Project

General

Profile

Download (26.4 KB) Statistics
| Branch: | Revision:

library / src / main / res / raw / main_vertex_shader.glsl @ 3fc9327a

1
//////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                          //
3
//                                                                                          //
4
// This file is part of Distorted.                                                          //
5
//                                                                                          //
6
// Distorted is free software: you can redistribute it and/or modify                        //
7
// it under the terms of the GNU General Public License as published by                     //
8
// the Free Software Foundation, either version 2 of the License, or                        //
9
// (at your option) any later version.                                                      //
10
//                                                                                          //
11
// Distorted is distributed in the hope that it will be useful,                             //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                           //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                            //
14
// GNU General Public License for more details.                                             //
15
//                                                                                          //
16
// You should have received a copy of the GNU General Public License                        // 
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                       //
18
//////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
precision lowp float;
21

    
22
#if __VERSION__ != 100
23
in vec3 a_Position;                  // Per-vertex position.
24
in vec3 a_Normal;                    // Per-vertex normal vector.
25
in vec2 a_TexCoordinate;             // Per-vertex texture coordinate.
26
out vec3 v_Position;                 //
27
out vec3 v_endPosition;              // for Transform Feedback only
28
out vec3 v_Normal;                   //
29
out vec2 v_TexCoordinate;            //
30
#else
31
attribute vec3 a_Position;           // Per-vertex position.
32
attribute vec3 a_Normal;             // Per-vertex normal vector.
33
attribute vec2 a_TexCoordinate;      // Per-vertex texture coordinate.
34
varying vec3 v_Position;             //
35
varying vec3 v_endPosition;          // for Transform Feedback only
36
varying vec3 v_Normal;               //
37
varying vec2 v_TexCoordinate;        //
38
#endif
39

    
40
uniform vec3 u_objD;                 // half of object width x half of object height X half the depth;
41
                                     // point (0,0,0) is the center of the object
42

    
43
uniform mat4 u_MVPMatrix;            // the combined model/view/projection matrix.
44
uniform mat4 u_MVMatrix;             // the combined model/view matrix.
45

    
46
#if NUM_VERTEX>0
47
uniform int vNumEffects;             // total number of vertex effects
48
uniform int vType[NUM_VERTEX];       // their types.
49
uniform vec4 vUniforms[3*NUM_VERTEX];// i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
50
                                     // The first vec4 is the Interpolated values,
51
                                     // next is half cache half Center, the third -  the Region.
52

    
53
//////////////////////////////////////////////////////////////////////////////////////////////
54
// HELPER FUNCTIONS
55
//////////////////////////////////////////////////////////////////////////////////////////////
56
// The trick below is the if-less version of the
57
//
58
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
59
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
60
// d = min(t,h);
61
//
62
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
63
//
64
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
65
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
66
//
67
//////////////////////////////////////////////////////////////////////////////////////////////
68
// return degree of the point as defined by the bitmap rectangle
69

    
70
float degree_bitmap(in vec2 S, in vec2 PS)
71
  {
72
  vec2 A = sign(PS)*u_objD.xy + S;
73

    
74
  vec2 signA = sign(A);                           //
75
  vec2 signA_SQ = signA*signA;                    // div = PS/A if A!=0, 0 otherwise.
76
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));//
77

    
78
  return 1.0-max(div.x,div.y);
79
  }
80

    
81
//////////////////////////////////////////////////////////////////////////////////////////////
82
// Return degree of the point as defined by the Region. Currently only supports circular regions.
83
//
84
// Let us first introduce some notation.
85
// Let 'PS' be the vector from point P (the current vertex) to point S (the center of the effect).
86
// Let region.xy be the vector from point S to point O (the center point of the region circle)
87
// Let region.z be the radius of the region circle.
88
// (This all should work regardless if S is inside or outside of the circle).
89
//
90
// Then, the degree of a point with respect to a given (circular!) Region is defined by:
91
//
92
// If P is outside the circle, return 0.
93
// Otherwise, let X be the point where the halfline SP meets the region circle - then return |PX|/||SX|,
94
// aka the 'degree' of point P.
95
//
96
// We solve the triangle OPX.
97
// We know the lengths |PO|, |OX| and the angle OPX, because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
98
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so PX = -a + sqrt(a^2 + OX^2 - PO^2)
99
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
100
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
101

