Revision 89b93576
Added by Leszek Koltunski almost 7 years ago
| src/main/java/org/distorted/library/mesh/MeshSphere.java | ||
|---|---|---|
| 1 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 2 |
// Copyright 2018 Leszek Koltunski // |
|
| 3 |
// // |
|
| 4 |
// This file is part of Distorted. // |
|
| 5 |
// // |
|
| 6 |
// Distorted is free software: you can redistribute it and/or modify // |
|
| 7 |
// it under the terms of the GNU General Public License as published by // |
|
| 8 |
// the Free Software Foundation, either version 2 of the License, or // |
|
| 9 |
// (at your option) any later version. // |
|
| 10 |
// // |
|
| 11 |
// Distorted is distributed in the hope that it will be useful, // |
|
| 12 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of // |
|
| 13 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // |
|
| 14 |
// GNU General Public License for more details. // |
|
| 15 |
// // |
|
| 16 |
// You should have received a copy of the GNU General Public License // |
|
| 17 |
// along with Distorted. If not, see <http://www.gnu.org/licenses/>. // |
|
| 18 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 19 |
|
|
| 20 |
package org.distorted.library.mesh; |
|
| 21 |
|
|
| 22 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 23 |
/** |
|
| 24 |
* Create a Mesh which approximates a sphere. |
|
| 25 |
* <p> |
|
| 26 |
* Do so by dividing each of the 20 faces of the regular icosahedron into smaller triangles and inflating |
|
| 27 |
* those to lay on the surface of the sphere. |
|
| 28 |
*/ |
|
| 29 |
public class MeshSphere extends MeshBase |
|
| 30 |
{
|
|
| 31 |
private static final int NUMFACES = 20; |
|
| 32 |
private static final double sqrt2 = Math.sqrt(2.0); |
|
| 33 |
private static final double P = Math.PI; |
|
| 34 |
private static final double A = 0.463647609; // arctan(0.5), +-latitude of the 10 'middle' vertices |
|
| 35 |
// https://en.wikipedia.org/wiki/Regular_icosahedron |
|
| 36 |
|
|
| 37 |
// An array of 20 entries, each describing a single face of the regular icosahedron in an (admittedly) |
|
| 38 |
// weird fashion. |
|
| 39 |
// Each face of a regular icosahedron is a equilateral triangle, with 2 vertices on the same latitude. |
|
| 40 |
// Single row is (longitude of V1, longitude of V2, (common) latitude of V1 and V2, latitude of V3) |
|
| 41 |
// longitude of V3 is simply midpoint of V1 and V2 so we don't have to specify it here. |
|
| 42 |
|
|
| 43 |
private static final double FACES[][] = {
|
|
| 44 |
{ 0.0 , 0.4*P, A, 0.5*P },
|
|
| 45 |
{ 0.4*P, 0.8*P, A, 0.5*P },
|
|
| 46 |
{ 0.8*P, 1.2*P, A, 0.5*P }, // 5 'top' faces with
|
|
| 47 |
{ 1.2*P, 1.6*P, A, 0.5*P }, // the North Pole
|
|
| 48 |
{ 1.6*P, 2.0*P, A, 0.5*P },
|
|
| 49 |
|
|
| 50 |
{ 0.0 , 0.4*P, A, -A },
|
|
| 51 |
{ 0.4*P, 0.8*P, A, -A },
|
|
| 52 |
{ 0.8*P, 1.2*P, A, -A }, // 5 faces mostly above
|
|
| 53 |
{ 1.2*P, 1.6*P, A, -A }, // the equator
|
|
| 54 |
{ 1.6*P, 2.0*P, A, -A },
|
|
| 55 |
|
|
| 56 |
{ 0.2 , 0.6*P, -A, A },
|
|
| 57 |
{ 0.6*P, 1.0*P, -A, A },
|
|
| 58 |
{ 1.0*P, 1.4*P, -A, A }, // 5 faces mostly below
|
|
| 59 |
{ 1.4*P, 1.8*P, -A, A }, // the equator
|
|
| 60 |
{ 1.8*P, 0.2*P, -A, A },
|
|
| 61 |
|
|
| 62 |
{ 0.2 , 0.6*P, -A,-0.5*P },
|
|
| 63 |
{ 0.6*P, 1.0*P, -A,-0.5*P },
|
|
| 64 |
