Project

General

Profile

Download (28.1 KB) Statistics
| Branch: | Revision:

library / src / main / java / org / distorted / library / type / Dynamic.java @ 3ac42a4c

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Distorted.                                                               //
5
//                                                                                               //
6
// Distorted is free software: you can redistribute it and/or modify                             //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Distorted is distributed in the hope that it will be useful,                                  //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                            //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.library.type;
21

    
22
import java.util.Random;
23
import java.util.Vector;
24

    
25
///////////////////////////////////////////////////////////////////////////////////////////////////
26
/** A class to interpolate between a list of Statics.
27
* <p><ul>
28
* <li>if there is only one Point, just return it.
29
* <li>if there are two Points, linearly bounce between them
30
* <li>if there are more, interpolate a path between them. Exact way we interpolate depends on the MODE.
31
* </ul>
32
*/
33

    
34
// The way Interpolation between more than 2 Points is done:
35
// 
36
// Def: let V[i] = (V[i](x), V[i](y), V[i](z)) be the direction and speed (i.e. velocity) we have to
37
// be flying at Point P[i]
38
//
39
// Time it takes to fly though one segment P[i] --> P[i+1] : 0.0 --> 1.0
40
//
41
// We arbitrarily decide that V[i] should be equal to (|curr|*prev + |prev|*curr) / min(|prev|,|curr|)
42
// where prev = P[i]-P[i-1] and curr = P[i+1]-P[i]
43
//
44
// Given that the flight route (X(t), Y(t), Z(t)) from P(i) to P(i+1)  (0<=t<=1) has to satisfy
45
// X(0) = P[i  ](x), Y(0)=P[i  ](y), Z(0)=P[i  ](z), X'(0) = V[i  ](x), Y'(0) = V[i  ](y), Z'(0) = V[i  ](z)
46
// X(1) = P[i+1](x), Y(1)=P[i+1](y), Z(1)=P[i+1](z), X'(1) = V[i+1](x), Y'(1) = V[i+1](y), Z'(1) = V[i+1](z)
47
//
48
// we have the solution:  X(t) = at^3 + bt^2 + ct + d where
49
// a =  2*P[i](x) +   V[i](x) - 2*P[i+1](x) + V[i+1](x)
50
// b = -3*P[i](x) - 2*V[i](x) + 3*P[i+1](x) - V[i+1](x)
51
// c =                V[i](x)
52
// d =    P[i](x)
53
//
54
// and similarly Y(t) and Z(t).
55

    
56
public abstract class Dynamic
57
  {
58
  /**
59
   * One revolution takes us from the first point to the last and back to first through the shortest path.
60
   */
61
  public static final int MODE_LOOP = 0; 
62
  /**
63
   * One revolution takes us from the first point to the last and back to first through the same path.
64
   */
65
  public static final int MODE_PATH = 1; 
66
  /**
67
   * One revolution takes us from the first point to the last and jumps straight back to the first point.
68
   */
69
  public static final int MODE_JUMP = 2; 
70

    
71
  /**
72
   * The default mode of access. When in this mode, we are able to call interpolate() with points in time
73
   * in any random order. This means one single Dynamic can be used in many effects simultaneously.
74
   * On the other hand, when in this mode, it is not possible to smoothly interpolate when mDuration suddenly
75
   * changes.
76
   */
77
  public static final int ACCESS_TYPE_RANDOM     = 0;
78
  /**
79
   * Set the mode to ACCESS_SEQUENTIAL if you need to change mDuration and you would rather have the Dynamic
80
   * keep on smoothly interpolating.
81
   * On the other hand, in this mode, a Dynamic can only be accessed in sequential manner, which means one
82
   * Dynamic can only be used in one effect at a time.
83
   */
84
  public static final int ACCESS_TYPE_SEQUENTIAL = 1;
85

    
86
  protected int mDimension;
87
  protected int numPoints;
88
  protected int mSegment;       // between which pair of points are we currently? (in case of PATH this is a bit complicated!)
89
  protected boolean cacheDirty; // VectorCache not up to date
90
  protected int mMode;          // LOOP, PATH or JUMP
91
  protected long mDuration;     // number of milliseconds it takes to do a full loop/path from first vector to the last and back to the first
92
  protected float mCount;       // number of loops/paths we will do; mCount = 1.5 means we go from the first vector to the last, back to first, and to the last again. 
93
  protected double mLastPos;
94
  protected int mAccessType;
95