    
102
float degree_region(in vec4 region, in vec2 PS)
103
  {
104
  vec2 PO  = PS + region.xy;
105
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
106

    
107
  if( D<=0.0 ) return 0.0;
108

    
109
  float ps_sq = dot(PS,PS);
110
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
111
                                                         // Important: if we want to write
112
                                                         // b = 1/a if a!=0, b=1 otherwise
113
                                                         // we need to write that as
114
                                                         // b = 1 / ( a-(sign(a)-1) )
115
                                                         // [ and NOT 1 / ( a + 1 - sign(a) ) ]
116
                                                         // because the latter, if 0<a<2^-24,
117
                                                         // will suffer from round-off error and in this case
118
                                                         // a + 1.0 = 1.0 !! so 1 / (a+1-sign(a)) = 1/0 !
119
  float DOT  = dot(PS,PO)*one_over_ps_sq;
120

    
121
  return 1.0 / (1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
122
  }
123

    
124
//////////////////////////////////////////////////////////////////////////////////////////////
125
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
126

    
127
float degree(in vec4 region, in vec2 S, in vec2 PS)
128
  {
129
  vec2 PO  = PS + region.xy;
130
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
131

    
132
  if( D<=0.0 ) return 0.0;
133

    
134
  vec2 A = sign(PS)*u_objD.xy + S;
135
  vec2 signA = sign(A);
136
  vec2 signA_SQ = signA*signA;
137
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));
138
  float E = 1.0-max(div.x,div.y);
139

    
140
  float ps_sq = dot(PS,PS);
141
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
142
  float DOT  = dot(PS,PO)*one_over_ps_sq;
143

    
144
  return min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT)),E);
145
  }
146

    
147
//////////////////////////////////////////////////////////////////////////////////////////////
148
// DEFORM EFFECT
149
//
150
// Deform the whole shape of the Object by force V. Algorithm is as follows:
151
//
152
// Suppose we apply force (Vx,Vy) at point (Cx,Cy) (i.e. the center of the effect). Then, first of all,
153
// divide the rectangle into 4 smaller rectangles along the 1 horizontal + 1 vertical lines that pass
154
// through (Cx,Cy). Now suppose we have already understood the following case:
155
//
156
// A vertical (0,Vy) force applied to a rectangle (WxH) in size, at center which is the top-left corner
157
// of the rectangle.  (*)
158
//
159
// If we understand (*), then we understand everything, because in order to compute the movement of the
160
// whole rectangle we can apply (*) 8 times: for each one of the 4 sub-rectangles, apply (*) twice,
161
// once for the vertical component of the force vector, the second time for the horizontal one.
162
//
163
// Let's then compute (*):
164
// 1) the top-left point will move by exactly (0,Vy)
165
// 2) we arbitrarily decide that the top-right point will move by (|Vy|/(|Vy|+A*W))*Vy, where A is some
166
//    arbitrary constant (const float A below). The F(V,W) = (|Vy|/(|Vy|+A*W)) comes from the following:
167
//    a) we want F(V,0) = 1
168
//    b) we want lim V->inf (F) = 1
169
//    c) we actually want F() to only depend on W/V, which we have here.
170
// 3) then the top edge of the rectangle will move along the line Vy*G(x), where G(x) = (1 - (A*W/(|Vy|+A*W))*(x/W)^2)
171
// 4) Now we decide that the left edge of the rectangle will move along Vy*H(y), where H(y) = (1 - |y|/(|Vy|+C*|y|))
172
//    where C is again an arbitrary constant. Again, H(y) comes from the requirement that no matter how
173
//    strong we push the left edge of the rectangle up or down, it can never 'go over itself', but its
174
//    length will approach 0 if squeezed very hard.
175
// 5) The last point we need to compute is the left-right motion of the top-right corner (i.e. if we push
176
//    the top-left corner up very hard, we want to have the top-right corner not only move up, but also to
177
//    the left at least a little bit).
178
//    We arbitrarily decide that, in addition to moving up-down by Vy*F(V,W), the corner will also move
179
//    left-right by I(V,W) = B*W*F(V,W), where B is again an arbitrary constant.
180
// 6) combining 3), 4) and 5) together, we arrive at a movement of an arbitrary point (x,y) away from the
181
//    top-left corner:
182
//    X(x,y) = -B*x * (|Vy|/(|Vy|+A*W)) * (1-(y/H)^2)                               (**)
183
//    Y(x,y) = Vy * (1 - |y|/(|Vy|+C*|y|)) * (1 - (A*W/(|Vy|+A*W))*(x/W)^2)         (**)
184
//
185
// We notice that formulas (**) have been construed so that it is possible to continously mirror them
186
// left-right and up-down (i.e. apply not only to the 'bottom-right' rectangle of the 4 subrectangles
187
// but to all 4 of them!).
188
//
189
// Constants:
190
// a) A : valid values: (0,infinity). 'Bendiness' if the surface - the higher A is, the more the surface
191
//        bends. A<=0 destroys the system.
192
// b) B : valid values: <-1,1>. The amount side edges get 'sucked' inwards when we pull the middle of the
193
//        top edge up. B=0 --> not at all, B=1: a looot. B=-0.5: the edges will actually be pushed outwards
194
//        quite a bit. One can also set it to <-1 or >1, but it will look a bit ridiculous.
195
// c) C : valid values: <1,infinity). The derivative of the H(y) function at 0, i.e. the rate of 'squeeze'
196
//        surface gets along the force line. C=1: our point gets pulled very closely to points above it
197
//        even when we apply only small vertical force to it. The higher C is, the more 'uniform' movement
198
//        along the force line is.
199
//        0<=C<1 looks completely ridiculous and C<0 destroys the system.
200

