Revision 4fde55a0
Added by Leszek Koltunski over 8 years ago
src/main/java/org/distorted/library/DistortedObject.java | ||
---|---|---|
790 | 790 |
/** |
791 | 791 |
* Rotate part of the Object around the Center of the Effect by a certain angle. |
792 | 792 |
* |
793 |
* @param swirl The degree of Swirl. Positive values swirl clockwise.
|
|
793 |
* @param swirl The angle of Swirl (in degrees). Positive values swirl clockwise.
|
|
794 | 794 |
* @param center 2-dimensional Data that, at any given time, returns the Center of the Effect. |
795 | 795 |
* @param region Region that masks the Effect. |
796 | 796 |
* @return ID of the effect added, or -1 if we failed to add one. |
... | ... | |
804 | 804 |
/** |
805 | 805 |
* Rotate the whole Object around the Center of the Effect by a certain angle. |
806 | 806 |
* |
807 |
* @param swirl The degree of Swirl. Positive values swirl clockwise.
|
|
807 |
* @param swirl The angle of Swirl (in degrees). Positive values swirl clockwise.
|
|
808 | 808 |
* @param center 2-dimensional Data that, at any given time, returns the Center of the Effect. |
809 | 809 |
* @return ID of the effect added, or -1 if we failed to add one. |
810 | 810 |
*/ |
... | ... | |
812 | 812 |
{ |
813 | 813 |
return mV.add(EffectNames.SWIRL, swirl, center); |
814 | 814 |
} |
815 |
|
|
816 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
817 |
/** |
|
818 |
* Directional, sinusoidal wave effect. |
|
819 |
* |
|
820 |
* @param wave A 3-dimensional data structure describing the wave: first member is the amplitude, |
|
821 |
* second is the angle (in degrees, as always) the direction of the wave forms with |
|
822 |
* the X-axis, and the third is the wave length. |
|
823 |
* @param center 2-dimensional Data that, at any given time, returns the Center of the Effect. |
|
824 |
* @return ID of the effect added, or -1 if we failed to add one. |
|
825 |
*/ |
|
826 |
public long wave(Data3D wave, Data2D center) |
|
827 |
{ |
|
828 |
return mV.add(EffectNames.WAVE, wave, center); |
|
829 |
} |
|
830 |
|
|
831 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
832 |
/** |
|
833 |
* Directional, sinusoidal wave effect. |
|
834 |
* |
|
835 |
* @param wave A 3-dimensional data structure describing the wave: first member is the amplitude, |
|
836 |
* second is the angle (in degrees, as always) the direction of the wave forms with |
|
837 |
* the X-axis, and the third is the wave length. |
|
838 |
* @param center 2-dimensional Data that, at any given time, returns the Center of the Effect. |
|
839 |
* @param region Region that masks the Effect. |
|
840 |
* @return ID of the effect added, or -1 if we failed to add one. |
|
841 |
*/ |
|
842 |
public long wave(Data3D wave, Data2D center, Data4D region) |
|
843 |
{ |
|
844 |
return mV.add(EffectNames.WAVE, wave, center, region); |
