniformLocation( blitDepthRenderProgramH, "u_Size"); |
226 | 234 |
|
227 | 235 |
// NORMAL PROGRAM ////////////////////////////////////// |
... | ... | |
377 | 385 |
GLES31.glDrawArrays(GLES31.GL_TRIANGLE_STRIP, 0, 4); |
378 | 386 |
} |
379 | 387 |
|
388 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
389 |
// reset atomic counter to 0 |
|
390 |
|
|
391 |
static void zeroOutAtomic() |
|
392 |
{ |
|
393 |
GLES31.glBindBuffer(GLES31.GL_ATOMIC_COUNTER_BUFFER, mAtomicCounter[0] ); |
|
394 |
|
|
395 |
ByteBuffer atomicBuf = (ByteBuffer)GLES31.glMapBufferRange( GLES31.GL_ATOMIC_COUNTER_BUFFER, 0, 4, |
|
396 |
GLES31.GL_MAP_READ_BIT|GLES31.GL_MAP_WRITE_BIT); |
|
397 |
if( atomicBuf!=null ) |
|
398 |
{ |
|
399 |
IntBuffer atomicIntBuf = atomicBuf.order(ByteOrder.nativeOrder()).asIntBuffer(); |
|
400 |
|
|
401 |
int counter = atomicIntBuf.get(0); |
|
402 |
atomicIntBuf.put(0, 0); |
|
403 |
//android.util.Log.e("counter", "now = "+counter+" w="+surface.mWidth+" h="+surface.mHeight |
|
404 |
// +" diff="+(counter-surface.mWidth*surface.mHeight)); |
|
405 |
} |
|
406 |
else |
|
407 |
{ |
|
408 |
android.util.Log.e("counter", "failed to map buffer"); |
|
409 |
} |
|
410 |
|
|
411 |
GLES31.glUnmapBuffer(GLES31.GL_ATOMIC_COUNTER_BUFFER); |
|
412 |
GLES31.glBindBuffer(GLES31.GL_ATOMIC_COUNTER_BUFFER, 0); |
|
413 |
} |
|
414 |
|
|
380 | 415 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
381 | 416 |
|
382 | 417 |
static void blitDepthPriv(DistortedOutputSurface surface, float corrW, float corrH) |
... | ... | |
384 | 419 |
mBlitDepthProgram.useProgram(); |
385 | 420 |
|
386 | 421 |
GLES31.glViewport(0, 0, surface.mWidth, surface.mHeight ); |
422 |
GLES31.glUniform1i(mBlitDepthTextureH, 0); |
|
423 |
GLES31.glUniform1i(mBlitDepthDepthTextureH, 1); |
|
424 |
GLES31.glUniform2f(mBlitDepthTexCorrH, corrW, corrH ); |
|
387 | 425 |
GLES31.glUniform2f(mBlitDepthSizeH, surface.mWidth, surface.mHeight); |
426 |
GLES31.glUniform1ui(mBlitDepthNumRecordsH, (mBufferSize-surface.mWidth*surface.mHeight)/3 ); // see the fragment shader |
|
427 |
GLES31.glUniform1f(mBlitDepthDepthH , 1.0f-surface.mNear); |
|
388 | 428 |
GLES31.glVertexAttribPointer(mBlitDepthProgram.mAttribute[0], 2, GLES31.GL_FLOAT, false, 0, mQuadPositions); |
389 | 429 |
GLES31.glDrawArrays(GLES31.GL_TRIANGLE_STRIP, 0, 4); |
390 | 430 |
} |
... | ... | |
400 | 440 |
//analyzeBuffer(surface.mWidth, surface.mHeight); |
401 | 441 |
|
402 | 442 |
GLES31.glViewport(0, 0, surface.mWidth, surface.mHeight ); |
443 |
GLES31.glUniform1i(mBlitDepthRenderDepthTextureH, 1); |
|
444 |
GLES31.glUniform2f(mBlitDepthRenderTexCorrH, corrW, corrH ); |
|
403 | 445 |
GLES31.glUniform2f(mBlitDepthRenderSizeH, surface.mWidth, surface.mHeight); |
446 |
GLES31.glUniform1f( mBlitDepthRenderDepthH , 1.0f-surface.mNear); |
|
404 | 447 |
GLES31.glVertexAttribPointer(mBlitDepthRenderProgram.mAttribute[0], 2, GLES31.GL_FLOAT, false, 0, mQuadPositions); |
