Project

General

Profile

Download (12.1 KB) Statistics
| Branch: | Revision:

library / src / main / java / org / distorted / library / effect / VertexEffectWave.java @ f953bee0

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2017 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Distorted.                                                               //
5
//                                                                                               //
6
// Distorted is free software: you can redistribute it and/or modify                             //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Distorted is distributed in the hope that it will be useful,                                  //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                            //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.library.effect;
21

    
22
import org.distorted.library.type.Data3D;
23
import org.distorted.library.type.Data4D;
24
import org.distorted.library.type.Data5D;
25

    
26
///////////////////////////////////////////////////////////////////////////////////////////////////
27
/**
28
 * Directional, sinusoidal wave effect.
29
 *
30
 * Not a fully 3D effect. To achieve a fully 3D one we'd need another parameter making the whole thing
31
 * a 6D effect but there's no room in the Vertex Uniforms which assign only 5 floats for interpolated
32
 * effect values. Rethink this. ATM fully enough for 2.5D meshes like the MeshCubes.
33
 */
34
public class VertexEffectWave extends VertexEffect
35
  {
36
  private Data5D mWave;
37
  private Data3D mCenter;
38
  private Data4D mRegion;
39

    
40
///////////////////////////////////////////////////////////////////////////////////////////////////
41
/**
42
 * Only for use by the library itself.
43
 *
44
 * @y.exclude
45
 */
46
  public boolean compute(float[] uniforms, int index, long currentDuration, long step )
47
    {
48
    mCenter.get(uniforms,index+CENTER_OFFSET,currentDuration,step);
49
    mRegion.get(uniforms,index+REGION_OFFSET,currentDuration,step);
50
    boolean ret = mWave.get(uniforms,index,currentDuration,step);
51

    
52
    uniforms[index+2] = (float)(Math.PI*uniforms[index+2]/180);
53
    uniforms[index+3] = (float)(Math.PI*uniforms[index+3]/180);
54
    uniforms[index+4] = (float)(Math.PI*uniforms[index+4]/180);
55

    
56
    return ret;
57
    }
58

    
59
///////////////////////////////////////////////////////////////////////////////////////////////////
60
// PUBLIC API
61
///////////////////////////////////////////////////////////////////////////////////////////////////
62
// Directional sinusoidal wave effect.
63
//
64
// This is an effect from a (hopefully!) generic family of effects of the form (vec3 V: |V|=1 , f(x,y) )  (*)
65
// i.e. effects defined by a unit vector and an arbitrary function. Those effects are defined to move each
66
// point (x,y,0) of the XY plane to the point (x,y,0) + V*f(x,y).
67
//
68
// In this case V is defined by angles A and B (sines and cosines of which are precomputed in
69
// EffectQueueVertex and passed in the uniforms).
70
// Let's move V to start at the origin O, let point C be the endpoint of V, and let C' be C's projection
71
// to the XY plane. Then A is defined to be the angle C0C' and angle B is the angle C'O(axisY).
72
//
73
// Also, in this case f(x,y) = amplitude*sin(x/length), with those 2 parameters passed in uniforms.
74
//
75
//////////////////////////////////////////////////////////////////////////////////////////////
76
// How to compute any generic effect of type (*)
77
//////////////////////////////////////////////////////////////////////////////////////////////
78
//
79
// By definition, the vertices move by f(x,y)*V.
80
//
81
// Normals are much more complicated.
82
// Let angle X be the angle (0,Vy,Vz)(0,Vy,0)(Vx,Vy,Vz).
83
// Let angle Y be the angle (Vx,0,Vz)(Vx,0,0)(Vx,Vy,Vz).
84
//
85
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
86
// has 2 tangent vectors given by
87
//
88
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
89
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
90
//
91
// and then obviously the normal N is given by N= SX x SY .
92
//
93
// We still need to remember the note from the distort function dialog_about adding up normals:
94
// we first need to 'normalize' the normals to make their third components equal, and then we
95
// simply add up the first and the second component while leaving the third unchanged.
96
//
97
// How to see facts (**) and (***) ? Briefly:
98
// a) compute the 2D analogon and conclude that in this case the tangent SX is given by
99
//    SX = ( cosA*f'(x) +1, sinA*f'(x) )    (where A is the angle vector V makes with X axis )
100
// b) cut the resulting surface with plane P which
101
//    - includes vector V
102
//    - crosses plane XY along line parallel to X axis
103
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
104
//    and our surface (I am talking dialog_about the tangent vector which belongs to P) is given by
105
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
106
//
107
//    Matrix of rotation:
108
//
109
//    |sinY|  cosY
110
//    -cosY  |sinY|
111
//
112
// d) compute the above and see that this is equal precisely to SX from (**).
113
// e) repeat points b,c,d in direction Y and come up with (***).
114
//
115
//////////////////////////////////////////////////////////////////////////////////////////////
116
// Note: we should avoid passing certain combinations of parameters to this function. One such known
117
// combination is ( A: small but positive, B: any, amplitude >= length ).
118
// In this case, certain 'unlucky' points have their normals almost horizontal (they got moved by (almost!)
119
// amplitude, and other point length (i.e. <=amplitude) away got moved by 0, so the slope in this point is
120
// very steep). Visual effect is: vast majority of surface pretty much unchanged, but random 'unlucky'
121
// points very dark)
122
//
123
// Generally speaking I'd keep to amplitude < length, as the opposite case has some other problems as well.
124
///////////////////////////////////////////////////////////////////////////////////////////////////
125
/**
126
 * Have to call this before the shaders get compiled (i.e before DistortedLibrary.onCreate()) for the Effect to work.
127
 */
128
  public static void enable()
129
    {
130
    addEffect(EffectName.WAVE,
131