    
201
#ifdef DEFORM
202
void deform(in int effect, inout vec3 v, inout vec3 n)
203
  {
204
  const vec2 ONE = vec2(1.0,1.0);
205

    
206
  const float A = 0.5;
207
  const float B = 0.2;
208
  const float C = 5.0;
209

    
210
  vec2 center = vUniforms[effect+1].yz;
211
  vec2 ps     = center-v.xy;
212
  vec2 aPS    = abs(ps);
213
  vec2 maxps  = u_objD.xy + abs(center);
214
  float d     = degree_region(vUniforms[effect+2],ps);
215
  vec3 force  = vUniforms[effect].xyz * d;
216
  vec2 aForce = abs(force.xy);
217
  float denom = dot(ps+(1.0-d)*force.xy,ps);
218
  float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));
219
  vec2 Aw = A*maxps;
220
  vec2 quot = ps / maxps;
221
  quot = quot*quot;                          // ( (x/W)^2 , (y/H)^2 ) where x,y are distances from V to center
222

    
223
  float denomV = 1.0 / (aForce.y + Aw.x);
224
  float denomH = 1.0 / (aForce.x + Aw.y);
225

    
226
  vec2 vertCorr= ONE - aPS / ( aForce+C*aPS + (ONE-sign(aForce)) );  // avoid division by 0 when force and PS both are 0
227

    
228
  float mvXvert = -B * ps.x * aForce.y * (1.0-quot.y) * denomV;      // impact the vertical   component of the force vector has on horizontal movement
229
  float mvYhorz = -B * ps.y * aForce.x * (1.0-quot.x) * denomH;      // impact the horizontal component of the force vector has on vertical   movement
230
  float mvYvert =  force.y * (1.0-quot.x*Aw.x*denomV) * vertCorr.y;  // impact the vertical   component of the force vector has on vertical   movement
231
  float mvXhorz = -force.x * (1.0-quot.y*Aw.y*denomH) * vertCorr.x;  // impact the horizontal component of the force vector has on horizontal movement
232

    
233
  v.x -= (mvXvert+mvXhorz);
234
  v.y -= (mvYvert+mvYhorz);
235

    
236
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                          // thick bubble
237
  float b = -(12.0*force.z*d*(1.0-d)*(1.0-d)*(1.0-d))*one_over_denom;//
238

