Project

General

Profile

Download (26.8 KB) Statistics
| Branch: | Revision:

library / src / main / res / raw / main_vertex_shader.glsl @ 44efc8a8

1 d333eb6b Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                          //
3
//                                                                                          //
4
// This file is part of Distorted.                                                          //
5
//                                                                                          //
6
// Distorted is free software: you can redistribute it and/or modify                        //
7
// it under the terms of the GNU General Public License as published by                     //
8
// the Free Software Foundation, either version 2 of the License, or                        //
9
// (at your option) any later version.                                                      //
10
//                                                                                          //
11
// Distorted is distributed in the hope that it will be useful,                             //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                           //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                            //
14
// GNU General Public License for more details.                                             //
15
//                                                                                          //
16
// You should have received a copy of the GNU General Public License                        // 
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                       //
18
//////////////////////////////////////////////////////////////////////////////////////////////
19
20 f6cac1f6 Leszek Koltunski
uniform vec3 u_objD;                 // half of object width x half of object height X half the depth;
21
                                     // point (0,0,0) is the center of the object
22 6a06a912 Leszek Koltunski
23 f6cac1f6 Leszek Koltunski
uniform float u_Depth;               // max absolute value of v.z ; beyond that the vertex would be culled by the near or far planes.
24
                                     // I read OpenGL ES has a built-in uniform variable gl_DepthRange.near = n,
25
                                     // .far = f, .diff = f-n so maybe u_Depth is redundant
26
                                     // Update: this struct is only available in fragment shaders
27 6a06a912 Leszek Koltunski
                                
28 f6cac1f6 Leszek Koltunski
uniform mat4 u_MVPMatrix;            // A constant representing the combined model/view/projection matrix.
29
uniform mat4 u_MVMatrix;             // A constant representing the combined model/view matrix.
30 6a06a912 Leszek Koltunski
		 
31 f6cac1f6 Leszek Koltunski
attribute vec3 a_Position;           // Per-vertex position information we will pass in.
32
attribute vec3 a_Normal;             // Per-vertex normal information we will pass in.
33
attribute vec2 a_TexCoordinate;      // Per-vertex texture coordinate information we will pass in.
34 6a06a912 Leszek Koltunski
		  