    
96
  protected class VectorNoise
97
    {
98
    float[][] n;
99

    
100
    VectorNoise()
101
      {
102
      n = new float[mDimension][NUM_NOISE];
103
      }
104

    
105
    void computeNoise()
106
      {
107
      n[0][0] = mRnd.nextFloat();
108
      for(int i=1; i<NUM_NOISE; i++) n[0][i] = n[0][i-1]+mRnd.nextFloat();
109

    
110
      float sum = n[0][NUM_NOISE-1] + mRnd.nextFloat();
111

    
112
      for(int i=0; i<NUM_NOISE; i++)
113
        {
114
        n[0][i] /=sum;
115
        for(int j=1; j<mDimension; j++) n[j][i] = mRnd.nextFloat()-0.5f;
116
        }
117
      }
118
    }
119

    
120
  protected Vector<VectorNoise> vn;
121
  protected float[] mFactor;
122
  protected float[] mNoise;
123
  protected float[][] baseV;
124

    
125
  ///////////////////////////////////////////////////////////////////////////////////////////////////
126
  // the coefficients of the X(t), Y(t) and Z(t) polynomials: X(t) = ax*T^3 + bx*T^2 + cx*t + dx  etc.
127
  // (tangent) is the vector tangent to the path.
128
  // (cached) is the original vector from vv (copied here so when interpolating we can see if it is
129
  // still valid and if not - rebuild the Cache
130

    
131
  protected class VectorCache
132
    {
133
    float[] a;
134
    float[] b;
135
    float[] c;
136
    float[] d;
137
    float[] tangent;
138
    float[] cached;
139

    
140
    VectorCache()
141
      {
142
      a = new float[mDimension];
143
      b = new float[mDimension];
144
      c = new float[mDimension];
145
      d = new float[mDimension];
146
      tangent = new float[mDimension];
147
      cached = new float[mDimension];
148
      }
149
    }
150

    
151
  protected Vector<VectorCache> vc;
152
  protected VectorCache tmp1, tmp2;
153
  protected float mConvexity;
154

    
155
  private float[] buf;
156
  private float[] old;
157
  private static Random mRnd = new Random();
158
  private static final int NUM_NOISE = 5; // used iff mNoise>0.0. Number of intermediary points between each pair of adjacent vectors
159
                                          // where we randomize noise factors to make the way between the two vectors not so smooth.
160
  private long mStartTime;
161
  private long mCorrectedTime;
162
  private static long mPausedTime;
163

    
164
///////////////////////////////////////////////////////////////////////////////////////////////////
165
// hide this from Javadoc
166
  
167
  protected Dynamic()
168
    {
169

    
170
    }
171

    
172
///////////////////////////////////////////////////////////////////////////////////////////////////
173

    
174
  protected Dynamic(int duration, float count, int dimension)
175
    {
176
    vc         = new Vector<>();
177
    vn         = null;
178
    numPoints  = 0;
179
    cacheDirty = false;
180
    mMode      = MODE_LOOP;
181
    mDuration  = duration;
182
    mCount     = count;
183
    mDimension = dimension;
184
    mSegment   = -1;
185
    mLastPos   = -1;
186
    mAccessType= ACCESS_TYPE_RANDOM;
187
    mConvexity = 1.0f;
188
    mStartTime = -1;
189
    mCorrectedTime = 0;
190

    
191
    baseV      = new float[mDimension][mDimension];
192
    buf        = new float[mDimension];
193
    old        = new float[mDimension];
194
    }
195

    
196
///////////////////////////////////////////////////////////////////////////////////////////////////
197

    
198
  void initDynamic()
199
    {
200
    mStartTime = -1;
201
    mCorrectedTime = 0;
202
    }
203

    
204
///////////////////////////////////////////////////////////////////////////////////////////////////
205

    
206
  public static void onPause()
207
    {
208
    mPausedTime = System.currentTimeMillis();
209
    }
210

    
211
///////////////////////////////////////////////////////////////////////////////////////////////////
212

    
213
  protected float noise(float time,int vecNum)
214
    {
215
    float lower, upper, len;
216
    float d = time*(NUM_NOISE+1);
217
    int index = (int)d;
218
    if( index>=NUM_NOISE+1 ) index=NUM_NOISE;
219
    VectorNoise tmpN = vn.elementAt(vecNum);
220