    
239
  n.xy += n.z*b*ps;
240
  }
241
#endif
242

    
243
//////////////////////////////////////////////////////////////////////////////////////////////
244
// DISTORT EFFECT
245
//
246
// Point (Px,Py) gets moved by vector (Wx,Wy,Wz) where Wx/Wy = Vx/Vy i.e. Wx=aVx and Wy=aVy where
247
// a=Py/Sy (N --> when (Px,Py) is above (Sx,Sy)) or a=Px/Sx (W) or a=(w-Px)/(w-Sx) (E) or a=(h-Py)/(h-Sy) (S)
248
// It remains to be computed which of the N,W,E or S case we have: answer: a = min[ Px/Sx , Py/Sy , (w-Px)/(w-Sx) , (h-Py)/(h-Sy) ]
249
// Computations above are valid for screen (0,0)x(w,h) but here we have (-w/2,-h/2)x(w/2,h/2)
250
//
251
// the vertical part
252
// Let |(v.x,v.y),(ux,uy)| = |PS|, ux-v.x=dx,uy-v.y=dy, f(x) (0<=x<=|SX|) be the shape of the side of the bubble.
253
// H(v.x,v.y) = |PS|>|SX| ? 0 : f(|PX|)
254
// N(v.x,v.y) = |PS|>|SX| ? (0,0,1) : ( -(dx/|PS|)sin(beta), -(dy/|PS|)sin(beta), cos(beta) ) where tan(beta) is f'(|PX|)
255
// ( i.e. normalize( dx, dy, -|PS|/f'(|PX|))
256
//
257
// Now we also have to take into account the effect horizontal move by V=(u_dVx[i],u_dVy[i]) will have on the normal vector.
258
// Solution:
259
// 1. Decompose the V into two subcomponents, one parallel to SX and another perpendicular.
260
// 2. Convince yourself (draw!) that the perpendicular component has no effect on normals.
261
// 3. The parallel component changes the length of |SX| by the factor of a=(|SX|-|Vpar|)/|SX| (where the length
262
//    can be negative depending on the direction)
263
// 4. that in turn leaves the x and y parts of the normal unchanged and multiplies the z component by a!
264
//
265
// |Vpar| = (u_dVx[i]*dx - u_dVy[i]*dy) / sqrt(ps_sq) = (Vx*dx-Vy*dy)/ sqrt(ps_sq)  (-Vy because y is inverted)
266
// a =  (|SX| - |Vpar|)/|SX| = 1 - |Vpar|/((sqrt(ps_sq)/(1-d)) = 1 - (1-d)*|Vpar|/sqrt(ps_sq) = 1-(1-d)*(Vx*dx-Vy*dy)/ps_sq
267
//
268
// Side of the bubble
269
//
270
// choose from one of the three bubble shapes: the cone, the thin bubble and the thick bubble
271
// Case 1:
272
// f(t) = t, i.e. f(x) = uz * x/|SX|   (a cone)
273
// -|PS|/f'(|PX|) = -|PS|*|SX|/uz but since ps_sq=|PS|^2 and d=|PX|/|SX| then |PS|*|SX| = ps_sq/(1-d)
274
// so finally -|PS|/f'(|PX|) = -ps_sq/(uz*(1-d))
275
//
276
// Case 2:
277
// f(t) = 3t^2 - 2t^3 --> f(0)=0, f'(0)=0, f'(1)=0, f(1)=1 (the bell curve)
278
// here we have t = x/|SX| which makes f'(|PX|) = 6*uz*|PS|*|PX|/|SX|^3.
279
// so -|PS|/f'(|PX|) = (-|SX|^3)/(6uz|PX|) =  (-|SX|^2) / (6*uz*d) but
280
// d = |PX|/|SX| and ps_sq = |PS|^2 so |SX|^2 = ps_sq/(1-d)^2
281
// so finally -|PS|/f'(|PX|) = -ps_sq/ (6uz*d*(1-d)^2)
282
//
283
// Case 3:
284
// f(t) = 3t^4-8t^3+6t^2 would be better as this satisfies f(0)=0, f'(0)=0, f'(1)=0, f(1)=1,
285
// f(0.5)=0.7 and f'(t)= t(t-1)^2 >=0 for t>=0 so this produces a fuller, thicker bubble!
286
// then -|PS|/f'(|PX|) = (-|PS|*|SX)) / (12uz*d*(d-1)^2) but |PS|*|SX| = ps_sq/(1-d) (see above!)
287
// so finally -|PS|/f'(|PX|) = -ps_sq/ (12uz*d*(1-d)^3)
288
//
289
// Now, new requirement: we have to be able to add up normal vectors, i.e. distort already distorted surfaces.
290
// If a surface is given by z = f(x,y), then the normal vector at (x0,y0) is given by (-df/dx (x0,y0), -df/dy (x0,y0), 1 ).
291
// so if we have two surfaces defined by f1(x,y) and f2(x,y) with their normals expressed as (f1x,f1y,1) and (f2x,f2y,1)
292
// then the normal to g = f1+f2 is simply given by (f1x+f2x,f1y+f2y,1), i.e. if the third components are equal, then we
293
// can simply add up the first and second components.
294
//
295
// Thus we actually want to compute N(v.x,v.y) = a*(-(dx/|PS|)*f'(|PX|), -(dy/|PS|)*f'(|PX|), 1) and keep adding
296
// the first two components. (a is the horizontal part)
297

