Project

General

Profile

Download (34.9 KB) Statistics
| Branch: | Revision:

library / src / main / java / org / distorted / library / main / InternalOutputSurface.java @ 46dc4091

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski  leszek@koltunski.pl                                          //
3
//                                                                                               //
4
// This file is part of Distorted.                                                               //
5
//                                                                                               //
6
// This library is free software; you can redistribute it and/or                                 //
7
// modify it under the terms of the GNU Lesser General Public                                    //
8
// License as published by the Free Software Foundation; either                                  //
9
// version 2.1 of the License, or (at your option) any later version.                            //
10
//                                                                                               //
11
// This library is distributed in the hope that it will be useful,                               //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU                             //
14
// Lesser General Public License for more details.                                               //
15
//                                                                                               //
16
// You should have received a copy of the GNU Lesser General Public                              //
17
// License along with this library; if not, write to the Free Software                           //
18
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA                //
19
///////////////////////////////////////////////////////////////////////////////////////////////////
20

    
21
package org.distorted.library.main;
22

    
23
import android.opengl.GLES30;
24
import android.opengl.GLES31;
25

    
26
import org.distorted.library.effect.EffectQuality;
27
import org.distorted.library.effectqueue.EffectQueuePostprocess;
28
import org.distorted.library.helpers.MatrixHelper;
29
import org.distorted.library.mesh.MeshBase;
30

    
31
///////////////////////////////////////////////////////////////////////////////////////////////////
32
/**
33
 * This is not really part of the public API.
34
 *
35
 * @y.exclude
36
 */
37
public abstract class InternalOutputSurface extends InternalSurface implements InternalChildrenList.Parent
38
{
39
  public static final int NO_DEPTH_NO_STENCIL = 0;
40
  public static final int DEPTH_NO_STENCIL    = 1;
41
  public static final int BOTH_DEPTH_STENCIL  = 2;
42

    
43
  static final float DEFAULT_FOV = 60.0f;
44
  static final float DEFAULT_NEAR=  0.1f;
45

    
46
  private float mFOV;
47
  private final int mTmpFBO;
48

    
49
  private long[] mTime;
50
  private float mClearR, mClearG, mClearB, mClearA, mClearDepth;
51
  private int mClear, mClearStencil;
52
  private boolean mRenderWayOIT;
53
  private final InternalChildrenList mChildren;
54

    
55
  // Global buffers used for postprocessing
56
  private final static DistortedFramebuffer[] mBuffer= new DistortedFramebuffer[EffectQuality.LENGTH];
57
  private final boolean[] mBufferInitialized;
58

    
59
  float mDistance, mNear, mMipmap;
60
  float[] mProjectionMatrix;
61
  int mDepthStencilCreated, mDepthStencil;
62
  int[] mDepthStencilH, mFBOH;
63
  int mRealWidth;   // the Surface can be backed up by a texture larger than the viewport we have to it.
64
  int mRealHeight;  // mWidth,mHeight are the sizes of the Viewport, those - sizes of the backing up texture.
65
  int mCurrFBO;     // internal current FBO (see DistortedLibrary.FBO_QUEUE_SIZE)
66
  int mWidth, mHeight;
67

    
68
///////////////////////////////////////////////////////////////////////////////////////////////////
69

    
70
  InternalOutputSurface(int width, int height, int createColor, int numfbos, int numcolors, int depthStencil, int fbo, int type, int storage)
71
    {
72
    super(createColor,numfbos,numcolors,type,storage);
73

    
74
    mRenderWayOIT = false;
75
    mCurrFBO      = 0;
76

    
77
    mRealWidth = mWidth = width;
78
    mRealHeight= mHeight= height;
79

    
80
    mProjectionMatrix = new float[16];
81

    
82
    mFOV = DEFAULT_FOV;
83
    mNear= DEFAULT_NEAR;
84

    
85
    mDepthStencilCreated= (depthStencil== NO_DEPTH_NO_STENCIL ? DONT_CREATE:NOT_CREATED_YET);
86
    mDepthStencil = depthStencil;
87

    
88
    mClearR = 0.0f;
89
    mClearG = 0.0f;
90
    mClearB = 0.0f;
91
    mClearA = 0.0f;
92

    
93
    mClearDepth = 1.0f;
94
    mClearStencil = 0;
95
    mClear = GLES30.GL_DEPTH_BUFFER_BIT | GLES30.GL_COLOR_BUFFER_BIT;
96

    
97
    mMipmap = 1.0f;
98

    
99
    mChildren = new InternalChildrenList(this);
100

    
101
    mTmpFBO = fbo;
102

    
103
    mFBOH = new int[10];  // Crashlytics shows the library occasionally crashing in setAsOutput()
104
    mTime = new long[10]; // when trying to read from 'null array' mFBOH. Probably sometimes a
105
                          // a Framebuffer gets created in the wrong moment, just after we did a
106
                          // round of create(), but before we start rendering.
107
                          // Create an empty FBO and Time here so that setAsOutput() is always safe to call.
108

    
109
    mBufferInitialized = new boolean[EffectQuality.LENGTH];
110

    
111
    allocateStuffDependantOnNumFBOS();
112
    createProjection();
113
    }
114