{ 1.0*P, 1.4*P, -A,-0.5*P }, // 5 'bottom' faces with
|
|
| 65 |
{ 1.4*P, 1.8*P, -A,-0.5*P }, // the South Pole
|
|
| 66 |
{ 1.8*P, 0.2*P, -A,-0.5*P }
|
|
| 67 |
}; |
|
| 68 |
private int currentVert; |
|
| 69 |
private int numVertices; |
|
| 70 |
|
|
| 71 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 72 |
// Each of the 20 faces of the icosahedron requires (level*level + 4*level) vertices for the face |
|
| 73 |
// itself and a join to the next face (which requires 2 vertices). We don't need the join in case |
|
| 74 |
// of the last, 20th face, thus the -2. |
|
| 75 |
// (level*level +4*level) because there are level*level little triangles, each requiring new vertex, |
|
| 76 |
// plus 2 extra vertices to start off a row and 2 to move to the next row (or the next face in case |
|
| 77 |
// of the last row) and there are 'level' rows. |
|
| 78 |
|
|
| 79 |
private void computeNumberOfVertices(int level) |
|
| 80 |
{
|
|
| 81 |
numVertices = 20*level*(level+4) -2; |
|
| 82 |
currentVert = 0; |
|
| 83 |
} |
|
| 84 |
|
|
| 85 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 86 |
// (longitude,latitude) - spherical coordinates of a point on a unit sphere. |
|
| 87 |
// Cartesian (0,0,1) - i.e. the point of the sphere closest to the camera - is spherical (0,0). |
|
| 88 |
|
|
| 89 |
private void addVertex( double longitude, double latitude, float[] attribs) |
|
| 90 |
{
|
|
| 91 |
double sinLON = Math.sin(longitude); |
|
| 92 |
double cosLON = Math.cos(longitude); |
|
| 93 |
double sinLAT = Math.sin(latitude); |
|
| 94 |
double cosLAT = Math.cos(latitude); |
|
| 95 |
|
|
| 96 |
float x = (float)(cosLAT*sinLON / sqrt2); |
|
| 97 |
float y = (float)(sinLAT / sqrt2); |
|
| 98 |
float z = (float)(cosLAT*cosLON / sqrt2); |
|
| 99 |
|
|
| 100 |
attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB ] = x; // |
|
| 101 |
attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB+1] = y; // |
|
| 102 |
attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB+2] = z; // |
|
| 103 |
// In case of this Mesh so it happens that |
|
| 104 |
attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB ] = x; // the vertex coords, normal vector, and |
|
| 105 |
attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB+1] = y; // inflate vector have identical (x,y,z). |
|
| 106 |
attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB+2] = z; // |
|
| 107 |
// TODO: think about some more efficient |
|
| 108 |
attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB ] = x; // representation. |
|
| 109 |
attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB+1] = y; // |
|
| 110 |
attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB+2] = z; // |
|
| 111 |
|
|
| 112 |
attribs[VERT_ATTRIBS*currentVert + TEX_ATTRIB ] = (float)longitude; |
|
| 113 |
attribs[VERT_ATTRIBS*currentVert + TEX_ATTRIB+1] = (float)latitude; |
|
| 114 |
|
|
| 115 |
currentVert++; |
|
| 116 |
} |
|
| 117 |
|
|
| 118 |
|
|
| 119 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 120 |
|
|
| 121 |
private void repeatLast(float[] attribs) |
|
| 122 |
{
|
|
| 123 |
if( currentVert>0 ) |
|
| 124 |
{
|
|
| 125 |
attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB ] = attribs[VERT_ATTRIBS*(currentVert-1) + POS_ATTRIB ]; |
|
| 126 |
attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB+1] = attribs[VERT_ATTRIBS*(currentVert-1) + POS_ATTRIB+1]; |
|
| 127 |
attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB+2] = attribs[VERT_ATTRIBS*(currentVert-1) + POS_ATTRIB+2]; |
|
| 128 |
|
|
| 129 |
attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB ] = attribs[VERT_ATTRIBS*(currentVert-1) + NOR_ATTRIB ]; |
|
| 130 |
attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB+1] = attribs[VERT_ATTRIBS*(currentVert-1) + NOR_ATTRIB+1]; |
|
| 131 |
attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB+2] = attribs[VERT_ATTRIBS*(currentVert-1) + NOR_ATTRIB+2]; |
|
| 132 |
|
|
| 133 |
attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB ] = attribs[VERT_ATTRIBS*(currentVert-1) + INF_ATTRIB ]; |
|
| 134 |
attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB+1] = attribs[VERT_ATTRIBS*(currentVert-1) + INF_ATTRIB+1]; |
|
| 135 |
attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB+2] = attribs[VERT_ATTRIBS*(currentVert-1) + INF_ATTRIB+2]; |
|
| 136 |
|
|
| 137 |
attribs[VERT_ATTRIBS*currentVert + TEX_ATTRIB ] = attribs[VERT_ATTRIBS*(currentVert-1) + TEX_ATTRIB ]; |
|
| 138 |
attribs[VERT_ATTRIBS*currentVert + TEX_ATTRIB+1] = attribs[VERT_ATTRIBS*(currentVert-1) + TEX_ATTRIB+1]; |
|
| 139 |
|
|
| 140 |
currentVert++; |
|
| 141 |
} |
|
| 142 |
} |
|
| 143 |
|
|
| 144 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 145 |
// Supposed to return the latitude of the point between two points on the sphere with latitudes |
|
| 146 |
// lat1 and lat2, so if for example quot=0.2, then it will return the latitude of something 20% |
|
| 147 |
// along the way from lat1 to lat2. |
|
| 148 |
// |
|
| 149 |
// This is approximation only - in general it is of course not true that the midpoint of two points |
|
| 150 |
// on a unit sphere with spherical coords (A1,B1) and (A2,B2) is ( (A1+A2)/2, (B1+B2)/2 ) - take |
|
| 151 |
// (0,0) and (PI, epsilon) as a counterexample. |
|
| 152 |
// |
|
| 153 |
// Here however, the latitudes we are interested at are the latitudes of the vertices of a regular |
|
| 154 |
// icosahedron - i.e. +=A and +=PI/2, whose longitudes are close, and we don't really care if the |
|
| 155 |
// split into smaller triangles is exact. |
|
| 156 |
// |
|
| 157 |
// quot better be between 0.0 and 1.0. |
|
| 158 |
// this is 'directed' i.e. from lat1 to lat2. |
|
| 159 |
|
|
| 160 |
private double midLatitude(double lat1, double lat2, double quot) |
|
| 161 |
{
|
|
| 162 |
return lat1*(1.0-quot)+lat2*quot; |
|
| 163 |
} |
|
| 164 |
|
|
| 165 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 166 |
// Same in case of longitude. This is for our needs exact, because we are ever only calling this with |
|
| 167 |
// two longitudes of two vertices with the same latitude. Additional problem: things can wrap around |
|
| 168 |
// the circle. |
|
| 169 |
// this is 'undirected' i.e. we don't assume from lon1 to lon2 - just along the smaller arc joining |
|
| 170 |
// lon1 to lon2. |
|
| 171 |
|
|
| 172 |
private double midLongitude(double lon1, double lon2, double quot) |
|
| 173 |
{
|
|
| 174 |
double min, max; |
|
| 175 |
|
|
| 176 |
if( lon1<lon2 ) { min=lon1; max=lon2; }
|
|
| 177 |
else { min=lon2; max=lon1; }
|
|
| 178 |
|
|
| 179 |
double diff = max-min; |
|
| 180 |