    
298
#ifdef DISTORT
299
void distort(in int effect, inout vec3 v, inout vec3 n)
300
  {
301
  vec2 center = vUniforms[effect+1].yz;
302
  vec2 ps = center-v.xy;
303
  vec3 force = vUniforms[effect].xyz;
304
  float d = degree(vUniforms[effect+2],center,ps);
305
  float denom = dot(ps+(1.0-d)*force.xy,ps);
306
  float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));          // = denom==0 ? 1000:1/denom;
307

    
308
  //v.z += force.z*d;                                                  // cone
309
  //b = -(force.z*(1.0-d))*one_over_denom;                             //
310

    
311
  //v.z += force.z*d*d*(3.0-2.0*d);                                    // thin bubble
312
  //b = -(6.0*force.z*d*(1.0-d)*(1.0-d))*one_over_denom;               //
313

    
314
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                            // thick bubble
315
  float b = -(12.0*force.z*d*(1.0-d)*(1.0-d)*(1.0-d))*one_over_denom;  //
316

    
317
  v.xy += d*force.xy;
318
  n.xy += n.z*b*ps;
319
  }
320
#endif
321

    
322
//////////////////////////////////////////////////////////////////////////////////////////////
323
// SINK EFFECT
324
//
325
// Pull P=(v.x,v.y) towards center of the effect with P' = P + (1-h)*dist(S-P)
326
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(S-P)
327

    
328
#ifdef SINK
329
void sink(in int effect,inout vec3 v)
330
  {
331
  vec2 center = vUniforms[effect+1].yz;
332
  vec2 ps = center-v.xy;
333
  float h = vUniforms[effect].x;
334
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
335

    
336
  v.xy += t*ps;
337
  }
338
#endif
339

    
340
//////////////////////////////////////////////////////////////////////////////////////////////
341
// PINCH EFFECT
342
//
343
// Pull P=(v.x,v.y) towards the line that
344
// a) passes through the center of the effect
345
// b) forms angle defined in the 2nd interpolated value with the X-axis
346
// with P' = P + (1-h)*dist(line to P)
347
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(line to P)
348

    
349
#ifdef PINCH
350
void pinch(in int effect,inout vec3 v)
351
  {
352
  vec2 center = vUniforms[effect+1].yz;
353
  vec2 ps = center-v.xy;
354
  float h = vUniforms[effect].x;
355
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
356
  float angle = vUniforms[effect].y;
357
  vec2 dir = vec2(sin(angle),-cos(angle));
358

    
359
  v.xy += t*dot(ps,dir)*dir;
360
  }
361
#endif
362

    
363
//////////////////////////////////////////////////////////////////////////////////////////////
364
// SWIRL EFFECT
365
//
366
// Let d be the degree of the current vertex V with respect to center of the effect S and Region vRegion.
367
// This effect rotates the current vertex V by vInterpolated.x radians clockwise around the circle dilated
368
// by (1-d) around the center of the effect S.
369

    
370
#ifdef SWIRL
371
void swirl(in int effect, inout vec3 v)
372
  {
373
  vec2 center  = vUniforms[effect+1].yz;
374
  vec2 PS = center-v.xy;
375
  vec4 SO = vUniforms[effect+2];
376
  float d1_circle = degree_region(SO,PS);
377
  float d1_bitmap = degree_bitmap(center,PS);
378

    
379
  float alpha = vUniforms[effect].x;
380
  float sinA = sin(alpha);
381
  float cosA = cos(alpha);
382