    
132
        "vec3 center     = vUniforms[effect+1].yzw; \n"
133
      + "float amplitude = vUniforms[effect  ].x; \n"
134
      + "float length    = vUniforms[effect  ].y; \n"
135

    
136
      + "vec3 ps = center - v; \n"
137
      + "float deg = amplitude*degree_region(vUniforms[effect+2],ps); \n"
138

    
139
      + "if( deg != 0.0 && length != 0.0 ) \n"
140
      +   "{ \n"
141
      +   "float phase = vUniforms[effect  ].z; \n"
142
      +   "float alpha = vUniforms[effect  ].w; \n"
143
      +   "float beta  = vUniforms[effect+1].x; \n"
144

    
145
      +   "float sinA = sin(alpha); \n"
146
      +   "float cosA = cos(alpha); \n"
147
      +   "float sinB = sin(beta); \n"
148
      +   "float cosB = cos(beta); \n"
149

    
150
      +   "float angle= 1.578*(ps.x*cosB-ps.y*sinB) / length + phase; \n"
151
      +   "vec3 dir= vec3(sinB*cosA,cosB*cosA,sinA); \n"
152
      +   "v += sin(angle)*deg*dir; \n"
153

    
154
      +   "if( n.z != 0.0 ) \n"
155
      +     "{ \n"
156
      +     "float sqrtX = sqrt(dir.y*dir.y + dir.z*dir.z); \n"
157
      +     "float sqrtY = sqrt(dir.x*dir.x + dir.z*dir.z); \n"
158

    
159
      +     "float sinX = ( sqrtY==0.0 ? 0.0 : dir.z / sqrtY); \n"
160
      +     "float cosX = ( sqrtY==0.0 ? 1.0 : dir.x / sqrtY); \n"
161
      +     "float sinY = ( sqrtX==0.0 ? 0.0 : dir.z / sqrtX); \n"
162
      +     "float cosY = ( sqrtX==0.0 ? 1.0 : dir.y / sqrtX); \n"
163

    
164
      +     "float abs_z = dir.z <0.0 ? -(sinX*sinY) : (sinX*sinY); \n"
165
      +     "float tmp = 1.578*cos(angle)*deg/length; \n"
166

    
167
      +     "float fx =-cosB*tmp; \n"
168
      +     "float fy = sinB*tmp; \n"
169