    
115
///////////////////////////////////////////////////////////////////////////////////////////////////
116

    
117
  void allocateStuffDependantOnNumFBOS()
118
    {
119
    if( mNumFBOs>0 )
120
      {
121
      mDepthStencilH   = new int[mNumFBOs];
122
      mDepthStencilH[0]= 0;
123

    
124
      mFBOH   = new int[mNumFBOs];
125
      mFBOH[0]= mTmpFBO;
126

    
127
      mTime = new long[mNumFBOs];
128
      for(int i=0; i<mNumFBOs;i++) mTime[i]=0;
129
      }
130
    }
131

    
132
///////////////////////////////////////////////////////////////////////////////////////////////////
133

    
134
  private void createProjection()
135
    {
136
    if( mWidth>0 && mHeight>1 )
137
      {
138
      if( mFOV>0.0f )  // perspective projection
139
        {
140
        float a = 2.0f*(float)Math.tan(mFOV*Math.PI/360);
141
        float q = mWidth*mNear;
142
        float c = mHeight*mNear;
143

    
144
        float left   = -q/2;
145
        float right  =  q/2;
146
        float bottom = -c/2;
147
        float top    =  c/2;
148
        float near   =  c/a;
149

    
150
        mDistance    = mHeight/a;
151
        float far    = 2*mDistance-near;
152

    
153
        MatrixHelper.frustum(mProjectionMatrix, left, right, bottom, top, near, far);
154
        }
155
      else             // parallel projection
156
        {
157
        float left   = -mWidth/2.0f;
158
        float right  =  mWidth/2.0f;
159
        float bottom = -mHeight/2.0f;
160
        float top    =  mHeight/2.0f;
161
        float near   = mWidth+mHeight-mHeight*(1.0f-mNear);
162
        mDistance    = mWidth+mHeight;
163
        float far    = mWidth+mHeight+mHeight*(1.0f-mNear);
164

    
165
        MatrixHelper.ortho(mProjectionMatrix, left, right, bottom, top, near, far);
166
        }
167
      }
168
    }
169

    
170
///////////////////////////////////////////////////////////////////////////////////////////////////
171

    
172
  private static void createPostprocessingBuffers(int quality, int width, int height, float near)
173
    {
174
    final float CLEAR_R = 1.0f;
175
    final float CLEAR_G = 1.0f;
176
    final float CLEAR_B = 1.0f;
177
    final float CLEAR_A = 0.0f;
178
    final float CLEAR_D = 1.0f;
179
    final int   CLEAR_S = 0;
180

    
181
    final int queueSize = DistortedLibrary.getQueueSize();
182
    float mipmap= EffectQuality.getMipmap(quality);
183

    
184
    mBuffer[quality] = new DistortedFramebuffer(queueSize,2,BOTH_DEPTH_STENCIL,TYPE_SYST, STORAGE_COMMON, (int)(width*mipmap), (int)(height*mipmap) );
185
    mBuffer[quality].mMipmap = mipmap;
186
    mBuffer[quality].mNear = near;  // copy mNear as well (for blitting- see PostprocessEffect.apply() )
187
    mBuffer[quality].glClearColor(CLEAR_R, CLEAR_G, CLEAR_B, CLEAR_A);
188

    
189
    InternalStackFrameList.toDo(); // create the FBOs immediately. This is safe as we must be holding the OpenGL context now.
190

    
191
    InternalRenderState.colorDepthStencilOn();
192
    GLES30.glClearColor(CLEAR_R, CLEAR_G, CLEAR_B, CLEAR_A);
193
    GLES30.glClearDepthf(CLEAR_D);
194
    GLES30.glClearStencil(CLEAR_S);
195

    
196
    for(int k=0; k<queueSize; k++)
197
      {
198
      GLES30.glBindFramebuffer(GLES30.GL_FRAMEBUFFER, mBuffer[quality].mFBOH[k]);
199
      GLES30.glFramebufferTexture2D(GLES30.GL_FRAMEBUFFER, GLES30.GL_COLOR_ATTACHMENT0, GLES30.GL_TEXTURE_2D, mBuffer[quality].mColorH[2*k+1], 0);
200
      GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT | GLES30.GL_DEPTH_BUFFER_BIT | GLES30.GL_STENCIL_BUFFER_BIT);
201
      GLES30.glFramebufferTexture2D(GLES30.GL_FRAMEBUFFER, GLES30.GL_COLOR_ATTACHMENT0, GLES30.GL_TEXTURE_2D, mBuffer[quality].mColorH[2*k  ], 0);
202
      GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT);
203
      }
204

    
205
    InternalRenderState.colorDepthStencilRestore();
206

    
207
    GLES30.glBindFramebuffer(GLES30.GL_FRAMEBUFFER, 0);
208
    }
209

    
210
///////////////////////////////////////////////////////////////////////////////////////////////////
211

    
212
  static synchronized void onPause()
213
    {
214
    for (int j=0; j<EffectQuality.LENGTH; j++)
215
      if( mBuffer[j]!=null )
216
        {
217
        mBuffer[j].markForDeletion();
218
        mBuffer[j] = null;
219
        }
220
    }
221

    
222
///////////////////////////////////////////////////////////////////////////////////////////////////
223

