Project

General

Profile

« Previous | Next » 

Revision 89b93576

Added by Leszek Koltunski about 6 years ago

Add support for MeshSphere (add ability to display it in the 'Effects3D' and 'Inflate' apps).
Still a bit buggy!

View differences:

src/main/java/org/distorted/library/mesh/MeshSphere.java
1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2018 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Distorted.                                                               //
5
//                                                                                               //
6
// Distorted is free software: you can redistribute it and/or modify                             //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Distorted is distributed in the hope that it will be useful,                                  //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                            //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

  
20
package org.distorted.library.mesh;
21

  
22
///////////////////////////////////////////////////////////////////////////////////////////////////
23
/**
24
 * Create a Mesh which approximates a sphere.
25
 * <p>
26
 * Do so by dividing each of the 20 faces of the regular icosahedron into smaller triangles and inflating
27
 * those to lay on the surface of the sphere.
28
 */
29
public class MeshSphere extends MeshBase
30
  {
31
  private static final int NUMFACES = 20;
32
  private static final double sqrt2 = Math.sqrt(2.0);
33
  private static final double P = Math.PI;
34
  private static final double A = 0.463647609; // arctan(0.5), +-latitude of the 10 'middle' vertices
35
                                               // https://en.wikipedia.org/wiki/Regular_icosahedron
36

  
37
  // An array of 20 entries, each describing a single face of the regular icosahedron in an (admittedly)
38
  // weird fashion.
39
  // Each face of a regular icosahedron is a equilateral triangle, with 2 vertices on the same latitude.
40
  // Single row is (longitude of V1, longitude of V2, (common) latitude of V1 and V2, latitude of V3)
41
  // longitude of V3 is simply midpoint of V1 and V2 so we don't have to specify it here.
42

  
43
  private static final double FACES[][] =      {
44
                                                   { 0.0  , 0.4*P,  A, 0.5*P },
45
                                                   { 0.4*P, 0.8*P,  A, 0.5*P },
46
                                                   { 0.8*P, 1.2*P,  A, 0.5*P },  // 5 'top' faces with
47
                                                   { 1.2*P, 1.6*P,  A, 0.5*P },  // the North Pole
48
                                                   { 1.6*P, 2.0*P,  A, 0.5*P },
49

  
50
                                                   { 0.0  , 0.4*P,  A,    -A },
51
                                                   { 0.4*P, 0.8*P,  A,    -A },
52
                                                   { 0.8*P, 1.2*P,  A,    -A },  // 5 faces mostly above
53
                                                   { 1.2*P, 1.6*P,  A,    -A },  // the equator
54
                                                   { 1.6*P, 2.0*P,  A,    -A },
55

  
56
                                                   { 0.2  , 0.6*P, -A,     A },
57
                                                   { 0.6*P, 1.0*P, -A,     A },
58
                                                   { 1.0*P, 1.4*P, -A,     A },  // 5 faces mostly below
59
                                                   { 1.4*P, 1.8*P, -A,     A },  // the equator
60
                                                   { 1.8*P, 0.2*P, -A,     A },
61

  
62
                                                   { 0.2  , 0.6*P, -A,-0.5*P },
63
                                                   { 0.6*P, 1.0*P, -A,-0.5*P },
64
                                                   { 1.0*P, 1.4*P, -A,-0.5*P },  // 5 'bottom' faces with
65
                                                   { 1.4*P, 1.8*P, -A,-0.5*P },  // the South Pole
66
                                                   { 1.8*P, 0.2*P, -A,-0.5*P }
67
                                               };
68
  private int currentVert;
69
  private int numVertices;
70

  
71
///////////////////////////////////////////////////////////////////////////////////////////////////
72
// Each of the 20 faces of the icosahedron requires (level*level + 4*level) vertices for the face
73
// itself and a join to the next face (which requires 2 vertices). We don't need the join in case
74
// of the last, 20th face, thus the -2.
75
// (level*level +4*level) because there are level*level little triangles, each requiring new vertex,
76
// plus 2 extra vertices to start off a row and 2 to move to the next row (or the next face in case
77
// of the last row) and there are 'level' rows.
78

  
79
  private void computeNumberOfVertices(int level)
80
    {
81
    numVertices = 20*level*(level+4) -2;
82
    currentVert = 0;
83
    }
84

