Project

General

Profile

Download (12.2 KB) Statistics
| Branch: | Revision:

library / src / main / java / org / distorted / library / effect / VertexEffectWave.java @ 5e96393c

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2017 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Distorted.                                                               //
5
//                                                                                               //
6
// Distorted is free software: you can redistribute it and/or modify                             //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Distorted is distributed in the hope that it will be useful,                                  //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                            //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.library.effect;
21

    
22
import org.distorted.library.type.Data3D;
23
import org.distorted.library.type.Data4D;
24
import org.distorted.library.type.Data5D;
25
import org.distorted.library.type.Static4D;
26

    
27
///////////////////////////////////////////////////////////////////////////////////////////////////
28
/**
29
 * Directional, sinusoidal wave effect.
30
 *
31
 * Not a fully 3D effect. To achieve a fully 3D one we'd need another parameter making the whole thing
32
 * a 6D effect but there's no room in the Vertex Uniforms which assign only 5 floats for interpolated
33
 * effect values. Rethink this. ATM fully enough for 2.5D meshes like the MeshCubes.
34
 */
35
public class VertexEffectWave extends VertexEffect
36
  {
37
  private Data5D mWave;
38
  private Data3D mCenter;
39
  private Data4D mRegion;
40

    
41
///////////////////////////////////////////////////////////////////////////////////////////////////
42
/**
43
 * Only for use by the library itself.
44
 *
45
 * @y.exclude
46
 */
47
  public boolean compute(float[] uniforms, int index, long currentDuration, long step )
48
    {
49
    mCenter.get(uniforms,index+CENTER_OFFSET,currentDuration,step);
50
    mRegion.get(uniforms,index+REGION_OFFSET,currentDuration,step);
51
    boolean ret = mWave.get(uniforms,index,currentDuration,step);
52

    
53
    uniforms[index+2] = (float)(Math.PI*uniforms[index+2]/180);
54
    uniforms[index+3] = (float)(Math.PI*uniforms[index+3]/180);
55
    uniforms[index+4] = (float)(Math.PI*uniforms[index+4]/180);
56

    
57
    uniforms[index+REGION_OFFSET+1] =-uniforms[index+REGION_OFFSET+1];  // region's y
58

    
59
    return ret;
60
    }
61

    
62
///////////////////////////////////////////////////////////////////////////////////////////////////
63
// PUBLIC API
64
///////////////////////////////////////////////////////////////////////////////////////////////////
65
// Directional sinusoidal wave effect.
66
//
67
// This is an effect from a (hopefully!) generic family of effects of the form (vec3 V: |V|=1 , f(x,y) )  (*)
68
// i.e. effects defined by a unit vector and an arbitrary function. Those effects are defined to move each
69
// point (x,y,0) of the XY plane to the point (x,y,0) + V*f(x,y).
70
//
71
// In this case V is defined by angles A and B (sines and cosines of which are precomputed in
72
// EffectQueueVertex and passed in the uniforms).
73
// Let's move V to start at the origin O, let point C be the endpoint of V, and let C' be C's projection
74
// to the XY plane. Then A is defined to be the angle C0C' and angle B is the angle C'O(axisY).
75
//
76
// Also, in this case f(x,y) = amplitude*sin(x/length), with those 2 parameters passed in uniforms.
77
//
78
//////////////////////////////////////////////////////////////////////////////////////////////
79
// How to compute any generic effect of type (*)
80
//////////////////////////////////////////////////////////////////////////////////////////////
81
//
82
// By definition, the vertices move by f(x,y)*V.
83
//
84
// Normals are much more complicated.
85
// Let angle X be the angle (0,Vy,Vz)(0,Vy,0)(Vx,Vy,Vz).
86
// Let angle Y be the angle (Vx,0,Vz)(Vx,0,0)(Vx,Vy,Vz).
87
//
88
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
89
// has 2 tangent vectors given by
90
//
91
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
92
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
93
//
94
// and then obviously the normal N is given by N= SX x SY .
95
//
96
// We still need to remember the note from the distort function about adding up normals:
97
// we first need to 'normalize' the normals to make their third components equal, and then we
98
// simply add up the first and the second component while leaving the third unchanged.
99
//
100
// How to see facts (**) and (***) ? Briefly:
101
// a) compute the 2D analogon and conclude that in this case the tangent SX is given by
102
//    SX = ( cosA*f'(x) +1, sinA*f'(x) )    (where A is the angle vector V makes with X axis )
103
// b) cut the resulting surface with plane P which
104
//    - includes vector V
105
//    - crosses plane XY along line parallel to X axis
106
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
107
//    and our surface (I am talking about the tangent vector which belongs to P) is given by
108
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
109
//
110
//    Matrix of rotation:
111
//
112
//    |sinY|  cosY
113
//    -cosY  |sinY|
114
//
115
// d) compute the above and see that this is equal precisely to SX from (**).
116
// e) repeat points b,c,d in direction Y and come up with (***).
117
//
118
//////////////////////////////////////////////////////////////////////////////////////////////
119
// Note: we should avoid passing certain combinations of parameters to this function. One such known
120
// combination is ( A: small but positive, B: any, amplitude >= length ).
121
// In this case, certain 'unlucky' points have their normals almost horizontal (they got moved by (almost!)
122
// amplitude, and other point length (i.e. <=amplitude) away got moved by 0, so the slope in this point is
123
// very steep). Visual effect is: vast majority of surface pretty much unchanged, but random 'unlucky'
124
// points very dark)
125
//
126
// Generally speaking I'd keep to amplitude < length, as the opposite case has some other problems as well.
127
///////////////////////////////////////////////////////////////////////////////////////////////////
128
/**
129
 * Have to call this before the shaders get compiled (i.e before Distorted.onCreate()) for the Effect to work.
130
 */
131
  public static void enable()
132
    {
133
    addEffect(EffectName.WAVE,
134

