Project

General

Profile

Download (10.5 KB) Statistics
| Branch: | Revision:

library / src / main / java / org / distorted / library / effect / VertexEffectDeform.java @ b7074bc6

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2017 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Distorted.                                                               //
5
//                                                                                               //
6
// Distorted is free software: you can redistribute it and/or modify                             //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Distorted is distributed in the hope that it will be useful,                                  //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                            //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.library.effect;
21

    
22
import org.distorted.library.type.Data3D;
23
import org.distorted.library.type.Data4D;
24

    
25
///////////////////////////////////////////////////////////////////////////////////////////////////
26
/**
27
 * Deform the Mesh by applying a 3D vector of force.
28
 */
29
public class VertexEffectDeform extends VertexEffect
30
  {
31
  private Data3D mVector, mCenter;
32
  private Data4D mRegion;
33

    
34
///////////////////////////////////////////////////////////////////////////////////////////////////
35
/**
36
 * Only for use by the library itself.
37
 *
38
 * @y.exclude
39
 */
40
  public boolean compute(float[] uniforms, int index, long currentDuration, long step )
41
    {
42
    mCenter.get(uniforms,index+CENTER_OFFSET,currentDuration,step);
43
    mRegion.get(uniforms,index+REGION_OFFSET,currentDuration,step);
44
    return mVector.get(uniforms,index,currentDuration,step);
45
    }
46

    
47
///////////////////////////////////////////////////////////////////////////////////////////////////
48
// PUBLIC API
49
///////////////////////////////////////////////////////////////////////////////////////////////////
50
// Deform the whole shape of the Object by force V. Algorithm is as follows:
51
//
52
// Suppose we apply force (Vx,Vy) at point (Cx,Cy) (i.e. the center of the effect). Then, first of all,
53
// divide the rectangle into 4 smaller rectangles along the 1 horizontal + 1 vertical lines that pass
54
// through (Cx,Cy). Now suppose we have already understood the following case:
55
//
56
// A vertical (0,Vy) force applied to a rectangle (WxH) in size, at center which is the top-left corner
57
// of the rectangle.  (*)
58
//
59
// If we understand (*), then we understand everything, because in order to compute the movement of the
60
// whole rectangle we can apply (*) 8 times: for each one of the 4 sub-rectangles, apply (*) twice,
61
// once for the vertical component of the force vector, the second time for the horizontal one.
62
//
63
// Let's then compute (*):
64
// 1) the top-left point will move by exactly (0,Vy)
65
// 2) we arbitrarily decide that the top-right point will move by (|Vy|/(|Vy|+A*W))*Vy, where A is some
66
//    arbitrary constant (const float A below). The F(V,W) = (|Vy|/(|Vy|+A*W)) comes from the following:
67
//    a) we want F(V,0) = 1
68
//    b) we want lim V->inf (F) = 1
69
//    c) we actually want F() to only depend on W/V, which we have here.
70
// 3) then the top edge of the rectangle will move along the line Vy*G(x), where G(x) = (1 - (A*W/(|Vy|+A*W))*(x/W)^2)
71
// 4) Now we decide that the left edge of the rectangle will move along Vy*H(y), where H(y) = (1 - |y|/(|Vy|+C*|y|))
72
//    where C is again an arbitrary constant. Again, H(y) comes from the requirement that no matter how
73
//    strong we push the left edge of the rectangle up or down, it can never 'go over itself', but its
74
//    length will approach 0 if squeezed very hard.
75
// 5) The last point we need to compute is the left-right motion of the top-right corner (i.e. if we push
76
//    the top-left corner up very hard, we want to have the top-right corner not only move up, but also to
77
//    the left at least a little bit).
78
//    We arbitrarily decide that, in addition to moving up-down by Vy*F(V,W), the corner will also move
79
//    left-right by I(V,W) = B*W*F(V,W), where B is again an arbitrary constant.
80
// 6) combining 3), 4) and 5) together, we arrive at a movement of an arbitrary point (x,y) away from the
81
//    top-left corner:
82
//    X(x,y) = -B*x * (|Vy|/(|Vy|+A*W)) * (1-(y/H)^2)                               (**)
83
//    Y(x,y) = Vy * (1 - |y|/(|Vy|+C*|y|)) * (1 - (A*W/(|Vy|+A*W))*(x/W)^2)         (**)
84
//
85
// We notice that formulas (**) have been construed so that it is possible to continously mirror them
86
// left-right and up-down (i.e. apply not only to the 'bottom-right' rectangle of the 4 subrectangles
87
// but to all 4 of them!).
88
//
89
// Constants:
90
// a) A : valid values: (0,infinity). 'Bendiness' if the surface - the higher A is, the more the surface
91
//        bends. A<=0 destroys the system.
92
// b) B : valid values: <-1,1>. The amount side edges get 'sucked' inwards when we pull the middle of the
93
//        top edge up. B=0 --> not at all, B=1: a looot. B=-0.5: the edges will actually be pushed outwards
94
//        quite a bit. One can also set it to <-1 or >1, but it will look a bit ridiculous.
95
// c) C : valid values: <1,infinity). The derivative of the H(y) function at 0, i.e. the rate of 'squeeze'
96
//        surface gets along the force line. C=1: our point gets pulled very closely to points above it
97
//        even when we apply only small vertical force to it. The higher C is, the more 'uniform' movement
98
//        along the force line is.
99
//        0<=C<1 looks completely ridiculous and C<0 destroys the system.
100
///////////////////////////////////////////////////////////////////////////////////////////////////
101
/**
102
 * Have to call this before the shaders get compiled (i.e before DistortedLibrary.onCreate()) for the Effect to work.
103
 */
104
  public static void enable()
105
    {
106
    addEffect( EffectName.DEFORM,
107