  
85
///////////////////////////////////////////////////////////////////////////////////////////////////
86
// (longitude,latitude) - spherical coordinates of a point on a unit sphere.
87
// Cartesian (0,0,1) - i.e. the point of the sphere closest to the camera - is spherical (0,0).
88

  
89
  private void addVertex( double longitude, double latitude, float[] attribs)
90
    {
91
    double sinLON = Math.sin(longitude);
92
    double cosLON = Math.cos(longitude);
93
    double sinLAT = Math.sin(latitude);
94
    double cosLAT = Math.cos(latitude);
95

  
96
    float x = (float)(cosLAT*sinLON / sqrt2);
97
    float y = (float)(sinLAT        / sqrt2);
98
    float z = (float)(cosLAT*cosLON / sqrt2);
99

  
100
    attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB  ] = x;  //
101
    attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB+1] = y;  //
102
    attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB+2] = z;  //
103
                                                           //  In case of this Mesh so it happens that
104
    attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB  ] = x;  //  the vertex coords, normal vector, and
105
    attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB+1] = y;  //  inflate vector have identical (x,y,z).
106
    attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB+2] = z;  //
107
                                                           //  TODO: think about some more efficient
108
    attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB  ] = x;  //  representation.
109
    attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB+1] = y;  //
110
    attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB+2] = z;  //
111

  
112
    attribs[VERT_ATTRIBS*currentVert + TEX_ATTRIB  ] = (float)longitude;
113
    attribs[VERT_ATTRIBS*currentVert + TEX_ATTRIB+1] = (float)latitude;
114

  
115
    currentVert++;
116
    }
117

  
118

  
119
///////////////////////////////////////////////////////////////////////////////////////////////////
120

  
121
  private void repeatLast(float[] attribs)
122
    {
123
    if( currentVert>0 )
124
      {
125
      attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB  ] = attribs[VERT_ATTRIBS*(currentVert-1) + POS_ATTRIB  ];
126
      attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB+1] = attribs[VERT_ATTRIBS*(currentVert-1) + POS_ATTRIB+1];
127
      attribs[VERT_ATTRIBS*currentVert + POS_ATTRIB+2] = attribs[VERT_ATTRIBS*(currentVert-1) + POS_ATTRIB+2];
128

  
129
      attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB  ] = attribs[VERT_ATTRIBS*(currentVert-1) + NOR_ATTRIB  ];
130
      attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB+1] = attribs[VERT_ATTRIBS*(currentVert-1) + NOR_ATTRIB+1];
131
      attribs[VERT_ATTRIBS*currentVert + NOR_ATTRIB+2] = attribs[VERT_ATTRIBS*(currentVert-1) + NOR_ATTRIB+2];
132

  
133
      attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB  ] = attribs[VERT_ATTRIBS*(currentVert-1) + INF_ATTRIB  ];
134
      attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB+1] = attribs[VERT_ATTRIBS*(currentVert-1) + INF_ATTRIB+1];
135
      attribs[VERT_ATTRIBS*currentVert + INF_ATTRIB+2] = attribs[VERT_ATTRIBS*(currentVert-1) + INF_ATTRIB+2];
136

  
137
      attribs[VERT_ATTRIBS*currentVert + TEX_ATTRIB  ] = attribs[VERT_ATTRIBS*(currentVert-1) + TEX_ATTRIB  ];
138
      attribs[VERT_ATTRIBS*currentVert + TEX_ATTRIB+1] = attribs[VERT_ATTRIBS*(currentVert-1) + TEX_ATTRIB+1];
139

  
140
      currentVert++;
141
      }
142
    }
143

  
144
///////////////////////////////////////////////////////////////////////////////////////////////////
145
// Supposed to return the latitude of the point between two points on the sphere with latitudes
146
// lat1 and lat2, so if for example quot=0.2, then it will return the latitude of something 20%
147
// along the way from lat1 to lat2.
148
//
149
// This is approximation only - in general it is of course not true that the midpoint of two points
150
// on a unit sphere with spherical coords (A1,B1) and (A2,B2) is ( (A1+A2)/2, (B1+B2)/2 ) - take
151
// (0,0) and (PI, epsilon) as a counterexample.
152
//
153
// Here however, the latitudes we are interested at are the latitudes of the vertices of a regular
154
// icosahedron - i.e. +=A and +=PI/2, whose longitudes are close, and we don't really care if the
155
// split into smaller triangles is exact.
156
//
157
// quot better be between 0.0 and 1.0.
158
// this is 'directed' i.e. from lat1 to lat2.
159