    
383
  vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around center.
384
  vec4 SG = (1.0-d1_circle)*SO;                                // coordinates of the dilated circle P is going to get rotated around
385
  float d2 = max(0.0,degree(SG,center,PS2));                   // make it a max(0,deg) because otherwise when center=left edge of the
386
                                                               // bitmap some points end up with d2<0 and they disappear off view.
387
  v.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2));        // if d2=1 (i.e P=center) we should have P unchanged. How to do it?
388
  }
389
#endif
390

    
391
//////////////////////////////////////////////////////////////////////////////////////////////
392
// WAVE EFFECT
393
//
394
// Directional sinusoidal wave effect.
395
//
396
// This is an effect from a (hopefully!) generic family of effects of the form (vec3 V: |V|=1 , f(x,y) )  (*)
397
// i.e. effects defined by a unit vector and an arbitrary function. Those effects are defined to move each
398
// point (x,y,0) of the XY plane to the point (x,y,0) + V*f(x,y).
399
//
400
// In this case V is defined by angles A and B (sines and cosines of which are precomputed in
401
// EffectQueueVertex and passed in the uniforms).
402
// Let's move V to start at the origin O, let point C be the endpoint of V, and let C' be C's projection
403
// to the XY plane. Then A is defined to be the angle C0C' and angle B is the angle C'O(axisY).
404
//
405
// Also, in this case f(x,y) = amplitude*sin(x/length), with those 2 parameters passed in uniforms.
406
//
407
//////////////////////////////////////////////////////////////////////////////////////////////
408
// How to compute any generic effect of type (*)
409
//////////////////////////////////////////////////////////////////////////////////////////////
410
//
411
// By definition, the vertices move by f(x,y)*V.
412
//
413
// Normals are much more complicated.
414
// Let angle X be the angle (0,Vy,Vz)(0,Vy,0)(Vx,Vy,Vz).
415
// Let angle Y be the angle (Vx,0,Vz)(Vx,0,0)(Vx,Vy,Vz).
416
//
417
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
418
// has 2 tangent vectors given by
419
//
420
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
421
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
422
//
423
// and then obviously the normal N is given by N= SX x SY .
424
//
425
// We still need to remember the note from the distort function about adding up normals:
426
// we first need to 'normalize' the normals to make their third components equal, and then we
427
// simply add up the first and the second component while leaving the third unchanged.
428
//
429
// How to see facts (**) and (***) ? Briefly:
430
// a) compute the 2D analogon and conclude that in this case the tangent SX is given by
431
//    SX = ( cosA*f'(x) +1, sinA*f'(x) )    (where A is the angle vector V makes with X axis )
432
// b) cut the resulting surface with plane P which
433
//    - includes vector V
434
//    - crosses plane XY along line parallel to X axis
435
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
436
//    and our surface (I am talking about the tangent vector which belongs to P) is given by
437
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
438
//
439
//    Matrix of rotation:
440
//
441
//    |sinY|  cosY
442
//    -cosY  |sinY|
443
//
444
// d) compute the above and see that this is equal precisely to SX from (**).
445
// e) repeat points b,c,d in direction Y and come up with (***).
446
//
447
//////////////////////////////////////////////////////////////////////////////////////////////
448
// Note: we should avoid passing certain combinations of parameters to this function. One such known
449
// combination is ( A: small but positive, B: any, amplitude >= length ).
450
// In this case, certain 'unlucky' points have their normals almost horizontal (they got moved by (almost!)
451
// amplitude, and other point length (i.e. <=amplitude) away got moved by 0, so the slope in this point is
452
// very steep). Visual effect is: vast majority of surface pretty much unchanged, but random 'unlucky'
453
// points very dark)
454
//
455
// Generally speaking I'd keep to amplitude < length, as the opposite case has some other problems as well.
456

    
457
#ifdef WAVE
458
void wave(in int effect, inout vec3 v, inout vec3 n)
459
  {
460
  vec2 center     = vUniforms[effect+1].yz;
461
  float amplitude = vUniforms[effect  ].x;
462
  float length    = vUniforms[effect  ].y;
463

    
464
  vec2 ps = center - v.xy;
465
  float deg = amplitude*degree_region(vUniforms[effect+2],ps);
466