    
108
        "const vec3 ONE = vec3(1.0,1.0,1.0);                                 \n"
109
      + "const float A = 0.5;                                                \n"
110
      + "const float B = 0.2;                                                \n"
111
      + "const float C = 5.0;                                                \n"
112

    
113
      + "vec3 center = vUniforms[effect+1].yzw;                              \n"
114
      + "vec3 ps     = center-v;                                             \n"
115
      + "vec3 aPS    = abs(ps);                                              \n"
116
      + "vec3 maxps  = u_Bounding + abs(center);                             \n"
117
      + "float d     = degree_region(vUniforms[effect+2],ps);                \n"
118
      + "vec3 force  = vUniforms[effect].xyz * d;                            \n"
119
      + "vec3 aForce = abs(force);                                           \n"
120
      + "float denom = dot(ps+(1.0-d)*force,ps);                             \n"
121
      + "float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));         \n"
122
      + "vec3 Aw = A*maxps;                                                  \n"
123
      + "vec3 quot = ps / maxps;                                             \n"
124
      + "quot = quot*quot;                                                   \n"  // ( (x/W)^2 , (y/H)^2 ) where x,y are distances from V to center
125

    
126
      + "float denomV = 1.0 / (aForce.y + Aw.x);                             \n"
127
      + "float denomH = 1.0 / (aForce.x + Aw.y);                             \n"
128

    
129
      + "vec3 vertCorr= ONE - aPS / ( aForce+C*aPS + (ONE-sign(aForce)) );   \n"  // avoid division by 0 when force and PS both are 0
130

    
131
      + "float mvXvert = -B * ps.x * aForce.y * (1.0-quot.y) * denomV;       \n"  // impact the vertical   component of the force vector has on horizontal movement
132
      + "float mvYhorz = -B * ps.y * aForce.x * (1.0-quot.x) * denomH;       \n"  // impact the horizontal component of the force vector has on vertical   movement
133
      + "float mvYvert = force.y * (1.0-quot.x*Aw.x*denomV) * vertCorr.y;    \n"  // impact the vertical   component of the force vector has on vertical   movement
134
      + "float mvXhorz = force.x * (1.0-quot.y*Aw.y*denomH) * vertCorr.x;    \n"  // impact the horizontal component of the force vector has on horizontal movement
135

    
136
      + "v.x += (mvXvert+mvXhorz);                                           \n"
137
      + "v.y += (mvYvert+mvYhorz);                                           \n"
138

    
139
      + "v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                           \n"  // thick bubble
140
      + "float b = -(12.0*force.z*d*(1.0-d)*(1.0-d)*(1.0-d))*one_over_denom; \n"
141

    
142
      + "n.xy += n.z*b*ps.xy;"
143
      );
144
    }
145

    
146
///////////////////////////////////////////////////////////////////////////////////////////////////
147
/**
148
 * Deform the whole Mesh with a (possibly changing in time) vector of force applied to
149
 * a (possibly changing in time) point on the Mesh.
150
 *
151
 * @param vector Vector of force that deforms the Mesh.
152
 * @param center 3-dimensional Data that, at any given time, returns the Center of the Effect.
153
 * @param region Region that masks the Effect.
154
 */
155
  public VertexEffectDeform(Data3D vector, Data3D center, Data4D region)
156
    {
157
    super(EffectName.DEFORM);
158
    mVector = vector;
159
    mCenter = center;
160
    mRegion = (region==null ? MAX_REGION : region);
161
    }
162

    
163
///////////////////////////////////////////////////////////////////////////////////////////////////
164
/**
165
 * Deform the whole Mesh with a (possibly changing in time) vector of force applied to
166
 * a (possibly changing in time) point on the Mesh.
167
 *
168
 * @param vector Vector of force that deforms the Mesh.
169
 * @param center 3-dimensional Data that, at any given time, returns the Center of the Effect.
170
 */
171
  public VertexEffectDeform(Data3D vector, Data3D center)
172
    {
173
    super(EffectName.DEFORM);
174
    mVector = vector;
175
    mCenter = center;
176
    mRegion = MAX_REGION;
177
    }
178
  }
(21-21/26)