  
160
  private double midLatitude(double lat1, double lat2, double quot)
161
    {
162
    return lat1*(1.0-quot)+lat2*quot;
163
    }
164

  
165
///////////////////////////////////////////////////////////////////////////////////////////////////
166
// Same in case of longitude. This is for our needs exact, because we are ever only calling this with
167
// two longitudes of two vertices with the same latitude. Additional problem: things can wrap around
168
// the circle.
169
// this is 'undirected' i.e. we don't assume from lon1 to lon2 - just along the smaller arc joining
170
// lon1 to lon2.
171

  
172
  private double midLongitude(double lon1, double lon2, double quot)
173
    {
174
    double min, max;
175

  
176
    if( lon1<lon2 ) { min=lon1; max=lon2; }
177
    else            { min=lon2; max=lon1; }
178

  
179
    double diff = max-min;
180
    if( diff>P ) { diff=2*P-diff; min=max; }
181

  
182
    double ret = min+quot*diff;
183
    if( ret>=2*P ) ret-=2*P;
184

  
185
    return ret;
186
    }
187

  
188
///////////////////////////////////////////////////////////////////////////////////////////////////
189
// linear map (column,row, level):
190
//
191
// (      0,       0, level) -> (lonV1,latV12)
192
// (      0, level-1, level) -> (lonV3,latV3 )
193
// (level-1,       0, level) -> (lonV2,latV12)
194

  
195
  private void newVertex(float[] attribs, int column, int row, int level,
196
                         double lonV1, double lonV2, double latV12, double latV3)
197
    {
198
    double quotX = (double)column/(level-1);
199
    double quotY = (double)row   /(level-1);
200

  
201
    double lonPoint = midLongitude(lonV1,lonV2, (quotX+0.5*quotY) );
202
    double latPoint = midLatitude(latV12,latV3, quotY);
203

  
204
    addVertex(lonPoint,latPoint,attribs);
205
    }
206

  
207
///////////////////////////////////////////////////////////////////////////////////////////////////
208

  
209
  private void buildFace(float[] attribs, int level, int face, double lonV1, double lonV2, double latV12, double latV3)
210
    {
211
    for(int row=0; row<level; row++)
212
      {
213
      for (int column=0; column<level-row; column++)
214
        {
215
        newVertex(attribs, column, row  , level, lonV1, lonV2, latV12, latV3);
216
        if (column==0 && !(face==0 && row==0 ) ) repeatLast(attribs);
217
        newVertex(attribs, column, row+1, level, lonV1, lonV2, latV12, latV3);
218
        }
219

  
220
      newVertex(attribs, level-row, row , level, lonV1, lonV2, latV12, latV3);
221
      if( row!=level-1 || face!=NUMFACES-1 ) repeatLast(attribs);
222
      }
223
    }
224

  
225
///////////////////////////////////////////////////////////////////////////////////////////////////
226
// PUBLIC API
227
///////////////////////////////////////////////////////////////////////////////////////////////////
228
  /**
229
   * Creates the underlying grid of vertices with the usual attribs which approximates a sphere.
230
   * <p>
231
   * When level=1, it outputs the 12 vertices of a regular icosahedron.
232
   * When level=N, it divides each of the 20 icosaherdon's triangular faces into N^2 smaller triangles
233
   * (by dividing each side into N equal segments) and 'inflates' the internal vertices so that they
234
   * touch the sphere.
235
   *
236
   * @param level Specifies the approximation level. Valid values: level &ge; 1
237
   */
238
  public MeshSphere(int level)
239
    {
240
    super(1.0f);
241

  
242
    computeNumberOfVertices(level);
243
    float[] attribs= new float[VERT_ATTRIBS*numVertices];
244

  
245
    for(int face=0; face<NUMFACES; face++ )
246
      {
247
      buildFace(attribs, level, face, FACES[face][0], FACES[face][1], FACES[face][2], FACES[face][3]);
248
      }
249

  
250
    if( currentVert!=numVertices )
251
      android.util.Log.d("MeshSphere", "currentVert= " +currentVert+" numVertices="+numVertices );
252

  
253
    setAttribs(attribs);
254
    }
255
  }

Also available in: Unified diff