    
221
    float t = d-index;
222
    t = t*t*(3-2*t);
223

    
224
    switch(index)
225
      {
226
      case 0        : for(int i=0;i<mDimension-1;i++) mFactor[i] = mNoise[i+1]*tmpN.n[i+1][0]*t;
227
                      return time + mNoise[0]*(d*tmpN.n[0][0]-time);
228
      case NUM_NOISE: for(int i=0;i<mDimension-1;i++) mFactor[i] = mNoise[i+1]*tmpN.n[i+1][NUM_NOISE-1]*(1-t);
229
                      len = ((float)NUM_NOISE)/(NUM_NOISE+1);
230
                      lower = len + mNoise[0]*(tmpN.n[0][NUM_NOISE-1]-len);
231
                      return (1.0f-lower)*(d-NUM_NOISE) + lower;
232
      default       : float ya,yb;
233

    
234
                      for(int i=0;i<mDimension-1;i++)
235
                        {
236
                        yb = tmpN.n[i+1][index  ];
237
                        ya = tmpN.n[i+1][index-1];
238
                        mFactor[i] = mNoise[i+1]*((yb-ya)*t+ya);
239
                        }
240

    
241
                      len = ((float)index)/(NUM_NOISE+1);
242
                      lower = len + mNoise[0]*(tmpN.n[0][index-1]-len);
243
                      len = ((float)index+1)/(NUM_NOISE+1);
244
                      upper = len + mNoise[0]*(tmpN.n[0][index  ]-len);
245

    
246
                      return (upper-lower)*(d-index) + lower;
247
      }
248
    }
249

    
250
///////////////////////////////////////////////////////////////////////////////////////////////////
251
// debugging only
252

    
253
  private void printBase(String str)
254
    {
255
    String s;
256
    float t;
257

    
258
    for(int i=0; i<mDimension; i++)
259
      {
260
      s = "";
261

    
262
      for(int j=0; j<mDimension; j++)
263
        {
264
        t = ((int)(1000*baseV[i][j]))/(1000.0f);
265
        s+=(" "+t);
266
        }
267
      android.util.Log.e("dynamic", str+" base "+i+" : " + s);
268
      }
269
    }
270

    
271
///////////////////////////////////////////////////////////////////////////////////////////////////
272
// debugging only
273

    
274
  @SuppressWarnings("unused")
275
  private void checkBase()
276
    {
277
    float tmp, cosA;
278
    float[] len= new float[mDimension];
279
    boolean error=false;
280

    
281
    for(int i=0; i<mDimension; i++)
282
      {
283
      len[i] = 0.0f;
284

    
285
      for(int k=0; k<mDimension; k++)
286
        {
287
        len[i] += baseV[i][k]*baseV[i][k];
288
        }
289

    
290
      if( len[i] == 0.0f || len[0]/len[i] < 0.95f || len[0]/len[i]>1.05f )
291
        {
292
        android.util.Log.e("dynamic", "length of vector "+i+" : "+Math.sqrt(len[i]));
293
        error = true;
294
        }
295
      }
296

    
297
    for(int i=0; i<mDimension; i++)
298
      for(int j=i+1; j<mDimension; j++)
299
        {
300
        tmp = 0.0f;
301

    
302
        for(int k=0; k<mDimension; k++)
303
          {
304
          tmp += baseV[i][k]*baseV[j][k];
305
          }
306

    
307
        cosA = ( (len[i]==0.0f || len[j]==0.0f) ? 0.0f : tmp/(float)Math.sqrt(len[i]*len[j]));
308

    
309
        if( cosA > 0.05f || cosA < -0.05f )
310
          {
311
          android.util.Log.e("dynamic", "cos angle between vectors "+i+" and "+j+" : "+cosA);
312
          error = true;
313
          }
314
        }
315

    
316
    if( error ) printBase("");
317
    }
318

    
319
///////////////////////////////////////////////////////////////////////////////////////////////////
320

    
321
  int getNext(int curr, float time)
322
    {
323
    switch(mMode)
324
      {
325
      case MODE_LOOP: return curr==numPoints-1 ? 0:curr+1;
326
      case MODE_PATH: return time<0.5f ? (curr+1) : (curr==0 ? 1 : curr-1);
327
      case MODE_JUMP: return curr==numPoints-1 ? 1:curr+1;
328
      default       : return 0;
329
      }
330
    }
331

    
332
///////////////////////////////////////////////////////////////////////////////////////////////////
333