    
135
        "vec3 center     = vUniforms[effect+1].yzw; \n"
136
      + "float amplitude = vUniforms[effect  ].x; \n"
137
      + "float length    = vUniforms[effect  ].y; \n"
138

    
139
      + "vec3 ps = center - v.xyz; \n"
140
      + "float deg = amplitude*degree_region(vUniforms[effect+2],ps); \n"
141

    
142
      + "if( deg != 0.0 && length != 0.0 ) \n"
143
      +   "{ \n"
144
      +   "float phase = vUniforms[effect  ].z; \n"
145
      +   "float alpha = vUniforms[effect  ].w; \n"
146
      +   "float beta  = vUniforms[effect+1].x; \n"
147

    
148
      +   "float sinA = sin(alpha); \n"
149
      +   "float cosA = cos(alpha); \n"
150
      +   "float sinB = sin(beta); \n"
151
      +   "float cosB = cos(beta); \n"
152

    
153
      +   "float angle= 1.578*(ps.x*cosB-ps.y*sinB) / length + phase; \n"
154
      +   "vec3 dir= vec3(sinB*cosA,cosB*cosA,sinA); \n"
155
      +   "v += sin(angle)*deg*dir; \n"
156

    
157
      +   "if( n.z != 0.0 ) \n"
158
      +     "{ \n"
159
      +     "float sqrtX = sqrt(dir.y*dir.y + dir.z*dir.z); \n"
160
      +     "float sqrtY = sqrt(dir.x*dir.x + dir.z*dir.z); \n"
161

    
162
      +     "float sinX = ( sqrtY==0.0 ? 0.0 : dir.z / sqrtY); \n"
163
      +     "float cosX = ( sqrtY==0.0 ? 1.0 : dir.x / sqrtY); \n"
164
      +     "float sinY = ( sqrtX==0.0 ? 0.0 : dir.z / sqrtX); \n"
165
      +     "float cosY = ( sqrtX==0.0 ? 1.0 : dir.y / sqrtX); \n"
166

    
167
      +     "float abs_z = dir.z <0.0 ? -(sinX*sinY) : (sinX*sinY); \n"
168
      +     "float tmp = 1.578*cos(angle)*deg/length; \n"
169

    
170
      +     "float fx =-cosB*tmp; \n"
171
      +     "float fy = sinB*tmp; \n"
172