|
845 |
} |
|
815 | 846 |
} |
src/main/java/org/distorted/library/EffectNames.java | ||
---|---|---|
115 | 115 |
* Unity: swirlAngle = 0 |
116 | 116 |
*/ |
117 | 117 |
SWIRL ( EffectTypes.VERTEX , new float[] {0.0f} ), |
118 |
/** |
|
119 |
* Directional sinusoidal wave effect. The direction of the wave is given by the 'angle' |
|
120 |
* parameter, which is the angle (in degrees) the direction forms with the X-axis. |
|
121 |
* <p> |
|
122 |
* Uniforms: (amplitude,angle,length,regionX,regionY,regionRX,regionRY,centerX,centerY) |
|
123 |
* Unity: amplitude = 0 |
|
124 |
*/ |
|
125 |
WAVE ( EffectTypes.VERTEX , new float[] {0.0f} ), |
|
118 | 126 |
// add new Vertex Effects here... |
119 | 127 |
|
120 | 128 |
///////////////////////////////////////////////////////////////////////////////// |
src/main/java/org/distorted/library/EffectQueueVertex.java | ||
---|---|---|
39 | 39 |
|
40 | 40 |
class EffectQueueVertex extends EffectQueue |
41 | 41 |
{ |
42 |
private static final int NUM_UNIFORMS = 9;
|
|
42 |
private static final int NUM_UNIFORMS = 12;
|
|
43 | 43 |
private static final int INDEX = EffectTypes.VERTEX.ordinal(); |
44 | 44 |
private static int mNumEffectsH; |
45 | 45 |
private static int mTypeH; |
... | ... | |
90 | 90 |
else mInter[0][i] = null; |
91 | 91 |
} |
92 | 92 |
|
93 |
if( mInter[1][i]!=null ) |
|
93 |
if( mInter[1][i]!=null ) // region
|
|
94 | 94 |
{ |
95 |
mInter[1][i].interpolateMain(mUniforms, NUM_UNIFORMS*i+3, mCurrentDuration[i]);
|
|
95 |
mInter[1][i].interpolateMain(mUniforms, NUM_UNIFORMS*i+8, mCurrentDuration[i]);
|
|
96 | 96 |
} |
97 | 97 |
|
98 |
if( mInter[2][i]!=null ) |
|
98 |
if( mInter[2][i]!=null ) // center
|
|
99 | 99 |
{ |
100 |
mInter[2][i].interpolateMain(mUniforms, NUM_UNIFORMS*i+7, mCurrentDuration[i]);
|
|
100 |
mInter[2][i].interpolateMain(mUniforms, NUM_UNIFORMS*i+6, mCurrentDuration[i]);
|
|
101 | 101 |
|
102 |
mUniforms[NUM_UNIFORMS*i+7] = mUniforms[NUM_UNIFORMS*i+7]-mObjHalfX;
|
|
103 |
mUniforms[NUM_UNIFORMS*i+8] =-mUniforms[NUM_UNIFORMS*i+8]+mObjHalfY;
|
|
102 |
mUniforms[NUM_UNIFORMS*i+6] = mUniforms[NUM_UNIFORMS*i+6]-mObjHalfX;
|
|
103 |
mUniforms[NUM_UNIFORMS*i+7] =-mUniforms[NUM_UNIFORMS*i+7]+mObjHalfY;
|
|
104 | 104 |
} |
105 | 105 |
|
106 | 106 |
mCurrentDuration[i] += step; |
... | ... | |
113 | 113 |
|
114 | 114 |
protected void moveEffect(int index) |
115 | 115 |
{ |
116 |
mUniforms[NUM_UNIFORMS*index ] = mUniforms[NUM_UNIFORMS*(index+1) ]; |
|
117 |
mUniforms[NUM_UNIFORMS*index+1] = mUniforms[NUM_UNIFORMS*(index+1)+1]; |
|
118 |
mUniforms[NUM_UNIFORMS*index+2] = mUniforms[NUM_UNIFORMS*(index+1)+2]; |
|
119 |
mUniforms[NUM_UNIFORMS*index+3] = mUniforms[NUM_UNIFORMS*(index+1)+3]; |
|
120 |
mUniforms[NUM_UNIFORMS*index+4] = mUniforms[NUM_UNIFORMS*(index+1)+4]; |
|