    
170
      +     "vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,abs_z*fx); \n"
171
      +     "vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,abs_z*fy); \n"
172

    
173
      +     "vec3 normal = cross(sx,sy); \n"
174

    
175
      +     "if( normal.z<=0.0 ) \n"                   // Why this bizarre thing rather than the straightforward
176
      +       "{ \n"                                   //
177
      +       "normal.x= 0.0; \n"                      // if( normal.z>0.0 )
178
      +       "normal.y= 0.0; \n"                      //   {
179
      +       "normal.z= 1.0; \n"                      //   n.x = (n.x*normal.z + n.z*normal.x);
180
      +       "} \n"                                   //   n.y = (n.y*normal.z + n.z*normal.y);
181
                                                       //   n.z = (n.z*normal.z);
182
                                                       //   }
183
      +     "n.x = (n.x*normal.z + n.z*normal.x); \n"  //
184
      +     "n.y = (n.y*normal.z + n.z*normal.y); \n"  // ? Because if we do the above, my Nexus4 crashes
185
      +     "n.z = (n.z*normal.z); \n"                 // during shader compilation!
186
      +     "} \n"
187
      +   "}"
188
      );
189
    }
190

    
191
///////////////////////////////////////////////////////////////////////////////////////////////////
192
/**
193
 * Directional, sinusoidal wave effect.
194
 *
195
 * @param wave   A 5-dimensional data structure describing the wave: first member is the amplitude,
196
 *               second is the wave length, third is the phase (i.e. when phase = PI/2, the sine
197
 *               wave at the center does not start from sin(0), but from sin(PI/2) ) and the next two
198
 *               describe the 'direction' of the wave.
199
 *               <p>
200
 *               Wave direction is defined to be a 3D vector of length 1. To define such vectors, we
201
 *               need 2 floats: thus the fourth member is the angle Alpha (in degrees) which the vector
202
 *               forms with the XY-plane, and the fifth is the angle Beta (again in degrees) which
203
 *               the projection of the vector to the XY-plane forms with the Y-axis (counterclockwise).
204
 *               <p>
205
 *               <p>
206
 *               Example1: if Alpha = 90, Beta = 90, (then V=(0,0,1) ) and the wave acts 'vertically'
207
 *               in the X-direction, i.e. cross-sections of the resulting surface with the XZ-plane
208
 *               will be sine shapes.
209
 *               <p>
210
 *               Example2: if Alpha = 90, Beta = 0, the again V=(0,0,1) and the wave is 'vertical',
211
 *               but this time it waves in the Y-direction, i.e. cross sections of the surface and the
212
 *               YZ-plane with be sine shapes.
213
 *               <p>
214
 *               Example3: if Alpha = 0 and Beta = 45, then V=(sqrt(2)/2, sqrt(2)/2, 0) and the wave
215
 *               is entirely 'horizontal' and moves point (x,y,0) in direction V by whatever is the
216
 *               value if sin at this point.
217
 * @param center 3-dimensional Data that, at any given time, returns the Center of the Effect.
218
 * @param region Region that masks the Effect.
219
 */
220
  public VertexEffectWave(Data5D wave, Data3D center, Data4D region)
221
    {
222
    super(EffectName.WAVE);
223
    mWave   = wave;
224
    mCenter = center;
225
    mRegion = (region==null ? MAX_REGION : region);
226
    }
227

    
228
///////////////////////////////////////////////////////////////////////////////////////////////////
229
/**
230
 * Directional, sinusoidal wave effect.
231
 *
232
 * @param wave   see {@link #VertexEffectWave(Data5D,Data3D)}
233
 * @param center 3-dimensional Data that, at any given time, returns the Center of the Effect.
234
 */
235
  public VertexEffectWave(Data5D wave, Data3D center)
236
    {
237
    super(EffectName.WAVE);
238
    mWave   = wave;
239
    mCenter = center;
240
    mRegion = MAX_REGION;
241
    }
242
  }
(26-26/26)