    
224
  private int blitWithDepth(long currTime, InternalOutputSurface buffer, int fbo)
225
    {
226
    GLES30.glViewport(0, 0, mWidth, mHeight);
227
    setAsOutput(currTime);
228
    GLES30.glActiveTexture(GLES30.GL_TEXTURE0);
229
    GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, buffer.mColorH[2*fbo]);
230
    GLES30.glActiveTexture(GLES30.GL_TEXTURE1);
231
    GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, buffer.mDepthStencilH[fbo]);
232

    
233
    GLES30.glDisable(GLES30.GL_STENCIL_TEST);
234
    GLES30.glStencilMask(0x00);
235

    
236
    DistortedLibrary.blitDepthPriv(this, buffer.getWidthCorrection(), buffer.getHeightCorrection() );
237
    GLES30.glActiveTexture(GLES30.GL_TEXTURE0);
238
    GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, 0);
239
    GLES30.glActiveTexture(GLES30.GL_TEXTURE1);
240
    GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, 0);
241

    
242
    // clear buffers
243
    GLES30.glStencilMask(0xff);
244
    GLES30.glDepthMask(true);
245
    GLES30.glColorMask(true,true,true,true);
246
    GLES30.glClearColor(buffer.mClearR,buffer.mClearG,buffer.mClearB,buffer.mClearA);
247
    GLES30.glClearDepthf(buffer.mClearDepth);
248
    GLES30.glClearStencil(buffer.mClearStencil);
249

    
250
    buffer.setAsOutput();
251
    GLES30.glFramebufferTexture2D(GLES30.GL_FRAMEBUFFER, GLES30.GL_COLOR_ATTACHMENT0, GLES30.GL_TEXTURE_2D, buffer.mColorH[2*fbo+1], 0);
252
    GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT|GLES30.GL_DEPTH_BUFFER_BIT|GLES30.GL_STENCIL_BUFFER_BIT);
253
    GLES30.glFramebufferTexture2D(GLES30.GL_FRAMEBUFFER, GLES30.GL_COLOR_ATTACHMENT0, GLES30.GL_TEXTURE_2D, buffer.mColorH[2*fbo  ], 0);
254
    GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT);
255

    
256
    return 1;
257
    }
258

    
259
///////////////////////////////////////////////////////////////////////////////////////////////////
260

    
261
  private static void oitClear(InternalOutputSurface buffer)
262
    {
263
    int counter = DistortedLibrary.zeroOutAtomic();
264
    DistortedLibrary.oitClear(buffer,counter);
265
    GLES31.glMemoryBarrier(GLES31.GL_SHADER_STORAGE_BARRIER_BIT|GLES31.GL_ATOMIC_COUNTER_BARRIER_BIT);
266
    }
267

    
268
///////////////////////////////////////////////////////////////////////////////////////////////////
269

    
270
  private int oitBuild(long time, InternalOutputSurface buffer, int fbo)
271
    {
272
    GLES30.glViewport(0, 0, mWidth, mHeight);
273
    setAsOutput(time);
274
    GLES30.glActiveTexture(GLES30.GL_TEXTURE0);
275
    GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, buffer.mColorH[2*fbo]);
276
    GLES30.glActiveTexture(GLES30.GL_TEXTURE1);
277
    GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, buffer.mDepthStencilH[fbo]);
278

    
279
    InternalRenderState.colorDepthStencilOn();
280
    InternalRenderState.enableDepthTest();
281

    
282
    DistortedLibrary.oitBuild(this, buffer.getWidthCorrection(), buffer.getHeightCorrection() );
283
    GLES30.glActiveTexture(GLES30.GL_TEXTURE0);
284
    GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, 0);
285
    GLES30.glActiveTexture(GLES30.GL_TEXTURE1);
286
    GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, 0);
287

    
288
    InternalRenderState.colorDepthStencilRestore();
289
    InternalRenderState.restoreDepthTest();
290

    
291
    return 1;
292
    }
293

    
294
///////////////////////////////////////////////////////////////////////////////////////////////////
295
// two phases: 1. collapse the SSBO 2. blend the ssbo's color
296

    
297
  private int oitRender(long currTime, int fbo)
298
    {
299
    float corrW = getWidthCorrection();
300
    float corrH = getHeightCorrection();
301

    
302
    // Do the Collapse Pass only if we do have a Depth attachment.
303
    // Otherwise there's no point (in fact we then would create a feedback loop!)
304

    
305
    if( mDepthStencilH[fbo] != 0 )
306
      {
307
      GLES30.glBindFramebuffer(GLES30.GL_FRAMEBUFFER, 0);
308
      GLES30.glActiveTexture(GLES30.GL_TEXTURE1);
309
      GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, mDepthStencilH[fbo]);
310
      InternalRenderState.switchOffColorDepthStencil();
311
      DistortedLibrary.oitCollapse(this, corrW, corrH);
312
      GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, 0);
313
      }
314

    
315
    setAsOutput(currTime);
316
    InternalRenderState.switchColorDepthOnStencilOff();
317
    DistortedLibrary.oitRender(this, corrW, corrH);
318
    InternalRenderState.restoreColorDepthStencil();
319