121 |
mUniforms[NUM_UNIFORMS*index+5] = mUniforms[NUM_UNIFORMS*(index+1)+5]; |
|
122 |
mUniforms[NUM_UNIFORMS*index+6] = mUniforms[NUM_UNIFORMS*(index+1)+6]; |
|
123 |
mUniforms[NUM_UNIFORMS*index+7] = mUniforms[NUM_UNIFORMS*(index+1)+7]; |
|
124 |
mUniforms[NUM_UNIFORMS*index+8] = mUniforms[NUM_UNIFORMS*(index+1)+8]; |
|
116 |
mUniforms[NUM_UNIFORMS*index ] = mUniforms[NUM_UNIFORMS*(index+1) ]; |
|
117 |
mUniforms[NUM_UNIFORMS*index+ 1] = mUniforms[NUM_UNIFORMS*(index+1)+ 1]; |
|
118 |
mUniforms[NUM_UNIFORMS*index+ 2] = mUniforms[NUM_UNIFORMS*(index+1)+ 2]; |
|
119 |
mUniforms[NUM_UNIFORMS*index+ 3] = mUniforms[NUM_UNIFORMS*(index+1)+ 3]; |
|
120 |
mUniforms[NUM_UNIFORMS*index+ 4] = mUniforms[NUM_UNIFORMS*(index+1)+ 4]; |
|
121 |
mUniforms[NUM_UNIFORMS*index+ 5] = mUniforms[NUM_UNIFORMS*(index+1)+ 5]; |
|
122 |
mUniforms[NUM_UNIFORMS*index+ 6] = mUniforms[NUM_UNIFORMS*(index+1)+ 6]; |
|
123 |
mUniforms[NUM_UNIFORMS*index+ 7] = mUniforms[NUM_UNIFORMS*(index+1)+ 7]; |
|
124 |
mUniforms[NUM_UNIFORMS*index+ 8] = mUniforms[NUM_UNIFORMS*(index+1)+ 8]; |
|
125 |
mUniforms[NUM_UNIFORMS*index+ 9] = mUniforms[NUM_UNIFORMS*(index+1)+ 9]; |
|
126 |
mUniforms[NUM_UNIFORMS*index+10] = mUniforms[NUM_UNIFORMS*(index+1)+10]; |
|
127 |
mUniforms[NUM_UNIFORMS*index+11] = mUniforms[NUM_UNIFORMS*(index+1)+11]; |
|
125 | 128 |
} |
126 | 129 |
|
127 | 130 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
... | ... | |
132 | 135 |
|
133 | 136 |
if( mNumEffects>0 ) |
134 | 137 |
{ |
135 |
GLES20.glUniform1iv( mTypeH , mNumEffects, mName,0); |
|
136 |
GLES20.glUniform3fv( mUniformsH,3*mNumEffects, mUniforms,0);
|
|
138 |
GLES20.glUniform1iv( mTypeH , mNumEffects, mName ,0);
|
|
139 |
GLES20.glUniform4fv( mUniformsH,3*mNumEffects, mUniforms,0);
|
|
137 | 140 |
} |
138 | 141 |
} |
139 | 142 |
|
... | ... | |
148 | 151 |
// Do various post-processing on already computed effects. |
149 | 152 |
// 1) here unlike in the fragment queue, we don't have to multiply the points by ModelView matrix because that gets done in the shader. |
150 | 153 |
// 2) in case of swirl, pre-compute the sine and cosine of its rotation angle |
154 |
// 3) likewise in case of wave |
|
151 | 155 |
|
152 | 156 |
void postprocess() |
153 | 157 |
{ |
... | ... | |
158 | 162 |
if( mName[i]==EffectNames.SWIRL.ordinal() ) |
159 | 163 |
{ |
160 | 164 |
d = Math.PI*mUniforms[NUM_UNIFORMS*i]/180; |
161 |
mUniforms[NUM_UNIFORMS*i+1] = (float)Math.sin(d); |
|
162 |
mUniforms[NUM_UNIFORMS*i+2] = (float)Math.cos(d); |
|
165 |
mUniforms[NUM_UNIFORMS*i+4] = (float)Math.sin(d); |
|
166 |
mUniforms[NUM_UNIFORMS*i+5] = (float)Math.cos(d); |
|
167 |
} |
|
168 |
if( mName[i]==EffectNames.WAVE.ordinal() ) |
|
169 |
{ |
|
170 |
d = Math.PI*mUniforms[NUM_UNIFORMS*i+1]/180; |
|
171 |
mUniforms[NUM_UNIFORMS*i+4] = (float)Math.sin(d); |