    
334
  private void checkAngle(int index)
335
    {
336
    float cosA = 0.0f;
337

    
338
    for(int k=0;k<mDimension; k++)
339
      cosA += baseV[index][k]*old[k];
340

    
341
    if( cosA<0.0f )
342
      {
343
/*
344
      /// DEBUGGING ////
345
      String s = index+" (";
346
      float t;
347

    
348
      for(int j=0; j<mDimension; j++)
349
        {
350
        t = ((int)(100*baseV[index][j]))/(100.0f);
351
        s+=(" "+t);
352
        }
353
      s += ") (";
354

    
355
      for(int j=0; j<mDimension; j++)
356
        {
357
        t = ((int)(100*old[j]))/(100.0f);
358
        s+=(" "+t);
359
        }
360
      s+= ")";
361

    
362
      android.util.Log.e("dynamic", "kat: " + s);
363
      /// END DEBUGGING ///
364
*/
365
      for(int j=0; j<mDimension; j++)
366
        baseV[index][j] = -baseV[index][j];
367
      }
368
    }
369

    
370
///////////////////////////////////////////////////////////////////////////////////////////////////
371
// helper function in case we are interpolating through exactly 2 points
372

    
373
  protected void computeOrthonormalBase2(Static curr, Static next)
374
    {
375
    switch(mDimension)
376
      {
377
      case 1: Static1D curr1 = (Static1D)curr;
378
              Static1D next1 = (Static1D)next;
379
              baseV[0][0] = (next1.x-curr1.x);
380
              break;
381
      case 2: Static2D curr2 = (Static2D)curr;
382
              Static2D next2 = (Static2D)next;
383
              baseV[0][0] = (next2.x-curr2.x);
384
              baseV[0][1] = (next2.y-curr2.y);
385
              break;
386
      case 3: Static3D curr3 = (Static3D)curr;
387
              Static3D next3 = (Static3D)next;
388
              baseV[0][0] = (next3.x-curr3.x);
389
              baseV[0][1] = (next3.y-curr3.y);
390
              baseV[0][2] = (next3.z-curr3.z);
391
              break;
392
      case 4: Static4D curr4 = (Static4D)curr;
393
              Static4D next4 = (Static4D)next;
394
              baseV[0][0] = (next4.x-curr4.x);
395
              baseV[0][1] = (next4.y-curr4.y);
396
              baseV[0][2] = (next4.z-curr4.z);
397
              baseV[0][3] = (next4.w-curr4.w);
398
              break;
399
      case 5: Static5D curr5 = (Static5D)curr;
400
              Static5D next5 = (Static5D)next;
401
              baseV[0][0] = (next5.x-curr5.x);
402
              baseV[0][1] = (next5.y-curr5.y);
403
              baseV[0][2] = (next5.z-curr5.z);
404
              baseV[0][3] = (next5.w-curr5.w);
405
              baseV[0][4] = (next5.v-curr5.v);
406
              break;
407
      default: throw new RuntimeException("Unsupported dimension");
408
      }
409

    
410
    if( baseV[0][0] == 0.0f )
411
      {
412
      baseV[1][0] = 1.0f;
413
      baseV[1][1] = 0.0f;
414
      }
415
    else
416
      {
417
      baseV[1][0] = 0.0f;
418
      baseV[1][1] = 1.0f;
419
      }
420

    
421
    for(int i=2; i<mDimension; i++)
422
      {
423
      baseV[1][i] = 0.0f;
424
      }
425

    
426
    computeOrthonormalBase();
427
    }
428

    
429
///////////////////////////////////////////////////////////////////////////////////////////////////
430
// helper function in case we are interpolating through more than 2 points
431

    
432
  protected void computeOrthonormalBaseMore(float time,VectorCache vc)
433
    {
434
    for(int i=0; i<mDimension; i++)
435
      {
436
      baseV[0][i] = (3*vc.a[i]*time+2*vc.b[i])*time+vc.c[i];   // first derivative, i.e. velocity vector
437
      old[i]      = baseV[1][i];
438
      baseV[1][i] =  6*vc.a[i]*time+2*vc.b[i];                 // second derivative,i.e. acceleration vector
439
      }
440