    
320
    return 1;
321
    }
322

    
323
///////////////////////////////////////////////////////////////////////////////////////////////////
324

    
325
  private void clear()
326
    {
327
    InternalRenderState.colorDepthStencilOn();
328
    GLES30.glClearColor(mClearR, mClearG, mClearB, mClearA);
329
    GLES30.glClearDepthf(mClearDepth);
330
    GLES30.glClearStencil(mClearStencil);
331
    GLES30.glClear(mClear);
332
    InternalRenderState.colorDepthStencilRestore();
333
    }
334

    
335
///////////////////////////////////////////////////////////////////////////////////////////////////
336

    
337
  void setCurrFBO(int fbo)
338
    {
339
    mCurrFBO = fbo;
340
    }
341

    
342
///////////////////////////////////////////////////////////////////////////////////////////////////
343
// Render all children from the current bucket to the buffer, apply the postprocessing once to the
344
// whole buffer (queue.postprocess) and merge it to 'this' (oitBuild or blitWithDepth depending on
345
// the type of rendering)
346

    
347
  private int accumulateAndBlit(EffectQueuePostprocess queue, InternalChildrenList children, DistortedFramebuffer buffer,
348
                                int begIndex, int endIndex, boolean isFinal, long time, int fbo, boolean oit )
349
    {
350
    int numRenders = 0;
351

    
352
    for(int j=begIndex; j<endIndex; j++)
353
       {
354
       DistortedNode node = children.getChild(j);
355

    
356
       if( node.getSurface().setAsInput() )
357
         {
358
         buffer.setAsOutput();
359
         numRenders += queue.preprocess( buffer, node, buffer.mDistance, buffer.mMipmap, buffer.mProjectionMatrix );
360
         }
361
       }
362
    numRenders += queue.postprocess(buffer);
363

    
364
    if( oit )
365
      {
366
      numRenders += oitBuild(time, buffer, fbo);
367
      GLES31.glMemoryBarrier(GLES31.GL_SHADER_STORAGE_BARRIER_BIT | GLES31.GL_ATOMIC_COUNTER_BARRIER_BIT);
368
      buffer.clearBuffer(fbo);
369
      }
370
    else
371
      {
372
      numRenders += blitWithDepth(time, buffer, fbo);
373
      if( !isFinal ) buffer.clearBuffer(fbo);
374
      }
375

    
376
    return numRenders;
377
    }
378

    
379
///////////////////////////////////////////////////////////////////////////////////////////////////
380

    
381
  private int renderChildToThisOrToBuffer(DistortedNode child, DistortedFramebuffer buffer, long time, boolean oit, boolean toThis)
382
    {
383
    int numRenders;
384

    
385
    if( toThis )
386
      {
387
      setAsOutput(time);
388

    
389
      if( oit )
390
        {
391
        numRenders = child.drawOIT(time, this);
392
        GLES31.glMemoryBarrier(GLES31.GL_SHADER_STORAGE_BARRIER_BIT | GLES31.GL_ATOMIC_COUNTER_BARRIER_BIT);
393
        }
394
      else
395
        {
396
        numRenders = child.draw(time, this);
397
        }
398
      }
399
    else
400
      {
401
      buffer.setAsOutput(time);
402
      numRenders = child.drawNoBlend(time, buffer);
403
      }
404

    
405
    return numRenders;
406
    }
407

    
408
///////////////////////////////////////////////////////////////////////////////////////////////////
409
// The postprocessing buffers mBuffer[] are generally speaking too large (there's just one static
410
// set of them) so before we use them for output, we need to adjust the Viewport as if they were
411
// smaller. That takes care of outputting pixels to them. When we use them as input, we have to
412
// adjust the texture coords - see the get{Width|Height}Correction functions.
413
//
414
// Also, adjust the Buffers so their Projection is the same like the surface we are supposed to be
415
// rendering to.
416

    
417
  private void clonePostprocessingViewportAndProjection(InternalOutputSurface surface, InternalOutputSurface from)
418
    {
419
    if( surface.mWidth != from.mWidth || surface.mHeight != from.mHeight ||
420
        surface.mFOV   != from.mFOV   || surface.mNear   != from.mNear    )
421
      {
422
      surface.mWidth  = (int)(from.mWidth *surface.mMipmap);
423
      surface.mHeight = (int)(from.mHeight*surface.mMipmap);
424
      surface.mFOV    = from.mFOV;
425
      surface.mNear   = from.mNear;  // Near plane is independent of the mipmap level
426

    
427
      surface.createProjection();
428

    
429
      int maxw = Math.max(surface.mWidth , surface.mRealWidth );
430
      int maxh = Math.max(surface.mHeight, surface.mRealHeight);
431

    
432
      if (maxw > surface.mRealWidth || maxh > surface.mRealHeight)
433
        {
434
        surface.mRealWidth = maxw;
435
        surface.mRealHeight = maxh;
436

    
437
        surface.recreate();
438
        surface.create();
439
        }
440
      }
441
    }
442

    
443
///////////////////////////////////////////////////////////////////////////////////////////////////
444

    
445
  private DistortedFramebuffer initializeBuffer(EffectQueuePostprocess queue, int fbo )
446
    {
447
    int currQuality = queue.getQuality();
448
    if( mBuffer[currQuality]==null ) createPostprocessingBuffers(currQuality, mWidth, mHeight, mNear);
449
    mBuffer[currQuality].setCurrFBO(fbo);
450