|
172 |
mUniforms[NUM_UNIFORMS*i+5] = (float)Math.cos(d); |
|
163 | 173 |
} |
164 | 174 |
} |
165 | 175 |
} |
166 | 176 |
|
167 | 177 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
168 |
// distort |
|
178 |
// distort, wave
|
|
169 | 179 |
|
170 | 180 |
synchronized long add(EffectNames eln, Data3D data, Data2D center, Data4D region) |
171 | 181 |
{ |
... | ... | |
190 | 200 |
} |
191 | 201 |
|
192 | 202 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
193 |
// deform, distort |
|
203 |
// deform, distort, wave
|
|
194 | 204 |
|
195 | 205 |
synchronized long add(EffectNames eln, Data3D data, Data2D center) |
196 | 206 |
{ |
... | ... | |
276 | 286 |
|
277 | 287 |
float z = tmp.getZ(); |
278 | 288 |
|
279 |
mUniforms[NUM_UNIFORMS*mNumEffects+3] = tmp.getX();
|
|
280 |
mUniforms[NUM_UNIFORMS*mNumEffects+4] =-tmp.getY(); // invert y already
|
|
281 |
mUniforms[NUM_UNIFORMS*mNumEffects+5] = z<=0.0f ? 1000*mObjHalfX : z;
|
|
282 |
mUniforms[NUM_UNIFORMS*mNumEffects+6] = tmp.getW();
|
|
289 |
mUniforms[NUM_UNIFORMS*mNumEffects+ 8] = tmp.getX();
|
|
290 |
mUniforms[NUM_UNIFORMS*mNumEffects+ 9] =-tmp.getY(); // invert y already
|
|
291 |
mUniforms[NUM_UNIFORMS*mNumEffects+10] = z<=0.0f ? 1000*mObjHalfX : z;
|
|
292 |
mUniforms[NUM_UNIFORMS*mNumEffects+11] = tmp.getW();
|
|
283 | 293 |
mInter[1][mNumEffects] = null; |
284 | 294 |
} |
285 | 295 |
else return -1; |
286 | 296 |
} |
287 | 297 |
else |
288 | 298 |
{ |
289 |
mUniforms[NUM_UNIFORMS*mNumEffects+3] = 0.0f;
|
|
290 |
mUniforms[NUM_UNIFORMS*mNumEffects+4] = 0.0f;
|
|
291 |
mUniforms[NUM_UNIFORMS*mNumEffects+5] = 1000*mObjHalfX;
|
|
292 |
mUniforms[NUM_UNIFORMS*mNumEffects+6] = 0.0f;
|
|
299 |
mUniforms[NUM_UNIFORMS*mNumEffects+ 8] = 0.0f;
|
|
300 |
mUniforms[NUM_UNIFORMS*mNumEffects+ 9] = 0.0f;
|
|
301 |
mUniforms[NUM_UNIFORMS*mNumEffects+10] = 1000*mObjHalfX;
|
|
302 |
mUniforms[NUM_UNIFORMS*mNumEffects+11] = 0.0f;
|
|
293 | 303 |
mInter[1][mNumEffects] = null; |
294 | 304 |
} |
295 | 305 |
|
... | ... | |
298 | 308 |
else if( center instanceof Static2D) |
299 | 309 |
{ |
300 | 310 |
mInter[2][mNumEffects] = null; |
301 |
mUniforms[NUM_UNIFORMS*mNumEffects+7] = ((Static2D)center).getX()-mObjHalfX;
|
|
302 |
mUniforms[NUM_UNIFORMS*mNumEffects+8] =-((Static2D)center).getY()+mObjHalfY;
|
|
311 |
mUniforms[NUM_UNIFORMS*mNumEffects+6] = ((Static2D)center).getX()-mObjHalfX;
|
|
312 |
mUniforms[NUM_UNIFORMS*mNumEffects+7] =-((Static2D)center).getY()+mObjHalfY;
|
|
303 | 313 |
} |
304 | 314 |
|
305 | 315 |
return addBase(eln); |
src/main/res/raw/main_vertex_shader.glsl | ||
---|---|---|
40 | 40 |
|
41 | 41 |
#if NUM_VERTEX>0 |
42 | 42 |
uniform int vType[NUM_VERTEX]; // their types. |
43 |
uniform vec3 vUniforms[3*NUM_VERTEX]; // i-th effect is 3 consecutive vec3's: [3*i], [3*i+1], [3*i+2].