35 f6cac1f6 Leszek Koltunski
varying vec3 v_Position;             //
36
varying vec3 v_Normal;               //
37
varying vec2 v_TexCoordinate;        //
38 6a06a912 Leszek Koltunski
39 f6cac1f6 Leszek Koltunski
uniform int vNumEffects;             // total number of vertex effects
40 6a06a912 Leszek Koltunski
41
#if NUM_VERTEX>0
42 f6cac1f6 Leszek Koltunski
uniform int vType[NUM_VERTEX];       // their types.
43
uniform vec4 vUniforms[3*NUM_VERTEX];// i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
44
                                     // The first vec4 is the Interpolated values,
45
                                     // next is half cache half Center, the third -  the Region.
46 6a06a912 Leszek Koltunski
#endif
47
48
#if NUM_VERTEX>0
49 341c803d Leszek Koltunski
50
//////////////////////////////////////////////////////////////////////////////////////////////
51
// HELPER FUNCTIONS
52
//////////////////////////////////////////////////////////////////////////////////////////////
53 9420f2fe Leszek Koltunski
// The trick below is the if-less version of the
54 341c803d Leszek Koltunski
//
55
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
56
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
57
// d = min(t,h);
58
//
59
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
60
//
61
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
62
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
63
//
64
//////////////////////////////////////////////////////////////////////////////////////////////
65
// return degree of the point as defined by the bitmap rectangle
66
67
float degree_bitmap(in vec2 S, in vec2 PS)
68
  {
69
  vec2 A = sign(PS)*u_objD.xy + S;
70
71 369ee56a Leszek Koltunski
  vec2 signA = sign(A);                           //
72
  vec2 signA_SQ = signA*signA;                    // div = PS/A if A!=0, 0 otherwise.
73 20af7b69 Leszek Koltunski
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));//
74 369ee56a Leszek Koltunski
75
  return 1.0-max(div.x,div.y);
76 341c803d Leszek Koltunski
  }
77
78
//////////////////////////////////////////////////////////////////////////////////////////////
79 9420f2fe Leszek Koltunski
// Return degree of the point as defined by the Region. Currently only supports circular regions.
80
//
81 73af5285 Leszek Koltunski
// Let us first introduce some notation.
82 9420f2fe Leszek Koltunski
// Let 'PS' be the vector from point P (the current vertex) to point S (the center of the effect).
83
// Let region.xy be the vector from point S to point O (the center point of the region circle)
84
// Let region.z be the radius of the region circle.
85 73af5285 Leszek Koltunski
// (This all should work regardless if S is inside or outside of the circle).
86
//
87
// Then, the degree of a point with respect to a given (circular!) Region is defined by:
88 9420f2fe Leszek Koltunski
//
89
// If P is outside the circle, return 0.
90 73af5285 Leszek Koltunski
// Otherwise, let X be the point where the halfline SP meets the region circle - then return |PX|/||SX|,
91 9420f2fe Leszek Koltunski
// aka the 'degree' of point P.
92
//
93 ff8ad0a7 Leszek Koltunski
// We solve the triangle OPX.
94 9420f2fe Leszek Koltunski
// We know the lengths |PO|, |OX| and the angle OPX, because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
95
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so PX = -a + sqrt(a^2 + OX^2 - PO^2)
96
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
97
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
98 341c803d Leszek Koltunski
99 4fde55a0 Leszek Koltunski
float degree_region(in vec4 region, in vec2 PS)
100 341c803d Leszek Koltunski
  {
101
  vec2 PO  = PS + region.xy;
102
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
103 9420f2fe Leszek Koltunski
104
  if( D<=0.0 ) return 0.0;
105
106 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
107 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
108
                                                         // Important: if we want to write
109
                                                         // b = 1/a if a!=0, b=1 otherwise
110
                                                         // we need to write that as
111