    
451
    if( !mBufferInitialized[currQuality] )
452
      {
453
      mBufferInitialized[currQuality] = true;
454
      clonePostprocessingViewportAndProjection(mBuffer[currQuality],this);
455
      }
456

    
457
    return mBuffer[currQuality];
458
    }
459

    
460
///////////////////////////////////////////////////////////////////////////////////////////////////
461
// Render all children, one by one. If there are no postprocessing effects, just render to THIS.
462
// Otherwise, render to a buffer and on each change of Postprocessing Bucket, apply the postprocessing
463
// to a whole buffer (lastQueue.postprocess) and merge it (this.oitBuild or blitWithDepth - depending
464
// on the type of rendering)
465

    
466
  int renderChildren(long time, int numChildren, InternalChildrenList children, int fbo, boolean oit)
467
    {
468
    int numRenders=0, bucketChange=0;
469
    DistortedNode child;
470
    DistortedFramebuffer buffer=null;
471
    EffectQueuePostprocess lastQueue=null, currQueue;
472
    long lastBucket=0, currBucket;
473
    boolean toThis=false;
474

    
475
    setCurrFBO(fbo);
476
    if( numChildren==0 ) setAsOutput(time);
477
    if( oit && numChildren>0 ) oitClear(this);
478
    for(int i=0; i<EffectQuality.LENGTH; i++) mBufferInitialized[i]=false;
479

    
480
    for(int i=0; i<numChildren; i++)
481
      {
482
      child = children.getChild(i);
483
      currQueue = (EffectQueuePostprocess)child.getEffects().getQueues()[3];
484
      currBucket= currQueue.getID();
485

    
486
      if( currBucket!=0 && lastBucket!=currBucket )
487
        {
488
        buffer = initializeBuffer(currQueue,fbo);
489
        if( lastBucket!=0 ) numRenders += accumulateAndBlit(lastQueue,children,buffer,bucketChange,i,false,time,fbo,oit);
490
        bucketChange= i;
491
        toThis = currQueue.getRenderDirectly();
492
        }
493
      numRenders += renderChildToThisOrToBuffer(child,buffer,time,oit,currBucket==0 || toThis);
494
      if( currBucket!=0 && i==numChildren-1 ) numRenders += accumulateAndBlit(currQueue,children,buffer,bucketChange,numChildren,true,time,fbo,oit);
495

    
496
      lastQueue = currQueue;
497
      lastBucket= currBucket;
498
      }
499

    
500
    if( oit && numChildren>0 ) numRenders += oitRender(time, fbo);  // merge the OIT linked list
501

    
502
    return numRenders;
503
    }
504

    
505
///////////////////////////////////////////////////////////////////////////////////////////////////
506
/**
507
 * Not part of the public API.
508
 *
509
 * @y.exclude
510
 */
511
  public void adjustIsomorphism() { }
512

    
513
///////////////////////////////////////////////////////////////////////////////////////////////////
514
/**
515
 * Not part of the Public API.
516
 *
517
 * @y.exclude
518
 */
519
  public float getWidthCorrection()
520
    {
521
    return (float)mWidth/mRealWidth;
522
    }
523

    
524
///////////////////////////////////////////////////////////////////////////////////////////////////
525
/**
526
 * Not part of the Public API.
527
 *
528
 * @y.exclude
529
 */
530
  public float getHeightCorrection()
531
    {
532
    return (float)mHeight/mRealHeight;
533
    }
534

    
535
///////////////////////////////////////////////////////////////////////////////////////////////////
536

    
537
  void clearBuffer(int fbo)
538
    {
539
    InternalRenderState.colorDepthStencilOn();
540

    
541
    GLES30.glClearColor(mClearR, mClearG, mClearB, mClearA);
542
    GLES30.glClearDepthf(mClearDepth);
543
    GLES30.glClearStencil(mClearStencil);
544

    
545
    GLES30.glBindFramebuffer(GLES30.GL_FRAMEBUFFER, mFBOH[fbo]);
546
    GLES30.glFramebufferTexture2D(GLES30.GL_FRAMEBUFFER, GLES30.GL_COLOR_ATTACHMENT0, GLES30.GL_TEXTURE_2D, mColorH[2*fbo+1], 0);
547
    GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT|GLES30.GL_DEPTH_BUFFER_BIT|GLES30.GL_STENCIL_BUFFER_BIT);
548
    GLES30.glFramebufferTexture2D(GLES30.GL_FRAMEBUFFER, GLES30.GL_COLOR_ATTACHMENT0, GLES30.GL_TEXTURE_2D, mColorH[2*fbo  ], 0);
549
    GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT);
550

    
551
    InternalRenderState.colorDepthStencilRestore();
552
    }
553

    
554
///////////////////////////////////////////////////////////////////////////////////////////////////
555

    
556
  void setAsOutput(long time)
557
    {
558
    GLES30.glBindFramebuffer(GLES30.GL_FRAMEBUFFER, mFBOH[mCurrFBO]);
559