    
441
    computeOrthonormalBase();
442
    }
443

    
444
///////////////////////////////////////////////////////////////////////////////////////////////////
445
// When this function gets called, baseV[0] and baseV[1] should have been filled with two mDimension-al
446
// vectors. This function then fills the rest of the baseV array with a mDimension-al Orthonormal base.
447
// (mDimension-2 vectors, pairwise orthogonal to each other and to the original 2). The function always
448
// leaves base[0] alone but generally speaking must adjust base[1] to make it orthogonal to base[0]!
449
// The whole baseV is then used to compute Noise.
450
//
451
// When computing noise of a point travelling along a N-dimensional path, there are three cases:
452
// a) we may be interpolating through 1 point, i.e. standing in place - nothing to do in this case
453
// b) we may be interpolating through 2 points, i.e. travelling along a straight line between them -
454
//    then pass the velocity vector in baseV[0] and anything linearly independent in base[1].
455
//    The output will then be discontinuous in dimensions>2 (sad corollary from the Hairy Ball Theorem)
456
//    but we don't care - we are travelling along a straight line, so velocity (aka baseV[0]!) does
457
//    not change.
458
// c) we may be interpolating through more than 2 points. Then interpolation formulas ensure the path
459
//    will never be a straight line, even locally -> we can pass in baseV[0] and baseV[1] the velocity
460
//    and the acceleration (first and second derivatives of the path) which are then guaranteed to be
461
//    linearly independent. Then we can ensure this is continuous in dimensions <=4. This leaves
462
//    dimension 5 (ATM WAVE is 5-dimensional) discontinuous -> WAVE will suffer from chaotic noise.
463
//
464
// Bear in mind here the 'normal' in 'orthonormal' means 'length equal to the length of the original
465
// velocity vector' (rather than the standard 1)
466

    
467
  protected void computeOrthonormalBase()
468
    {
469
    int last_non_zero=-1;
470
    float tmp;
471

    
472
    for(int i=0; i<mDimension; i++)
473
      if( baseV[0][i] != 0.0f )
474
        last_non_zero=i;
475

    
476
    if( last_non_zero==-1 )                                               ///
477
      {                                                                   //  velocity is the 0 vector -> two
478
      for(int i=0; i<mDimension-1; i++)                                   //  consecutive points we are interpolating
479
        for(int j=0; j<mDimension; j++)                                   //  through are identical -> no noise,
480
          baseV[i+1][j]= 0.0f;                                            //  set the base to 0 vectors.
481
      }                                                                   ///
482
    else
483
      {
484
      for(int i=1; i<mDimension; i++)                                     /// One iteration computes baseV[i][*]
485
        {                                                                 //  (aka b[i]), the i-th orthonormal vector.
486
        buf[i-1]=0.0f;                                                    //
487
                                                                          //  We can use (modified!) Gram-Schmidt.
488
        for(int k=0; k<mDimension; k++)                                   //
489
          {                                                               //
490
          if( i>=2 )                                                      //  b[0] = b[0]
491
            {                                                             //  b[1] = b[1] - (<b[1],b[0]>/<b[0],b[0]>)*b[0]
492
            old[k] = baseV[i][k];                                         //  b[2] = b[2] - (<b[2],b[0]>/<b[0],b[0]>)*b[0] - (<b[2],b[1]>/<b[1],b[1]>)*b[1]
493
            baseV[i][k]= (k==i-(last_non_zero>=i?1:0)) ? 1.0f : 0.0f;     //  b[3] = b[3] - (<b[3],b[0]>/<b[0],b[0]>)*b[0] - (<b[3],b[1]>/<b[1],b[1]>)*b[1] - (<b[3],b[2]>/<b[2],b[2]>)*b[2]
494
            }                                                             //  (...)
495
                                                                          //  then b[i] = b[i] / |b[i]|  ( Here really b[i] = b[i] / (|b[0]|/|b[i]|)
496
          tmp = baseV[i-1][k];                                            //
497
          buf[i-1] += tmp*tmp;                                            //
498
          }                                                               //
499
                                                                          //
500
        for(int j=0; j<i; j++)                                            //
501
          {                                                               //
502
          tmp = 0.0f;                                                     //
503
          for(int k=0;k<mDimension; k++) tmp += baseV[i][k]*baseV[j][k];  //
504
          tmp /= buf[j];                                                  //
505
          for(int k=0;k<mDimension; k++) baseV[i][k] -= tmp*baseV[j][k];  //
506
          }                                                               //
507
                                                                          //
508
        checkAngle(i);                                                    //
509
        }                                                                 /// end compute baseV[i][*]
510