                                                         // b = 1 / ( a-(sign(a)-1) )
112
                                                         // [ and NOT 1 / ( a + 1 - sign(a) ) ]
113
                                                         // because the latter, if 0<a<2^-24,
114
                                                         // will suffer from round-off error and in this case
115
                                                         // a + 1.0 = 1.0 !! so 1 / (a+1-sign(a)) = 1/0 !
116 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
117 341c803d Leszek Koltunski
118 9420f2fe Leszek Koltunski
  return 1.0 / (1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
119 341c803d Leszek Koltunski
  }
120
121
//////////////////////////////////////////////////////////////////////////////////////////////
122
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
123
124 4fde55a0 Leszek Koltunski
float degree(in vec4 region, in vec2 S, in vec2 PS)
125 341c803d Leszek Koltunski
  {
126
  vec2 PO  = PS + region.xy;
127
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
128 9420f2fe Leszek Koltunski
129
  if( D<=0.0 ) return 0.0;
130
131 341c803d Leszek Koltunski
  vec2 A = sign(PS)*u_objD.xy + S;
132 369ee56a Leszek Koltunski
  vec2 signA = sign(A);
133
  vec2 signA_SQ = signA*signA;
134 20af7b69 Leszek Koltunski
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));
135 369ee56a Leszek Koltunski
  float E = 1.0-max(div.x,div.y);
136
137 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
138 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
139 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
140 341c803d Leszek Koltunski
141 9420f2fe Leszek Koltunski
  return min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT)),E);
142 341c803d Leszek Koltunski
  }
143
144
//////////////////////////////////////////////////////////////////////////////////////////////
145
// Clamp v.z to (-u_Depth,u_Depth) with the following function:
146
// define h to be, say, 0.7; let H=u_Depth
147
//      if v.z < -hH then v.z = (-(1-h)^2 * H^2)/(v.z+(2h-1)H) -H   (function satisfying f(-hH)=-hH, f'(-hH)=1, lim f(x) = -H)
148
// else if v.z >  hH then v.z = (-(1-h)^2 * H^2)/(v.z-(2h-1)H) +H   (function satisfying f(+hH)=+hH, f'(+hH)=1, lim f(x) = +H)
149
// else v.z = v.z
150
151 291705f6 Leszek Koltunski
void restrictZ(inout float v)
152 341c803d Leszek Koltunski
  {
153
  const float h = 0.7;
154
  float signV = 2.0*max(0.0,sign(v))-1.0;
155
  float c = ((1.0-h)*(h-1.0)*u_Depth*u_Depth)/(v-signV*(2.0*h-1.0)*u_Depth) +signV*u_Depth;
156
  float b = max(0.0,sign(abs(v)-h*u_Depth));
157
158
  v = b*c+(1.0-b)*v; // Avoid branching: if abs(v)>h*u_Depth, then v=c; otherwise v=v.
159
  }
160
161 6a06a912 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
162 341c803d Leszek Koltunski
// DEFORM EFFECT
163
//
164 18d15f2f Leszek Koltunski
// Deform the whole shape of the Object by force V. Algorithm is as follows:
165
//
166
// Suppose we apply force (Vx,Vy) at point (Cx,Cy) (i.e. the center of the effect). Then, first of all,
167
// divide the rectangle into 4 smaller rectangles along the 1 horizontal + 1 vertical lines that pass
168
// through (Cx,Cy). Now suppose we have already understood the following case:
169
//
170
// A vertical (0,Vy) force applied to a rectangle (WxH) in size, at center which is the top-left corner
171
// of the rectangle.  (*)
172
//
173
// If we understand (*), then we understand everything, because in order to compute the movement of the
174
// whole rectangle we can apply (*) 8 times: for each one of the 4 sub-rectangles, apply (*) twice,
175
// once for the vertical component of the force vector, the second time for the horizontal one.
176
//
177
// Let's then compute (*):
178
// 1) the top-left point will move by exactly (0,Vy)
179
// 2) we arbitrarily decide that the top-right point will move by (|Vy|/(|Vy|+A*W))*Vy, where A is some
180
//    arbitrary constant (const float A below). The F(V,W) = (|Vy|/(|Vy|+A*W)) comes from the following:
181
//    a) we want F(V,0) = 1
182
//    b) we want lim V->inf (F) = 1
183
//    c) we actually want F() to only depend on W/V, which we have here.
184
// 3) then the top edge of the rectangle will move along the line Vy*G(x), where G(x) = (1 - (A*W/(|Vy|+A*W))*(x/W)^2)