    
173
      +     "vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,abs_z*fx); \n"
174
      +     "vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,abs_z*fy); \n"
175

    
176
      +     "vec3 normal = cross(sx,sy); \n"
177

    
178
      +     "if( normal.z<=0.0 ) \n"                   // Why this bizarre thing rather than the straightforward
179
      +       "{ \n"                                   //
180
      +       "normal.x= 0.0; \n"                      // if( normal.z>0.0 )
181
      +       "normal.y= 0.0; \n"                      //   {
182
      +       "normal.z= 1.0; \n"                      //   n.x = (n.x*normal.z + n.z*normal.x);
183
      +       "} \n"                                   //   n.y = (n.y*normal.z + n.z*normal.y);
184
                                                       //   n.z = (n.z*normal.z);
185
                                                       //   }
186
      +     "n.x = (n.x*normal.z + n.z*normal.x); \n"  //
187
      +     "n.y = (n.y*normal.z + n.z*normal.y); \n"  // ? Because if we do the above, my Nexus4 crashes
188
      +     "n.z = (n.z*normal.z); \n"                 // during shader compilation!
189
      +     "} \n"
190
      +   "}"
191
      );
192
    }
193

    
194
///////////////////////////////////////////////////////////////////////////////////////////////////
195
/**
196
 * Directional, sinusoidal wave effect.
197
 *
198
 * @param wave   A 5-dimensional data structure describing the wave: first member is the amplitude,
199
 *               second is the wave length, third is the phase (i.e. when phase = PI/2, the sine
200
 *               wave at the center does not start from sin(0), but from sin(PI/2) ) and the next two
201
 *               describe the 'direction' of the wave.
202
 *               <p>
203
 *               Wave direction is defined to be a 3D vector of length 1. To define such vectors, we
204
 *               need 2 floats: thus the fourth member is the angle Alpha (in degrees) which the vector
205
 *               forms with the XY-plane, and the fifth is the angle Beta (again in degrees) which
206
 *               the projection of the vector to the XY-plane forms with the Y-axis (counterclockwise).
207
 *               <p>
208
 *               <p>
209
 *               Example1: if Alpha = 90, Beta = 90, (then V=(0,0,1) ) and the wave acts 'vertically'
210
 *               in the X-direction, i.e. cross-sections of the resulting surface with the XZ-plane
211
 *               will be sine shapes.
212
 *               <p>
213
 *               Example2: if Alpha = 90, Beta = 0, the again V=(0,0,1) and the wave is 'vertical',
214
 *               but this time it waves in the Y-direction, i.e. cross sections of the surface and the
215
 *               YZ-plane with be sine shapes.
216
 *               <p>
217
 *               Example3: if Alpha = 0 and Beta = 45, then V=(sqrt(2)/2, -sqrt(2)/2, 0) and the wave
218
 *               is entirely 'horizontal' and moves point (x,y,0) in direction V by whatever is the
219
 *               value if sin at this point.
220
 * @param center 3-dimensional Data that, at any given time, returns the Center of the Effect.
221
 * @param region Region that masks the Effect.
222
 */
223
  public VertexEffectWave(Data5D wave, Data3D center, Data4D region)
224
    {
225
    super(EffectName.WAVE);
226
    mWave   = wave;
227
    mCenter = center;
228
    mRegion = (region==null ? new Static4D(0,0,0, Float.MAX_VALUE) : region);
229
    }
230

    
231
///////////////////////////////////////////////////////////////////////////////////////////////////
232
/**
233
 * Directional, sinusoidal wave effect.
234
 *
235
 * @param wave   see {@link #VertexEffectWave(Data5D,Data3D)}
236
 * @param center 3-dimensional Data that, at any given time, returns the Center of the Effect.
237
 */
238
  public VertexEffectWave(Data5D wave, Data3D center)
239
    {
240
    super(EffectName.WAVE);
241
    mWave   = wave;
242
    mCenter = center;
243
    mRegion = new Static4D(0,0,0, Float.MAX_VALUE);
244
    }
245
  }
(26-26/26)