    
511
      buf[mDimension-1]=0.0f;                                             /// Normalize
512
      for(int k=0; k<mDimension; k++)                                     //
513
        {                                                                 //
514
        tmp = baseV[mDimension-1][k];                                     //
515
        buf[mDimension-1] += tmp*tmp;                                     //
516
        }                                                                 //
517
                                                                          //
518
      for(int i=1; i<mDimension; i++)                                     //
519
        {                                                                 //
520
        tmp = (float)Math.sqrt(buf[0]/buf[i]);                            //
521
        for(int k=0;k<mDimension; k++) baseV[i][k] *= tmp;                //
522
        }                                                                 /// End Normalize
523
      }
524
    }
525

    
526
///////////////////////////////////////////////////////////////////////////////////////////////////
527

    
528
  abstract void interpolate(float[] buffer, int offset, float time);
529

    
530
///////////////////////////////////////////////////////////////////////////////////////////////////
531
// PUBLIC API
532
///////////////////////////////////////////////////////////////////////////////////////////////////
533

    
534
/**
535
 * Sets the mode of the interpolation to Loop, Path or Jump.
536
 * <ul>
537
 * <li>Loop is when we go from the first point all the way to the last, and the back to the first through 
538
 * the shortest way.
539
 * <li>Path is when we come back from the last point back to the first the same way we got there.
540
 * <li>Jump is when we go from first to last and then jump straight back to the first.
541
 * </ul>
542
 * 
543
 * @param mode {@link Dynamic#MODE_LOOP}, {@link Dynamic#MODE_PATH} or {@link Dynamic#MODE_JUMP}.
544
 */
545
  public void setMode(int mode)
546
    {
547
    mMode = mode;  
548
    }
549

    
550
///////////////////////////////////////////////////////////////////////////////////////////////////
551
/**
552
 * Returns the number of Points this Dynamic has been fed with.
553
 *   
554
 * @return the number of Points we are currently interpolating through.
555
 */
556
  public synchronized int getNumPoints()
557
    {
558
    return numPoints;  
559
    }
560

    
561
///////////////////////////////////////////////////////////////////////////////////////////////////
562
/**
563
 * Sets how many revolutions we want to do.
564
 * <p>
565
 * Does not have to be an integer. What constitutes 'one revolution' depends on the MODE:
566
 * {@link Dynamic#MODE_LOOP}, {@link Dynamic#MODE_PATH} or {@link Dynamic#MODE_JUMP}.
567
 * Count<=0 means 'go on interpolating indefinitely'.
568
 * 
569
 * @param count the number of times we want to interpolate between our collection of Points.
570
 */
571
  public void setCount(float count)
572
    {
573
    mCount = count;  
574
    }
575

    
576
///////////////////////////////////////////////////////////////////////////////////////////////////
577
/**
578
 * Return the number of revolutions this Dynamic will make.
579
 * What constitutes 'one revolution' depends on the MODE:
580
 * {@link Dynamic#MODE_LOOP}, {@link Dynamic#MODE_PATH} or {@link Dynamic#MODE_JUMP}.
581
 *
582
 * @return the number revolutions this Dynamic will make.
583
 */
584
  public float getCount()
585
    {
586
    return mCount;
587
    }
588

    
589
///////////////////////////////////////////////////////////////////////////////////////////////////
590
/**
591
 * Start running from the beginning again.
592
 *
593
 * If a Dynamic has been used already, and we want to use it again and start interpolating from the
594
 * first Point, first we need to reset it using this method.
595
 */
596
  public void resetToBeginning()
597
    {
598
    mStartTime = -1;
599
    }
600

    
601
///////////////////////////////////////////////////////////////////////////////////////////////////
602
/**
603
 * @param duration Number of milliseconds one revolution will take.
604
 *                 What constitutes 'one revolution' depends on the MODE:
605
 *                 {@link Dynamic#MODE_LOOP}, {@link Dynamic#MODE_PATH} or {@link Dynamic#MODE_JUMP}.
606
 */
607
  public void setDuration(long duration)
608
    {
609
    mDuration = duration;
610
    }
611

    
612
///////////////////////////////////////////////////////////////////////////////////////////////////
613
/**
614
 * @return Number of milliseconds one revolution will take.
615
 */
616
  public long getDuration()
617
    {
618
    return mDuration;
619
    }
620