    
560
    if( mTime[mCurrFBO]!=time )
561
      {
562
      mTime[mCurrFBO] = time;
563
      clear();
564
      }
565
    }
566

    
567
///////////////////////////////////////////////////////////////////////////////////////////////////
568
// PUBLIC API
569
///////////////////////////////////////////////////////////////////////////////////////////////////
570
/**
571
 * Draws all the attached children to this OutputSurface's 0th FBO.
572
 * <p>
573
 * Must be called from a thread holding OpenGL Context.
574
 *
575
 * @param time Current time, in milliseconds. This will be passed to all the Effects stored in the children Nodes.
576
 * @return Number of objects rendered.
577
 */
578
  public int render(long time)
579
    {
580
    return render(time,0);
581
    }
582

    
583
///////////////////////////////////////////////////////////////////////////////////////////////////
584
/**
585
 * Draws all the attached children to this OutputSurface.
586
 * <p>
587
 * Must be called from a thread holding OpenGL Context.
588
 *
589
 * @param time Current time, in milliseconds. This will be passed to all the Effects stored in the children Nodes.
590
 * @param fbo The surface can have many FBOs backing it up - render this to FBO number 'fbo'.
591
 * @return Number of objects rendered.
592
 */
593
  public int render(long time, int fbo)
594
    {
595
    InternalMaster.toDo();
596
    InternalStackFrameList.toDo();
597
    InternalRenderState.reset();
598

    
599
    int numRenders=0, numChildren = mChildren.getNumChildren();
600
    DistortedNode node;
601
    long oldBucket=0, newBucket;
602

    
603
    for(int i=0; i<numChildren; i++)
604
      {
605
      node = mChildren.getChild(i);
606
      newBucket = node.getBucket();
607
      numRenders += node.renderRecursive(time);
608
      if( newBucket<oldBucket ) mChildren.rearrangeByBuckets(i,newBucket);
609
      else oldBucket=newBucket;
610
      }
611

    
612
    numRenders += renderChildren(time,numChildren,mChildren,fbo, mRenderWayOIT);
613

    
614
    return numRenders;
615
    }
616

    
617
///////////////////////////////////////////////////////////////////////////////////////////////////
618
/**
619
 * Recursively print all the effect queues attached to the children Nodes and to this Node.
620
 */
621
  public void debug()
622
    {
623
    int numChildren = mChildren.getNumChildren();
624

    
625
    for(int i=0; i<numChildren; i++)
626
      {
627
      DistortedNode node = mChildren.getChild(i);
628
      node.debug(0);
629
      }
630
    }
631

    
632
///////////////////////////////////////////////////////////////////////////////////////////////////
633
/**
634
 * Bind this Surface as a Framebuffer we can render to.
635
 * <p>
636
 * This version does not attempt to clear anything.
637
 */
638
  public void setAsOutput()
639
    {
640
    GLES30.glBindFramebuffer(GLES30.GL_FRAMEBUFFER, mFBOH[mCurrFBO]);
641
    }
642

    
643
///////////////////////////////////////////////////////////////////////////////////////////////////
644
/**
645
 * Return the Near plane of the Projection included in the Surface.
646
 *
647
 * @return the Near plane.
648
 */
649
  public float getNear()
650
    {
651
    return mNear;
652
    }
653

    
654
///////////////////////////////////////////////////////////////////////////////////////////////////
655
/**
656
 * Set mipmap level.
657
 * <p>
658
 * Trick for speeding up your renders - one can create a pyramid of OutputSurface objects, each next
659
 * one some constant FACTOR smaller than the previous (0.5 is the common value), then set the Mipmap
660
 * Level of the i-th object to be FACTOR^i (we start counting from 0). When rendering any scene into
661
 * such prepared OutputSurface, the library will make sure to scale any Effects used so that the end
662
 * scene will end up looking identical no matter which object we render to. Identical, that is, except
663
 * for the loss of quality and gain in speed associated with rendering to a smaller Surface.
664
 * <p>
665
 * Example: if you create two FBOs, one 1000x1000 and another 500x500 in size, and set the second one
666
 * mipmap to 0.5 (the first one's is 1.0 by default), define Effects to be a single move by (100,100),
667
 * and render a skinned Mesh into both FBO, the end result will look proportionally the same, because
668
 * in the second case the move vector (100,100) will be auto-scaled to (50,50).
669
 *
670
 * @param mipmap The mipmap level. Acceptable range: 0&lt;mipmap&lt;infinity, although mipmap&gt;1
671
 *               does not make any sense (that would result in loss of speed and no gain in quality)
672
 */
673
  public void setMipmap(float mipmap)
674
    {
675
    mMipmap = mipmap;
676
    }
677

    
678
///////////////////////////////////////////////////////////////////////////////////////////////////
679
/**
680
 * Set the (R,G,B,A) values of GLES31.glClearColor() to set up color with which to clear
681
 * this Surface at the beginning of each frame.
682
 *
683
 * @param r the Red component. Default: 0.0f
684
 * @param g the Green component. Default: 0.0f
685
 * @param b the Blue component. Default: 0.0f
686
 * @param a the Alpha component. Default: 0.0f
687
 */
688
  public void glClearColor(float r, float g, float b, float a)
689
    {
690
    mClearR = r;
691
    mClearG = g;
692
    mClearB = b;
693
    mClearA = a;
694
    }
695