185
// 4) Now we decide that the left edge of the rectangle will move along Vy*H(y), where H(y) = (1 - |y|/(|Vy|+C*|y|))
186
//    where C is again an arbitrary constant. Again, H(y) comes from the requirement that no matter how
187
//    strong we push the left edge of the rectangle up or down, it can never 'go over itself', but its
188
//    length will approach 0 if squeezed very hard.
189
// 5) The last point we need to compute is the left-right motion of the top-right corner (i.e. if we push
190
//    the top-left corner up very hard, we want to have the top-right corner not only move up, but also to
191
//    the left at least a little bit).
192
//    We arbitrarily decide that, in addition to moving up-down by Vy*F(V,W), the corner will also move
193
//    left-right by I(V,W) = B*W*F(V,W), where B is again an arbitrary constant.
194
// 6) combining 3), 4) and 5) together, we arrive at a movement of an arbitrary point (x,y) away from the
195
//    top-left corner:
196
//    X(x,y) = -B*x * (|Vy|/(|Vy|+A*W)) * (1-(y/H)^2)                               (**)
197
//    Y(x,y) = Vy * (1 - |y|/(|Vy|+C*|y|)) * (1 - (A*W/(|Vy|+A*W))*(x/W)^2)         (**)
198
//
199
// We notice that formulas (**) have been construed so that it is possible to continously mirror them
200
// left-right and up-down (i.e. apply not only to the 'bottom-right' rectangle of the 4 subrectangles
201
// but to all 4 of them!).
202
//
203
// Constants:
204
// a) A : valid values: (0,infinity). 'Bendiness' if the surface - the higher A is, the more the surface
205 6ebdbbf1 Leszek Koltunski
//        bends. A<=0 destroys the system.
206 18d15f2f Leszek Koltunski
// b) B : valid values: <-1,1>. The amount side edges get 'sucked' inwards when we pull the middle of the
207
//        top edge up. B=0 --> not at all, B=1: a looot. B=-0.5: the edges will actually be pushed outwards
208
//        quite a bit. One can also set it to <-1 or >1, but it will look a bit ridiculous.
209
// c) C : valid values: <1,infinity). The derivative of the H(y) function at 0, i.e. the rate of 'squeeze'
210
//        surface gets along the force line. C=1: our point gets pulled very closely to points above it
211
//        even when we apply only small vertical force to it. The higher C is, the more 'uniform' movement
212
//        along the force line is.
213
//        0<=C<1 looks completely ridiculous and C<0 destroys the system.
214
215 6a06a912 Leszek Koltunski
void deform(in int effect, inout vec4 v)
216
  {
217 6ebdbbf1 Leszek Koltunski
  const vec2 ONE = vec2(1.0,1.0);
218 18d15f2f Leszek Koltunski
219 dbeddd9d Leszek Koltunski
  const float A = 0.5;
220 18d15f2f Leszek Koltunski
  const float B = 0.2;
221
  const float C = 5.0;
222 dbeddd9d Leszek Koltunski
223 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
224 6ebdbbf1 Leszek Koltunski
  vec2 ps     = center-v.xy;
225
  vec2 aPS    = abs(ps);
226
  vec2 maxps  = u_objD.xy + abs(center);
227
  vec2 force  = vUniforms[effect].xy * degree_region(vUniforms[effect+2],ps);
228 dbeddd9d Leszek Koltunski
  vec2 aForce = abs(force);
229
230 6ebdbbf1 Leszek Koltunski
  vec2 Aw = A*maxps;
231
  vec2 quot = ps / maxps;
232 18d15f2f Leszek Koltunski
  quot = quot*quot;                          // ( (x/W)^2 , (y/H)^2 ) where x,y are distances from V to center
233
234
  float denomV = 1.0 / (aForce.y + Aw.x);
235
  float denomH = 1.0 / (aForce.x + Aw.y);
236 dbeddd9d Leszek Koltunski
237 44efc8a8 Leszek Koltunski
  vec2 vertCorr= ONE - aPS / ( aForce+C*aPS + (ONE-sign(aForce)) );  // avoid division by 0 when force and PS both are 0
238 dbeddd9d Leszek Koltunski
239 6ebdbbf1 Leszek Koltunski
  float mvXvert = -B * ps.x * aForce.y * (1.0-quot.y) * denomV;      // impact the vertical   component of the force vector has on horizontal movement
240
  float mvYhorz = -B * ps.y * aForce.x * (1.0-quot.x) * denomH;      // impact the horizontal component of the force vector has on vertical   movement
241 18d15f2f Leszek Koltunski
  float mvYvert =  force.y * (1.0-quot.x*Aw.x*denomV) * vertCorr.y;  // impact the vertical   component of the force vector has on vertical   movement
242
  float mvXhorz = -force.x * (1.0-quot.y*Aw.y*denomH) * vertCorr.x;  // impact the horizontal component of the force vector has on horizontal movement