    
621
///////////////////////////////////////////////////////////////////////////////////////////////////
622
/**
623
 * @param convexity If set to the default (1.0f) then interpolation between 4 points
624
 *                  (1,0) (0,1) (-1,0) (0,-1) will be the natural circle centered at (0,0) with radius 1.
625
 *                  The less it is, the less convex the circle becomes, ultimately when convexity=0.0f
626
 *                  then the interpolation shape will be straight lines connecting the four points.
627
 *                  Further setting this to negative values will make the shape concave.
628
 *                  Valid values: all floats. (although probably only something around (0,2) actually
629
 *                  makes sense)
630
 */
631
  public void setConvexity(float convexity)
632
    {
633
    if( mConvexity!=convexity )
634
      {
635
      mConvexity = convexity;
636
      cacheDirty = true;
637
      }
638
    }
639

    
640
///////////////////////////////////////////////////////////////////////////////////////////////////
641
/**
642
 * @return See {@link Dynamic#setConvexity(float)}
643
 */
644
  public float getConvexity()
645
    {
646
    return mConvexity;
647
    }
648

    
649
///////////////////////////////////////////////////////////////////////////////////////////////////
650
/**
651
 * Sets the access type this Dynamic will be working in.
652
 *
653
 * @param type {@link Dynamic#ACCESS_TYPE_RANDOM} or {@link Dynamic#ACCESS_TYPE_SEQUENTIAL}.
654
 */
655
  public void setAccessType(int type)
656
    {
657
    mAccessType = type;
658
    mLastPos = -1;
659
    }
660

    
661
///////////////////////////////////////////////////////////////////////////////////////////////////
662
/**
663
 * Return the Dimension, ie number of floats in a single Point this Dynamic interpolates through.
664
 *
665
 * @return number of floats in a single Point (ie its dimension) contained in the Dynamic.
666
 */
667
  public int getDimension()
668
    {
669
    return mDimension;
670
    }
671

    
672
///////////////////////////////////////////////////////////////////////////////////////////////////
673
/**
674
 * Writes the results of interpolation between the Points at time 'time' to the passed float buffer.
675
 * <p>
676
 * This version differs from the previous in that it returns a boolean value which indicates whether
677
 * the interpolation is finished.
678
 *
679
 * @param buffer Float buffer we will write the results to.
680
 * @param offset Offset in the buffer where to write the result.
681
 * @param time   Time of interpolation. Time=0.0 is the beginning of the first revolution, time=1.0 - the end
682
 *               of the first revolution, time=2.5 - the middle of the third revolution.
683
 *               What constitutes 'one revolution' depends on the MODE:
684
 *               {@link Dynamic#MODE_LOOP}, {@link Dynamic#MODE_PATH} or {@link Dynamic#MODE_JUMP}.
685
 * @param step   Time difference between now and the last time we called this function. Needed to figure
686
 *               out if the previous time we were called the effect wasn't finished yet, but now it is.
687
 * @return true if the interpolation reached its end.
688
 */
689
  public boolean get(float[] buffer, int offset, long time, long step)
690
    {
691
    if( mDuration<=0.0f )
692
      {
693
      interpolate(buffer,offset,mCount-(int)mCount);
694
      return false;
695
      }
696

    
697
    if( mStartTime==-1 )
698
      {
699
      mStartTime = time;
700
      mLastPos   = -1;
701
      }
702

    
703
    long diff = time-mPausedTime;
704

    
705
    if( mStartTime<mPausedTime && mCorrectedTime<mPausedTime && diff>=0 && diff<=step )
706
      {
707
      mCorrectedTime = mPausedTime;
708
      mStartTime += diff;
709
      step -= diff;
710
      }
711

    
712
    time -= mStartTime;
713

    
714
    if( time+step > mDuration*mCount && mCount>0.0f )
715
      {
716
      interpolate(buffer,offset,mCount-(int)mCount);
717
      return true;
718
      }
719

    
720
    double pos;
721

    
722
    if( mAccessType ==ACCESS_TYPE_SEQUENTIAL )
723
      {
724
      pos = mLastPos<0 ? (double)time/mDuration : (double)step/mDuration + mLastPos;
725
      mLastPos = pos;
726
      }
727
    else
728
      {
729
      pos = (double)time/mDuration;
730
      }
731

    
732
    interpolate(buffer,offset, (float)(pos-(int)pos) );
733
    return false;
734
    }
735

    
736
///////////////////////////////////////////////////////////////////////////////////////////////////
737
  }
(6-6/18)