    
696
///////////////////////////////////////////////////////////////////////////////////////////////////
697
/**
698
 * Uses glClearDepthf() to set up a value with which to clear
699
 * the Depth buffer of our Surface at the beginning of each frame.
700
 *
701
 * @param d the Depth. Default: 1.0f
702
 */
703
  public void glClearDepthf(float d)
704
    {
705
    mClearDepth = d;
706
    }
707

    
708
///////////////////////////////////////////////////////////////////////////////////////////////////
709
/**
710
 * Uses glClearStencil() to set up a value with which to clear the
711
 * Stencil buffer of our Surface at the beginning of each frame.
712
 *
713
 * @param s the Stencil. Default: 0
714
 */
715
  public void glClearStencil(int s)
716
    {
717
    mClearStencil = s;
718
    }
719

    
720
///////////////////////////////////////////////////////////////////////////////////////////////////
721
/**
722
 * Which buffers to Clear at the beginning of each frame?
723
 * <p>
724
 * Valid values: 0, or bitwise OR of one or more values from the set GL_COLOR_BUFFER_BIT,
725
 *               GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_BIT.
726
 * Default: GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT.
727
 *
728
 * @param mask bitwise OR of BUFFER_BITs to clear.
729
 */
730
  public void glClear(int mask)
731
    {
732
    mClear = mask;
733
    }
734

    
735
///////////////////////////////////////////////////////////////////////////////////////////////////
736
/**
737
 * Create new Projection matrix.
738
 *
739
 * @param fov Vertical 'field of view' of the Projection frustrum (in degrees).
740
 *            Valid values: 0<=fov<180. FOV==0 means 'parallel projection'.
741
 * @param near The Near plane.
742
 */
743
  public void setProjection(float fov, float near)
744
    {
745
    if( fov < 180.0f && fov >=0.0f )
746
      {
747
      mFOV = fov;
748
      }
749

    
750
    if( near<   1.0f && near> 0.0f )
751
      {
752
      mNear= near;
753
      }
754
    else if( near<=0.0f )
755
      {
756
      mNear = 0.01f;
757
      }
758
    else if( near>=1.0f )
759
      {
760
      mNear=0.99f;
761
      }
762

    
763
    for(int j=0; j<EffectQuality.LENGTH; j++)
764
      {
765
      if( mBuffer[j]!=null ) mBuffer[j].mNear = mNear;
766
      }
767

    
768
    createProjection();
769
    }
770

    
771
///////////////////////////////////////////////////////////////////////////////////////////////////
772
/**
773
 * Return the vertical field of view angle.
774
 *
775
 * @return Vertival Field of View Angle, in degrees.
776
 */
777
  public float getFOV()
778
    {
779
    return mFOV;
780
    }
781

    
782
///////////////////////////////////////////////////////////////////////////////////////////////////
783
/**
784
 * Resize the underlying Framebuffer.
785
 * <p>
786
 * This method can be safely called mid-render as it doesn't interfere with rendering.
787
 *
788
 * @param width The new width.
789
 * @param height The new height.
790
 */
791
  public void resize(int width, int height)
792
    {
793
    if( mWidth!=width || mHeight!=height )
794
      {
795
      mWidth = mRealWidth = width;
796
      mHeight= mRealHeight= height;
797

    
798
      createProjection();
799

    
800
      if( mColorCreated==CREATED )
801
        {
802
        markForCreation();
803
        recreate();
804
        }
805
      }
806
    }
807

    
808
///////////////////////////////////////////////////////////////////////////////////////////////////
809
/**
810
 * Return true if the Surface contains a DEPTH attachment.
811
 *
812
 * @return <bold>true</bold> if the Surface contains a DEPTH attachment.
813
 */
814
  public boolean hasDepth()
815
    {
816
    return mDepthStencilCreated==CREATED;
817
    }
818

    
819
///////////////////////////////////////////////////////////////////////////////////////////////////
820
/**
821
 * Return true if the Surface contains a STENCIL attachment.
822
 *
823
 * @return <bold>true</bold> if the Surface contains a STENCIL attachment.
824
 */
825
  public boolean hasStencil()
826
    {
827
    return (mDepthStencilCreated==CREATED && mDepthStencil==BOTH_DEPTH_STENCIL);
828
    }
829

    
830
///////////////////////////////////////////////////////////////////////////////////////////////////
831
/**
832
 * When rendering this Node, should we use the Order Independent Transparency render mode?
833
 * <p>
834
 * This feature requires OpenGL ES 3.1. If we are running on OpenGL 3.0, this will do nothing.
835
 * Also, if you are running on a buggy driver ( Imagination GE8100/8300 driver build 1.8@4490469 )
836
 * then do nothing.
837
 *
838
 * There are two modes of rendering: the fast 'normal' way, which however renders transparent
839
 * fragments in different ways depending on which fragments get rendered first, or the slower
840
 * 'oit' way, which renders transparent fragments correctly regardless of their order.
841
 *
842
 * @param oit True if we want to render more slowly, but in a way which accounts for transparency.
843
 */
844
  public void setOrderIndependentTransparency(boolean oit)
845
    {
846
    if( DistortedLibrary.getGLSL()>=310 )
847
      {
848
      mRenderWayOIT = oit;
849
      }
850
    }
851