if( diff>P ) { diff=2*P-diff; min=max; }
|
|
| 181 |
|
|
| 182 |
double ret = min+quot*diff; |
|
| 183 |
if( ret>=2*P ) ret-=2*P; |
|
| 184 |
|
|
| 185 |
return ret; |
|
| 186 |
} |
|
| 187 |
|
|
| 188 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 189 |
// linear map (column,row, level): |
|
| 190 |
// |
|
| 191 |
// ( 0, 0, level) -> (lonV1,latV12) |
|
| 192 |
// ( 0, level-1, level) -> (lonV3,latV3 ) |
|
| 193 |
// (level-1, 0, level) -> (lonV2,latV12) |
|
| 194 |
|
|
| 195 |
private void newVertex(float[] attribs, int column, int row, int level, |
|
| 196 |
double lonV1, double lonV2, double latV12, double latV3) |
|
| 197 |
{
|
|
| 198 |
double quotX = (double)column/(level-1); |
|
| 199 |
double quotY = (double)row /(level-1); |
|
| 200 |
|
|
| 201 |
double lonPoint = midLongitude(lonV1,lonV2, (quotX+0.5*quotY) ); |
|
| 202 |
double latPoint = midLatitude(latV12,latV3, quotY); |
|
| 203 |
|
|
| 204 |
addVertex(lonPoint,latPoint,attribs); |
|
| 205 |
} |
|
| 206 |
|
|
| 207 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 208 |
|
|
| 209 |
private void buildFace(float[] attribs, int level, int face, double lonV1, double lonV2, double latV12, double latV3) |
|
| 210 |
{
|
|
| 211 |
for(int row=0; row<level; row++) |
|
| 212 |
{
|
|
| 213 |
for (int column=0; column<level-row; column++) |
|
| 214 |
{
|
|
| 215 |
newVertex(attribs, column, row , level, lonV1, lonV2, latV12, latV3); |
|
| 216 |
if (column==0 && !(face==0 && row==0 ) ) repeatLast(attribs); |
|
| 217 |
newVertex(attribs, column, row+1, level, lonV1, lonV2, latV12, latV3); |
|
| 218 |
} |
|
| 219 |
|
|
| 220 |
newVertex(attribs, level-row, row , level, lonV1, lonV2, latV12, latV3); |
|
| 221 |
if( row!=level-1 || face!=NUMFACES-1 ) repeatLast(attribs); |
|
| 222 |
} |
|
| 223 |
} |
|
| 224 |
|
|
| 225 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 226 |
// PUBLIC API |
|
| 227 |
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
| 228 |
/** |
|
| 229 |
* Creates the underlying grid of vertices with the usual attribs which approximates a sphere. |
|
| 230 |
* <p> |
|
| 231 |
* When level=1, it outputs the 12 vertices of a regular icosahedron. |
|
| 232 |
* When level=N, it divides each of the 20 icosaherdon's triangular faces into N^2 smaller triangles |
|
| 233 |
* (by dividing each side into N equal segments) and 'inflates' the internal vertices so that they |
|
| 234 |
* touch the sphere. |
|
| 235 |
* |
|
| 236 |
* @param level Specifies the approximation level. Valid values: level ≥ 1 |
|
| 237 |
*/ |
|
| 238 |
public MeshSphere(int level) |
|
| 239 |
{
|
|
| 240 |
super(1.0f); |
|
| 241 |
|
|
| 242 |
computeNumberOfVertices(level); |
|
| 243 |
float[] attribs= new float[VERT_ATTRIBS*numVertices]; |
|
| 244 |
|
|
| 245 |
for(int face=0; face<NUMFACES; face++ ) |
|
| 246 |
{
|
|
| 247 |
buildFace(attribs, level, face, FACES[face][0], FACES[face][1], FACES[face][2], FACES[face][3]); |
|
| 248 |
} |
|
| 249 |
|
|
| 250 |
if( currentVert!=numVertices ) |
|
| 251 |
android.util.Log.d("MeshSphere", "currentVert= " +currentVert+" numVertices="+numVertices );
|
|
| 252 |
|
|
| 253 |
setAttribs(attribs); |
|
| 254 |
} |
|
| 255 |
} |
|
Also available in: Unified diff
Add support for MeshSphere (add ability to display it in the 'Effects3D' and 'Inflate' apps).
Still a bit buggy!