|
|
44 |
// The first 3 floats are the Interpolated values,
|
|
45 |
// next 4 are the Region, next 2 are the Center.
|
|
43 |
uniform vec4 vUniforms[3*NUM_VERTEX]; // i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
|
|
44 |
// The first vec4 is the Interpolated values,
|
|
45 |
// next is half cache half Center, the third - the Region.
|
|
46 | 46 |
#endif |
47 | 47 |
|
48 | 48 |
#if NUM_VERTEX>0 |
... | ... | |
93 | 93 |
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and |
94 | 94 |
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt. |
95 | 95 |
|
96 |
float degree_region(in vec3 region, in vec2 PS)
|
|
96 |
float degree_region(in vec4 region, in vec2 PS)
|
|
97 | 97 |
{ |
98 | 98 |
vec2 PO = PS + region.xy; |
99 | 99 |
float D = region.z*region.z-dot(PO,PO); // D = |OX|^2 - |PO|^2 |
... | ... | |
118 | 118 |
////////////////////////////////////////////////////////////////////////////////////////////// |
119 | 119 |
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles. |
120 | 120 |
|
121 |
float degree(in vec3 region, in vec2 S, in vec2 PS)
|
|
121 |
float degree(in vec4 region, in vec2 S, in vec2 PS)
|
|
122 | 122 |
{ |
123 | 123 |
vec2 PO = PS + region.xy; |
124 | 124 |
float D = region.z*region.z-dot(PO,PO); // D = |OX|^2 - |PO|^2 |
... | ... | |
205 | 205 |
|
206 | 206 |
void deform(in int effect, inout vec4 v) |
207 | 207 |
{ |
208 |
vec2 center = vUniforms[effect+2].yz;
|
|
208 |
vec2 center = vUniforms[effect+1].zw;
|
|
209 | 209 |
vec2 force = vUniforms[effect].xy; // force = vec(MM') |
210 | 210 |
vec2 vert_vec, horz_vec; |
211 | 211 |
vec2 signXY = sign(center-v.xy); |
... | ... | |
283 | 283 |
|
284 | 284 |
void distort(in int effect, inout vec4 v, inout vec4 n) |
285 | 285 |
{ |
286 |
vec2 point = vUniforms[effect+2].yz;
|
|
287 |
vec2 ps = point-v.xy;
|
|
288 |
float d = degree(vUniforms[effect+1],point,ps);
|
|
286 |
vec2 center = vUniforms[effect+1].zw;
|
|
287 |
vec2 ps = center-v.xy;
|
|
288 |
float d = degree(vUniforms[effect+2],center,ps);
|
|
289 | 289 |
vec2 w = vec2(vUniforms[effect].x, -vUniforms[effect].y); |
290 | 290 |
float uz = vUniforms[effect].z; // height of the bubble |
291 | 291 |
float denominator = dot(ps+(1.0-d)*w,ps); |
... | ... | |
312 | 312 |
|
313 | 313 |
void sink(in int effect,inout vec4 v) |
314 | 314 |
{ |
315 |
vec2 point = vUniforms[effect+2].yz;
|
|
316 |
vec2 ps = point-v.xy;
|
|
315 |
vec2 center = vUniforms[effect+1].zw;
|
|
316 |
vec2 ps = center-v.xy;
|
|
317 | 317 |
float h = vUniforms[effect].x; |
318 |
float t = degree(vUniforms[effect+1],point,ps) * (1.0-h)/max(1.0,h);
|
|
318 |
float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
|
|
319 | 319 |
|
320 | 320 |
v.xy += t*ps; |
321 | 321 |
} |
... | ... | |
329 | 329 |
|
330 | 330 |
void swirl(in int effect, inout vec4 v) |
331 | 331 |
{ |
332 |
vec2 S = vUniforms[effect+2].yz;
|
|
333 |
vec2 PS = S-v.xy;
|
|
334 |
vec3 SO = vUniforms[effect+1];
|
|
332 |
vec2 center = vUniforms[effect+1].zw;
|
|
333 |
vec2 PS = center-v.xy;
|
|
334 |
vec4 SO = vUniforms[effect+2];
|
|
335 | 335 |
float d1_circle = degree_region(SO,PS); |
336 |
float d1_bitmap = degree_bitmap(S,PS);
|
|
337 |
float sinA = vUniforms[effect].y; // sin(A) precomputed in EffectListVertex.postprocess
|
|
338 |
float cosA = vUniforms[effect].z; // cos(A) precomputed in EffectListVertex.postprocess
|
|
339 |
vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around S.