405 | 448 |
GLES31.glDrawArrays(GLES31.GL_TRIANGLE_STRIP, 0, 4); |
406 |
|
|
407 |
// reset atomic counter to 0 |
|
408 |
GLES31.glBindBuffer(GLES31.GL_ATOMIC_COUNTER_BUFFER, mAtomicCounter[0] ); |
|
409 |
|
|
410 |
mAtomicBuf = (ByteBuffer)GLES31.glMapBufferRange( GLES31.GL_ATOMIC_COUNTER_BUFFER, 0, 4, |
|
411 |
GLES31.GL_MAP_READ_BIT|GLES31.GL_MAP_WRITE_BIT); |
|
412 |
if( mAtomicBuf!=null ) |
|
413 |
{ |
|
414 |
mAtomicIntBuf = mAtomicBuf.order(ByteOrder.nativeOrder()).asIntBuffer(); |
|
415 |
|
|
416 |
int counter = mAtomicIntBuf.get(0); |
|
417 |
mAtomicIntBuf.put(0, 0); |
|
418 |
//android.util.Log.e("counter", "now = "+counter+" w="+surface.mWidth+" h="+surface.mHeight |
|
419 |
// +" diff="+(counter-surface.mWidth*surface.mHeight)); |
|
420 |
} |
|
421 |
else |
|
422 |
{ |
|
423 |
android.util.Log.e("counter", "failed to map buffer"); |
|
424 |
} |
|
425 |
|
|
426 |
GLES31.glUnmapBuffer(GLES31.GL_ATOMIC_COUNTER_BUFFER); |
|
427 |
GLES31.glBindBuffer(GLES31.GL_ATOMIC_COUNTER_BUFFER, 0); |
|
428 | 449 |
} |
429 | 450 |
|
430 | 451 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
... | ... | |
435 | 456 |
int errors = 0; |
436 | 457 |
|
437 | 458 |
GLES31.glBindBuffer(GLES31.GL_SHADER_STORAGE_BUFFER, mLinkedListSSBO[0]); |
438 |
mBuf = (ByteBuffer)GLES31.glMapBufferRange(GLES31.GL_SHADER_STORAGE_BUFFER, 0, mBufferSize*4, GLES31.GL_MAP_READ_BIT);
|
|
439 |
mIntBuf = mBuf.order(ByteOrder.nativeOrder()).asIntBuffer();
|
|
459 |
ByteBuffer buf = (ByteBuffer)GLES31.glMapBufferRange(GLES31.GL_SHADER_STORAGE_BUFFER, 0, mBufferSize*4, GLES31.GL_MAP_READ_BIT);
|
|
460 |
IntBuffer intBuf = buf.order(ByteOrder.nativeOrder()).asIntBuffer();
|
|
440 | 461 |
|
441 | 462 |
for(int col=0; col<w; col++) |
442 | 463 |
for(int row=0; row<h; row++) |
443 | 464 |
{ |
444 | 465 |
index = col+row*w; |
445 |
ptr = mIntBuf.get(index);
|
|
466 |
ptr = intBuf.get(index);
|
|
446 | 467 |
|
447 | 468 |
if( ptr!=0 ) |
448 | 469 |
{ |
449 | 470 |
if( ptr>0 && ptr<mBufferSize ) |
450 | 471 |
{ |
451 |
ptr = mIntBuf.get(ptr);
|
|
472 |
ptr = intBuf.get(ptr);
|
|
452 | 473 |
if( ptr != index ) |
453 | 474 |
{ |
454 | 475 |
android.util.Log.d("surface", "col="+col+" row="+row+" val="+ptr+" expected: "+index); |
src/main/java/org/distorted/library/main/DistortedOutputSurface.java | ||
---|---|---|
353 | 353 |
|
354 | 354 |
if( lastBucket!=currBucket ) |
355 | 355 |
{ |
356 |
if( lastBucket!=0 ) |
|
356 |
if( lastBucket==0 ) |
|
357 |
{ |
|
358 |
DistortedEffects.zeroOutAtomic(); |
|
359 |
} |
|
360 |
else |
|
357 | 361 |
{ |
358 | 362 |
for(int j=bucketChange; j<i; j++) |
359 | 363 |
{ |
... | ... | |
386 | 390 |
numRenders += currQueue.postprocess(mBuffer); |
387 | 391 |
numRenders += blitWithDepth(time, mBuffer[quality]); |
388 | 392 |
GLES31.glMemoryBarrier(GLES31.GL_ALL_BARRIER_BITS); |
389 |
//GLES31.glFinish(); |
|
390 | 393 |