243 dbeddd9d Leszek Koltunski
244
  v.x -= (mvXvert+mvXhorz);
245
  v.y -= (mvYvert+mvYhorz);
246 6a06a912 Leszek Koltunski
  }
247
248
//////////////////////////////////////////////////////////////////////////////////////////////
249 341c803d Leszek Koltunski
// DISTORT EFFECT
250 6a06a912 Leszek Koltunski
//
251
// Point (Px,Py) gets moved by vector (Wx,Wy,Wz) where Wx/Wy = Vx/Vy i.e. Wx=aVx and Wy=aVy where 
252
// a=Py/Sy (N --> when (Px,Py) is above (Sx,Sy)) or a=Px/Sx (W) or a=(w-Px)/(w-Sx) (E) or a=(h-Py)/(h-Sy) (S) 
253
// It remains to be computed which of the N,W,E or S case we have: answer: a = min[ Px/Sx , Py/Sy , (w-Px)/(w-Sx) , (h-Py)/(h-Sy) ]
254
// Computations above are valid for screen (0,0)x(w,h) but here we have (-w/2,-h/2)x(w/2,h/2)
255
//  
256
// the vertical part
257
// Let |(v.x,v.y),(ux,uy)| = |PS|, ux-v.x=dx,uy-v.y=dy, f(x) (0<=x<=|SX|) be the shape of the side of the bubble.
258
// H(v.x,v.y) = |PS|>|SX| ? 0 : f(|PX|)
259
// N(v.x,v.y) = |PS|>|SX| ? (0,0,1) : ( -(dx/|PS|)sin(beta), -(dy/|PS|)sin(beta), cos(beta) ) where tan(beta) is f'(|PX|) 
260
// ( i.e. normalize( dx, dy, -|PS|/f'(|PX|))         
261
//
262
// Now we also have to take into account the effect horizontal move by V=(u_dVx[i],u_dVy[i]) will have on the normal vector.
263
// Solution: 
264
// 1. Decompose the V into two subcomponents, one parallel to SX and another perpendicular.
265
// 2. Convince yourself (draw!) that the perpendicular component has no effect on normals.
266 30925500 Leszek Koltunski
// 3. The parallel component changes the length of |SX| by the factor of a=(|SX|-|Vpar|)/|SX| (where the length
267
//    can be negative depending on the direction)
268 6a06a912 Leszek Koltunski
// 4. that in turn leaves the x and y parts of the normal unchanged and multiplies the z component by a!
269
//
270
// |Vpar| = (u_dVx[i]*dx - u_dVy[i]*dy) / sqrt(ps_sq) = (Vx*dx-Vy*dy)/ sqrt(ps_sq)  (-Vy because y is inverted)
271
// a =  (|SX| - |Vpar|)/|SX| = 1 - |Vpar|/((sqrt(ps_sq)/(1-d)) = 1 - (1-d)*|Vpar|/sqrt(ps_sq) = 1-(1-d)*(Vx*dx-Vy*dy)/ps_sq 
272
//
273
// Side of the bubble
274
// 
275
// choose from one of the three bubble shapes: the cone, the thin bubble and the thick bubble          
276
// Case 1: 
277
// f(t) = t, i.e. f(x) = uz * x/|SX|   (a cone)
278
// -|PS|/f'(|PX|) = -|PS|*|SX|/uz but since ps_sq=|PS|^2 and d=|PX|/|SX| then |PS|*|SX| = ps_sq/(1-d)
279
// so finally -|PS|/f'(|PX|) = -ps_sq/(uz*(1-d))
280
//                    
281
// Case 2: 
282
// f(t) = 3t^2 - 2t^3 --> f(0)=0, f'(0)=0, f'(1)=0, f(1)=1 (the bell curve)
283
// here we have t = x/|SX| which makes f'(|PX|) = 6*uz*|PS|*|PX|/|SX|^3.
284
// so -|PS|/f'(|PX|) = (-|SX|^3)/(6uz|PX|) =  (-|SX|^2) / (6*uz*d) but
285
// d = |PX|/|SX| and ps_sq = |PS|^2 so |SX|^2 = ps_sq/(1-d)^2
286
// so finally -|PS|/f'(|PX|) = -ps_sq/ (6uz*d*(1-d)^2)
287
//                  
288
// Case 3:
289 73af5285 Leszek Koltunski
// f(t) = 3t^4-8t^3+6t^2 would be better as this satisfies f(0)=0, f'(0)=0, f'(1)=0, f(1)=1,
290 30925500 Leszek Koltunski
// f(0.5)=0.7 and f'(t)= t(t-1)^2 >=0 for t>=0 so this produces a fuller, thicker bubble!
291 6a06a912 Leszek Koltunski
// then -|PS|/f'(|PX|) = (-|PS|*|SX)) / (12uz*d*(d-1)^2) but |PS|*|SX| = ps_sq/(1-d) (see above!) 
292
// so finally -|PS|/f'(|PX|) = -ps_sq/ (12uz*d*(1-d)^3)  
293
//
294
// Now, new requirement: we have to be able to add up normal vectors, i.e. distort already distorted surfaces.
295 73af5285 Leszek Koltunski
// If a surface is given by z = f(x,y), then the normal vector at (x0,y0) is given by (-df/dx (x0,y0), -df/dy (x0,y0), 1 ).
296 6a06a912 Leszek Koltunski
// so if we have two surfaces defined by f1(x,y) and f2(x,y) with their normals expressed as (f1x,f1y,1) and (f2x,f2y,1) 
297 73af5285 Leszek Koltunski
// then the normal to g = f1+f2 is simply given by (f1x+f2x,f1y+f2y,1), i.e. if the third components are equal, then we
298
// can simply add up the first and second components.
299 6a06a912 Leszek Koltunski
//
300 30925500 Leszek Koltunski
// Thus we actually want to compute N(v.x,v.y) = a*(-(dx/|PS|)*f'(|PX|), -(dy/|PS|)*f'(|PX|), 1) and keep adding
301
// the first two components. (a is the horizontal part)
302 6a06a912 Leszek Koltunski
        