|
|
340 |
vec3 SG = (1.0-d1_circle)*SO; // coordinates of the dilated circle P is going to get rotated around
|
|
341 |
float d2 = max(0.0,degree(SG,S,PS2)); // make it a max(0,deg) because otherwise when S=left edge of the
|
|
336 |
float d1_bitmap = degree_bitmap(center,PS);
|
|
337 |
float sinA = vUniforms[effect+1].x; // sin(A) precomputed in EffectListVertex.postprocess
|
|
338 |
float cosA = vUniforms[effect+1].y; // cos(A) precomputed in EffectListVertex.postprocess
|
|
339 |
vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around center.
|
|
340 |
vec4 SG = (1.0-d1_circle)*SO; // coordinates of the dilated circle P is going to get rotated around
|
|
341 |
float d2 = max(0.0,degree(SG,center,PS2)); // make it a max(0,deg) because otherwise when center=left edge of the
|
|
342 | 342 |
// bitmap some points end up with d2<0 and they disappear off view. |
343 |
v.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2)); // if d2=1 (i.e P=S) we should have P unchanged. How to do it? |
|
343 |
v.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2)); // if d2=1 (i.e P=center) we should have P unchanged. How to do it? |
|
344 |
} |
|
345 |
|
|
346 |
////////////////////////////////////////////////////////////////////////////////////////////// |
|
347 |
// WAVE EFFECT |
|
348 |
// |
|
349 |
// Directional sinusoidal wave effect. |
|
350 |
|
|
351 |
void wave(in int effect, inout vec4 v) |
|
352 |
{ |
|
353 |
vec2 center = vUniforms[effect+1].zw; |
|
354 |
vec2 ps = center-v.xy; |
|
355 |
float deg = degree_region(vUniforms[effect+2],ps); |
|
356 |
vec2 sincos = vUniforms[effect+1].xy; |
|
357 |
|
|
358 |
float amplitude = vUniforms[effect].x; |
|
359 |
float angle = vUniforms[effect].y; |
|
360 |
float length = vUniforms[effect].z; |
|
361 |
float d = dot( vec2(-ps.y,-ps.x),sincos ); |
|
362 |
float num = length==0.0 ? 1.0 : d / length; |
|
363 |
float floornum = floor(num); |
|
364 |
float therest = num-floornum; |
|
365 |
float phi = mod(floornum,2.0) == 0.0 ? 1.0-therest:therest; |
|
366 |
|
|
367 |
v.xy += (phi*amplitude*deg*sincos); |
|
344 | 368 |
} |
345 | 369 |
|
346 | 370 |
#endif |
... | ... | |
359 | 383 |
else if( vType[i]==DEFORM ) deform (3*i,v); |
360 | 384 |
else if( vType[i]==SINK ) sink (3*i,v); |
361 | 385 |
else if( vType[i]==SWIRL ) swirl (3*i,v); |
386 |
else if( vType[i]==WAVE ) wave (3*i,v); |
|
362 | 387 |
} |
363 | 388 |
|
364 | 389 |
restrict(v.z); |
Also available in: Unified diff
Beginnings of the WAVE effect.