    
467
  if( deg != 0.0 && length != 0.0 )
468
    {
469
    float phase = vUniforms[effect  ].z;
470
    float alpha = vUniforms[effect  ].w;
471
    float beta  = vUniforms[effect+1].x;
472

    
473
    float sinA = sin(alpha);
474
    float cosA = cos(alpha);
475
    float sinB = sin(beta);
476
    float cosB = cos(beta);
477

    
478
    float angle= 1.578*(ps.x*cosB-ps.y*sinB) / length + phase;
479

    
480
    vec3 dir= vec3(sinB*cosA,cosB*cosA,sinA);
481

    
482
    v += sin(angle)*deg*dir;
483

    
484
    if( n.z != 0.0 )
485
      {
486
      float sqrtX = sqrt(dir.y*dir.y + dir.z*dir.z);
487
      float sqrtY = sqrt(dir.x*dir.x + dir.z*dir.z);
488

    
489
      float sinX = ( sqrtY==0.0 ? 0.0 : dir.z / sqrtY);
490
      float cosX = ( sqrtY==0.0 ? 1.0 : dir.x / sqrtY);
491
      float sinY = ( sqrtX==0.0 ? 0.0 : dir.z / sqrtX);
492
      float cosY = ( sqrtX==0.0 ? 1.0 : dir.y / sqrtX);
493

    
494
      float abs_z = dir.z <0.0 ? -(sinX*sinY) : (sinX*sinY);
495

    
496
      float tmp = 1.578*cos(angle)*deg/length;
497

    
498
      float fx =-cosB*tmp;
499
      float fy = sinB*tmp;
500

    
501
      vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,abs_z*fx);
502
      vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,abs_z*fy);
503

    
504
      vec3 normal = cross(sx,sy);
505

    
506
      if( normal.z<=0.0 )                   // Why this bizarre shit rather than the straightforward
507
        {                                   //
508
        normal.x= 0.0;                      // if( normal.z>0.0 )
509
        normal.y= 0.0;                      //   {
510
        normal.z= 1.0;                      //   n.x = (n.x*normal.z + n.z*normal.x);
511
        }                                   //   n.y = (n.y*normal.z + n.z*normal.y);
512
                                            //   n.z = (n.z*normal.z);
513
                                            //   }
514
      n.x = (n.x*normal.z + n.z*normal.x);  //
515
      n.y = (n.y*normal.z + n.z*normal.y);  // ? Because if we do the above, my shitty Nexus4 crashes
516
      n.z = (n.z*normal.z);                 // during shader compilation!
517
      }
518
    }
519
  }
520
#endif
521

    
522
#endif  // NUM_VERTEX>0
523

    
524
//////////////////////////////////////////////////////////////////////////////////////////////
525

    
526
void main()
527
  {
528
  vec3 v = 2.0*u_objD*a_Position;
529
  vec3 n = a_Normal;
530

    
531
#if NUM_VERTEX>0
532
  int j=0;
533

    
534
  for(int i=0; i<vNumEffects; i++)
535
    {
536
#ifdef DISTORT
537
    if( vType[i]==DISTORT) distort(j,v,n); else
538
#endif
539
#ifdef DEFORM
540
    if( vType[i]==DEFORM ) deform (j,v,n); else
541
#endif
542
#ifdef SINK
543
    if( vType[i]==SINK   ) sink   (j,v);   else
544
#endif
545
#ifdef PINCH
546
    if( vType[i]==PINCH  ) pinch  (j,v);   else
547
#endif
548
#ifdef SWIRL
549
    if( vType[i]==SWIRL  ) swirl  (j,v);   else
550
#endif
551
#ifdef WAVE
552
    if( vType[i]==WAVE   ) wave   (j,v,n); else
553
#endif
554
    {}
555

    
556
    j+=3;
557
    }
558
#endif
559
   
560
  v_Position      = v;
561
  v_endPosition   = v + (0.3*u_objD.x)*n;
562
  v_TexCoordinate = a_TexCoordinate;
563
  v_Normal        = normalize(vec3(u_MVMatrix*vec4(n,0.0)));
564
  gl_Position     = u_MVPMatrix*vec4(v,1.0);
565
  }                               
(9-9/11)