    
852
///////////////////////////////////////////////////////////////////////////////////////////////////
853
/**
854
 * When rendering this Node, should we use the Order Independent Transparency render mode?
855
 * <p>
856
 * This feature requires OpenGL ES 3.1. If we are running on OpenGL 3.0, this will do nothing.
857
 * Also, if you are running on a buggy driver ( Imagination GE8100/8300 driver build 1.8@4490469 )
858
 * then do nothing.
859
 *
860
 * There are two modes of rendering: the fast 'normal' way, which however renders transparent
861
 * fragments in different ways depending on which fragments get rendered first, or the slower
862
 * 'oit' way, which renders transparent fragments correctly regardless of their order.
863
 *
864
 * @param oit True if we want to render more slowly, but in a way which accounts for transparency.
865
 * @param initialSize Initial number of transparent fragments we expect, in screenfuls.
866
 *                    I.e '1.0' means 'the scene we are going to render contains dialog_about 1 screen
867
 *                    worth of transparent fragments'. Valid values: 0.0 &lt; initialSize &lt; 10.0
868
 *                    Even if you get this wrong, the library will detect that there are more
869
 *                    transparent fragments than it has space for and readjust its internal buffers,
870
 *                    but only after a few frames during which one will probably see missing objects.
871
 */
872
  public void setOrderIndependentTransparency(boolean oit, float initialSize)
873
    {
874
    if( DistortedLibrary.getGLSL()>=310 )
875
      {
876
      mRenderWayOIT = oit;
877

    
878
      if( initialSize>0.0f && initialSize<10.0f )
879
        {
880
        DistortedLibrary.setSSBOSize(initialSize);
881
        }
882
      }
883
    }
884

    
885
///////////////////////////////////////////////////////////////////////////////////////////////////
886
/**
887
 * Adds a new child to the last position in the list of our Surface's children.
888
 * <p>
889
 * We cannot do this mid-render - actual attachment will be done just before the next render, by the
890
 * InternalMaster (by calling doWork())
891
 *
892
 * @param node The new Node to add.
893
 */
894
  public void attach(DistortedNode node)
895
    {
896
    mChildren.attach(node);
897
    }
898

    
899
///////////////////////////////////////////////////////////////////////////////////////////////////
900
/**
901
 * Adds a new child to the last position in the list of our Surface's children.
902
 * <p>
903
 * We cannot do this mid-render - actual attachment will be done just before the next render, by the
904
 * InternalMaster (by calling doWork())
905
 *
906
 * @param surface InputSurface to initialize our child Node with.
907
 * @param effects DistortedEffects to initialize our child Node with.
908
 * @param mesh MeshBase to initialize our child Node with.
909
 * @return the newly constructed child Node, or null if we couldn't allocate resources.
910
 */
911
  public DistortedNode attach(InternalSurface surface, DistortedEffects effects, MeshBase mesh)
912
    {
913
    return mChildren.attach(surface,effects,mesh);
914
    }
915

    
916
///////////////////////////////////////////////////////////////////////////////////////////////////
917
/**
918
 * Removes the first occurrence of a specified child from the list of children of our Surface.
919
 * <p>
920
 * A bit questionable method as there can be many different Nodes attached as children, some
921
 * of them having the same Effects but - for instance - different Mesh. Use with care.
922
 * <p>
923
 * We cannot do this mid-render - actual detachment will be done just before the next render, by the
924
 * InternalMaster (by calling doWork())
925
 *
926
 * @param effects DistortedEffects to remove.
927
 */
928
  public void detach(DistortedEffects effects)
929
    {
930
    mChildren.detach(effects);
931
    }
932

    
933
///////////////////////////////////////////////////////////////////////////////////////////////////
934
/**
935
 * Removes the first occurrence of a specified child from the list of children of our Surface.
936
 * <p>
937
 * We cannot do this mid-render - actual attachment will be done just before the next render, by the
938
 * InternalMaster (by calling doWork())
939
 *
940
 * @param node The Node to remove.
941
 */
942
  public void detach(DistortedNode node)
943
    {
944
    mChildren.detach(node);
945
    }
946

    
947
///////////////////////////////////////////////////////////////////////////////////////////////////
948
/**
949
 * Removes all children Nodes.
950
 * <p>
951
 * We cannot do this mid-render - actual attachment will be done just before the next render, by the
952
 * InternalMaster (by calling doWork())
953
 */
954
  public void detachAll()
955
    {
956
    mChildren.detachAll();
957
    }
958

    
959
///////////////////////////////////////////////////////////////////////////////////////////////////
960
/**
961
 * Return the width of this Surface.
962
 *
963
 * @return width of the Object, in pixels.
964
 */
965
  public int getWidth()
966
    {
967
    return mWidth;
968
    }
969

    
970
///////////////////////////////////////////////////////////////////////////////////////////////////
971
/**
972
 * Return the height of this Surface.
973
 *
974
 * @return height of the Object, in pixels.
975
 */
976
  public int getHeight()
977
    {
978
    return mHeight;
979
    }
980
}
(12-12/16)