numRenders += blitWithDepthRender(time,mBuffer[quality]); // merge the OIT linked list |
391 | 394 |
clearBuffer(mBuffer[quality]); |
392 |
//GLES31.glFinish(); |
|
393 | 395 |
} |
394 | 396 |
} |
395 | 397 |
|
src/main/res/raw/blit_depth_fragment_shader.glsl | ||
---|---|---|
22 | 22 |
|
23 | 23 |
out vec4 fragColor; |
24 | 24 |
in vec2 v_TexCoordinate; |
25 |
in vec2 v_Pixel; // location of the current fragment, in pixels |
|
26 |
|
|
27 |
uniform sampler2D u_Texture; |
|
28 |
uniform sampler2D u_DepthTexture; |
|
29 |
|
|
30 |
////////////////////////////////////////////////////////////////////////////////////////////// |
|
31 |
// per-pixel linked list. Order Independent Transparency. |
|
25 | 32 |
|
26 | 33 |
uniform vec2 u_Size; |
34 |
uniform uint u_numRecords; |
|
27 | 35 |
|
28 | 36 |
layout (binding=0, offset=0) uniform atomic_uint u_Counter; |
29 | 37 |
|
30 |
layout (std430,binding=1) buffer linkedlist |
|
38 |
layout (std430,binding=1) buffer linkedlist // first (u_Size.x*u_Size.y) uints - head pointers, |
|
39 |
{ // one for each pixel in the Output rectangle. |
|
40 |
uint u_Records[]; // |
|
41 |
}; // Next 3*u_numRecords uints - actual linked list, i.e. |
|
42 |
// triplets of (pointer,depth,rgba). |
|
43 |
|
|
44 |
////////////////////////////////////////////////////////////////////////////////////////////// |
|
45 |
// Concurrent insert to a linked list. Tim Harris, 'pragmatic implementation of non-blocking |
|
46 |
// linked-lists', 2001. |
|
47 |
// This arranges fragments by decreasing 'depth', so one would think - from back to front, but |
|
48 |
// in main() below the depth is mapped with S*(1-depth)/2, so it is really front to back. |
|
49 |
|
|
50 |
void insert( vec2 ij, uint depth, uint rgba ) |
|
51 |
{ |
|
52 |
uint ptr = atomicCounterIncrement(u_Counter); |
|
53 |
/* |
|
54 |
if( ptr<u_numRecords ) |
|
55 |
{ |
|
56 |
ptr = 3u*ptr + uint(u_Size.x*u_Size.y); |
|
57 |
|
|
58 |
u_Records[ptr ] = 0u; |
|
59 |
u_Records[ptr+1u] = depth; |
|
60 |
u_Records[ptr+2u] = rgba;//(255u<<16u) + (255u);//rgba; |
|
61 |
|
|
62 |
uint index = uint(ij.x + ij.y * u_Size.x); |
|
63 |
|
|
64 |
u_Records[index] = ptr; |
|
65 |
discard; |
|
66 |
} |
|
67 |
*/ |
|
68 |
if( ptr<u_numRecords ) |
|
69 |
{ |
|
70 |
ptr = 3u*ptr + uint(u_Size.x*u_Size.y); |
|
71 |
|
|
72 |
u_Records[ptr+1u] = depth; |
|
73 |
u_Records[ptr+2u] = rgba; |
|
74 |
|
|
75 |
memoryBarrier(); |
|
76 |
|
|
77 |
uint prev = uint(ij.x + ij.y * u_Size.x); |
|
78 |
uint curr = u_Records[prev]; |
|
79 |
|
|
80 |
while (true) |
|
81 |
{ |
|
82 |
if ( curr==0u || depth > u_Records[curr+1u] ) // need to insert here |
|
83 |
{ |
|
84 |
u_Records[ptr] = curr; // next of new record is curr |
|
85 |
memoryBarrier(); |
|
86 |
uint res = atomicCompSwap( u_Records[prev], curr, ptr ); |
|
87 |
|
|
88 |
if (res==curr) break; // done! |
|
89 |
else curr = res; // could not insert! retry from same place in list |