303
void distort(in int effect, inout vec4 v, inout vec4 n)
304
  {
305 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
306 4fde55a0 Leszek Koltunski
  vec2 ps = center-v.xy;
307 a7067deb Leszek Koltunski
  vec3 force = vUniforms[effect].xyz;
308 4fde55a0 Leszek Koltunski
  float d = degree(vUniforms[effect+2],center,ps);
309 a7067deb Leszek Koltunski
  float denom = dot(ps+(1.0-d)*force.xy,ps);
310
  float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));          // = denom==0 ? 1000:1/denom;
311 30925500 Leszek Koltunski
312 a7067deb Leszek Koltunski
  //v.z += force.z*d;                                                  // cone
313
  //b = -(force.z*(1.0-d))*one_over_denom;                             //
314 6a06a912 Leszek Koltunski
        
315 a7067deb Leszek Koltunski
  //v.z += force.z*d*d*(3.0-2.0*d);                                    // thin bubble
316
  //b = -(6.0*force.z*d*(1.0-d)*(1.0-d))*one_over_denom;               //
317 6a06a912 Leszek Koltunski
        
318 a7067deb Leszek Koltunski
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                            // thick bubble
319
  float b = -(12.0*force.z*d*(1.0-d)*(1.0-d)*(1.0-d))*one_over_denom;  //
320 6a06a912 Leszek Koltunski
                