|
90 |
} |
|
91 |
else // advance in list |
|
92 |
{ |
|
93 |
prev = curr; |
|
94 |
curr = u_Records[prev]; |
|
95 |
} |
|
96 |
} |
|
97 |
|
|
98 |
discard; |
|
99 |
} |
|
100 |
} |
|
101 |
|
|
102 |
////////////////////////////////////////////////////////////////////////////////////////////// |
|
103 |
|
|
104 |
uint convert(vec4 c) |
|
31 | 105 |
{ |
32 |
uint u_Records[];
|
|
33 |
};
|
|
106 |
return ((uint(255.0*c.r))<<24u) + ((uint(255.0*c.g))<<16u) + ((uint(255.0*c.b))<<8u) + uint(255.0*c.a);
|
|
107 |
} |
|
34 | 108 |
|
35 | 109 |
////////////////////////////////////////////////////////////////////////////////////////////// |
36 | 110 |
|
37 | 111 |
void main() |
38 | 112 |
{ |
39 |
uint pixelX = uint(v_TexCoordinate.x * u_Size.x); |
|
40 |
uint pixelY = uint(v_TexCoordinate.y * u_Size.y); |
|
41 |
uint index = pixelX + pixelY * uint(u_Size.x); |
|
42 |
|
|
43 |
uint ptr = uint(u_Size.x*u_Size.y) + atomicCounterIncrement(u_Counter); |
|
44 |
u_Records[ptr ] = index; |
|
45 |
u_Records[index] = ptr; |
|
46 |
discard; |
|
113 |
vec4 frag = texture(u_Texture , v_TexCoordinate); |
|
114 |
float depth= texture(u_DepthTexture, v_TexCoordinate).r; |
|
115 |
|
|
116 |
if( frag.a > 0.95 ) |
|
117 |
{ |
|
118 |
gl_FragDepth = depth; |
|
119 |
fragColor = frag; |
|
120 |
} |
|
121 |
else if( frag.a > 0.0 ) |
|
122 |
{ |
|
123 |
const float S= 2147483647.0; // max signed int. Could probably be max unsigned int but this is enough. |
|
124 |
insert(v_Pixel, uint(S*(1.0-depth)/2.0), convert(frag) ); |
|
125 |
} |
|
47 | 126 |
} |
src/main/res/raw/blit_depth_render_fragment_shader.glsl | ||
---|---|---|
20 | 20 |
precision highp float; |
21 | 21 |
precision highp int; |
22 | 22 |
|
23 |
out vec4 fragColor; |
|
24 |
in vec2 v_TexCoordinate; |
|
23 |
out vec4 fragColor; // The output color |
|
24 |
in vec2 v_TexCoordinate; // Interpolated texture coordinate per fragment. |
|
25 |
in vec2 v_Pixel; // location of the current fragment, in pixels |
|
26 |
|
|
27 |
uniform sampler2D u_DepthTexture; |
|
28 |
|
|
29 |
////////////////////////////////////////////////////////////////////////////////////////////// |
|
30 |
// per-pixel linked list. Order Independent Transparency. |
|
25 | 31 |
|
26 | 32 |
uniform vec2 u_Size; |
27 | 33 |
|
28 |
layout (std430,binding=1) buffer linkedlist |
|
34 |
layout (std430,binding=1) buffer linkedlist // first (u_Size.x*u_Size.y) uints - head pointers, |
|
35 |
{ // one for each pixel in the Output rectangle. |
|
36 |
uint u_Records[]; // |
|
37 |
}; // Next 3*u_numRecords uints - actual linked list, i.e. |
|
38 |
// triplets of (pointer,depth,rgba). |
|
39 |
|
|
40 |
////////////////////////////////////////////////////////////////////////////////////////////// |
|
41 |
|
|
42 |
vec4 convert(uint rgba) |
|
29 | 43 |
{ |
30 |
uint u_Records[]; |
|
31 |
}; |
|
44 |
return vec4( float((rgba>>24u)&255u),float((rgba>>16u)&255u),float((rgba>>8u)&255u),float(rgba&255u) ) / 255.0; |
|
45 |
} |
|
46 |
|
|
47 |
////////////////////////////////////////////////////////////////////////////////////////////// |
|
48 |
// https://en.wikipedia.org/wiki/Alpha_compositing (premultiplied) |
|
49 |
|
|
50 |
vec4 blend(vec4 clr,vec4 srf) |
|
51 |
{ |
|
52 |
return clr + (1.0 - clr.a) * vec4(srf.rgb * srf.a , srf.a); |
|
53 |
} |
|
32 | 54 |
|
33 | 55 |
////////////////////////////////////////////////////////////////////////////////////////////// |
34 | 56 |
|
35 | 57 |
void main() |
36 | 58 |
{ |
37 |
uint pixelX = uint(v_TexCoordinate.x * u_Size.x); |
|
38 |
uint pixelY = uint(v_TexCoordinate.y * u_Size.y); |
|
39 |
uint index = pixelX + pixelY * uint(u_Size.x); |
|
59 |
uint index = uint(v_Pixel.x + v_Pixel.y * u_Size.x); |
|
60 |
uint curr = u_Records[index]; |
|
61 |
|
|
62 |
if (curr == 0u) discard; |
|
63 |
|
|
64 |
vec4 color= vec4(0.0,0.0,0.0,0.0); |
|
65 |
u_Records[index] = 0u; |
|
40 | 66 |
|
41 |
uint ptr = u_Records[index]; |
|
42 |
uint color = u_Records[ptr]; |
|
43 |
//u_Records[ptr] = 0u; |
|
67 |
while (curr > 0u) |
|
68 |
{ |
|
69 |
color= blend( color, convert(u_Records[curr+2u]) ); // keep walking the linked list |
|
70 |
curr = u_Records[curr]; // and blending the colors in |
|
71 |
} |
|
44 | 72 |
|
45 |
if( color==index ) fragColor = vec4(0.0,1.0,0.0,1.0);
|
|
46 |
else fragColor = vec4(1.0,0.0,0.0,1.0);
|
|
73 |
gl_FragDepth = texture(u_DepthTexture, v_TexCoordinate).r;
|
|
74 |
fragColor = color;
|
|
47 | 75 |
} |
src/main/res/raw/blit_depth_vertex_shader.glsl | ||
---|---|---|
20 | 20 |
precision highp float; |
21 | 21 |
precision highp int; |
22 | 22 |
|
23 |
in vec2 a_Position; |
|
24 |
out vec2 v_TexCoordinate; |
|
23 |
in vec2 a_Position; // Per-vertex position. |
|
24 |
out vec2 v_TexCoordinate; // |
|
25 |
out vec2 v_Pixel; // |
|
26 |
|
|
27 |
uniform float u_Depth; // distance from the near plane to render plane, in clip coords |
|
28 |
uniform vec2 u_TexCorr; // when we blit from postprocessing buffers, the buffers can be |
|
29 |
// larger than necessary (there is just one static set being |
|
30 |
// reused!) so we need to compensate here by adjusting the texture |
|
31 |
// coords. |
|
32 |
|
|
33 |
uniform vec2 u_Size; // size of the output surface, in pixels. |
|
25 | 34 |
|
26 | 35 |
////////////////////////////////////////////////////////////////////////////////////////////// |
27 | 36 |
|
28 | 37 |
void main() |
29 | 38 |
{ |
30 |
v_TexCoordinate = a_Position + 0.5; |
|
31 |
gl_Position = vec4(2.0*a_Position,1.0,1.0); |
|
39 |
v_TexCoordinate = (a_Position + 0.5) * u_TexCorr; |
|
40 |
v_Pixel = v_TexCoordinate * u_Size; |
|
41 |
gl_Position = vec4(2.0*a_Position,u_Depth,1.0); |
|
32 | 42 |
} |
Also available in: Unified diff
OIT: something starts working ('Blur' and 'Multiblur' work, 'Triblur' and 'Transparency' do not)