321 a7067deb Leszek Koltunski
  v.xy += d*force.xy;
322
  n.xy += n.z*b*ps;
323 6a06a912 Leszek Koltunski
  }
324
 
325
//////////////////////////////////////////////////////////////////////////////////////////////
326 341c803d Leszek Koltunski
// SINK EFFECT
327
//
328 82ee855a Leszek Koltunski
// Pull P=(v.x,v.y) towards center of the effect with P' = P + (1-h)*dist(S-P)
329
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(S-P)
330 6a06a912 Leszek Koltunski
 
331
void sink(in int effect,inout vec4 v)
332
  {
333 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
334 4fde55a0 Leszek Koltunski
  vec2 ps = center-v.xy;
335 6a06a912 Leszek Koltunski
  float h = vUniforms[effect].x;
336 4fde55a0 Leszek Koltunski
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
337 6a06a912 Leszek Koltunski
  
338
  v.xy += t*ps;           
339
  }
340
341 82ee855a Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
342
// PINCH EFFECT
343
//
344
// Pull P=(v.x,v.y) towards the line that
345
// a) passes through the center of the effect
346
// b) forms angle defined in the 2nd interpolated value with the X-axis
347
// with P' = P + (1-h)*dist(line to P)
348
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(line to P)
349
350
void pinch(in int effect,inout vec4 v)
351
  {
352
  vec2 center = vUniforms[effect+1].yz;
353
  vec2 ps = center-v.xy;
354
  float h = vUniforms[effect].x;
355
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
356
  float angle = vUniforms[effect].y;
357
  vec2 dir = vec2(sin(angle),-cos(angle));
358
359
  v.xy += t*dot(ps,dir)*dir;
360
  }
361
362 6a06a912 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
363 341c803d Leszek Koltunski
// SWIRL EFFECT
364 6a06a912 Leszek Koltunski
//
365
// Let d be the degree of the current vertex V with respect to center of the effect S and Region vRegion.
366
// This effect rotates the current vertex V by vInterpolated.x radians clockwise around the circle dilated 
367
// by (1-d) around the center of the effect S.
368
369 ff8ad0a7 Leszek Koltunski
void swirl(in int effect, inout vec4 v)
370 6a06a912 Leszek Koltunski
  {
371 fa6c352d Leszek Koltunski
  vec2 center  = vUniforms[effect+1].yz;
372 4fde55a0 Leszek Koltunski
  vec2 PS = center-v.xy;
373
  vec4 SO = vUniforms[effect+2];
374 6a06a912 Leszek Koltunski
  float d1_circle = degree_region(SO,PS);
375 4fde55a0 Leszek Koltunski
  float d1_bitmap = degree_bitmap(center,PS);
376 5b1c0f47 Leszek Koltunski
377
  float alpha = vUniforms[effect].x;
378
  float sinA = sin(alpha);
379
  float cosA = cos(alpha);
380
381 4fde55a0 Leszek Koltunski
  vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around center.
382
  vec4 SG = (1.0-d1_circle)*SO;                                // coordinates of the dilated circle P is going to get rotated around
383
  float d2 = max(0.0,degree(SG,center,PS2));                   // make it a max(0,deg) because otherwise when center=left edge of the
384 20af7b69 Leszek Koltunski
                                                               // bitmap some points end up with d2<0 and they disappear off view.
385 4fde55a0 Leszek Koltunski
  v.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2));        // if d2=1 (i.e P=center) we should have P unchanged. How to do it?
386
  }
387
388
//////////////////////////////////////////////////////////////////////////////////////////////
389
// WAVE EFFECT
390
//
391
// Directional sinusoidal wave effect.
392 73af5285 Leszek Koltunski
//
393
// This is an effect from a (hopefully!) generic family of effects of the form (vec3 V: |V|=1 , f(x,y) )  (*)
394
// i.e. effects defined by a unit vector and an arbitrary function. Those effects are defined to move each
395
// point (x,y,0) of the XY plane to the point (x,y,0) + V*f(x,y).
396
//
397
// In this case V is defined by angles A and B (sines and cosines of which are precomputed in
398
// EffectQueueVertex and passed in the uniforms).
399
// Let's move V to start at the origin O, let point C be the endpoint of V, and let C' be C's projection
400
// to the XY plane. Then A is defined to be the angle C0C' and angle B is the angle C'O(axisY).
401
//
402
// Also, in this case f(x,y) = amplitude*sin(x/length), with those 2 parameters passed in uniforms.
403
//
404 57297c51 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
405 73af5285 Leszek Koltunski
// How to compute any generic effect of type (*)
406 57297c51 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
407 73af5285 Leszek Koltunski
//
408
// By definition, the vertices move by f(x,y)*V.
409
//
410
// Normals are much more complicated.
411 57297c51 Leszek Koltunski
// Let angle X be the angle (0,Vy,Vz)(0,Vy,0)(Vx,Vy,Vz).
412
// Let angle Y be the angle (Vx,0,Vz)(Vx,0,0)(Vx,Vy,Vz).
413 73af5285 Leszek Koltunski
//
414
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
415
// has 2 tangent vectors given by
416
//
417 c6ea3680 Leszek Koltunski
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
418
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
419 73af5285 Leszek Koltunski
//
420
// and then obviously the normal N is given by N= SX x SY .
421
//
422
// We still need to remember the note from the distort function about adding up normals:
423
// we first need to 'normalize' the normals to make their third components equal, and then we
424
// simply add up the first and the second component while leaving the third unchanged.
425
//
426
// How to see facts (**) and (***) ? Briefly:
427
// a) compute the 2D analogon and conclude that in this case the tangent SX is given by
428
//    SX = ( cosA*f'(x) +1, sinA*f'(x) )    (where A is the angle vector V makes with X axis )
429
// b) cut the resulting surface with plane P which
430
//    - includes vector V
431
//    - crosses plane XY along line parallel to X axis
432
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
433
//    and our surface (I am talking about the tangent vector which belongs to P) is given by
434 c6ea3680 Leszek Koltunski
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
435
//
436
//    Matrix of rotation:
437
//
438
//    |sinY|  cosY
439
//    -cosY  |sinY|
440
//
441 73af5285 Leszek Koltunski
// d) compute the above and see that this is equal precisely to SX from (**).
442
// e) repeat points b,c,d in direction Y and come up with (***).
443 f256e1a5 Leszek Koltunski
//
444 5b1c0f47 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
445 f256e1a5 Leszek Koltunski
// Note: we should avoid passing certain combinations of parameters to this function. One such known
446
// combination is ( A: small but positive, B: any, amplitude >= length ).
447
// In this case, certain 'unlucky' points have their normals almost horizontal (they got moved by (almost!)
448
// amplitude, and other point length (i.e. <=amplitude) away got moved by 0, so the slope in this point is
449
// very steep). Visual effect is: vast majority of surface pretty much unchanged, but random 'unlucky'
450
// points very dark)
451
//
452
// Generally speaking I'd keep to amplitude < length, as the opposite case has some other problems as well.
453 4fde55a0 Leszek Koltunski
454 9ea4f88f Leszek Koltunski
void wave(in int effect, inout vec4 v, inout vec4 n)
455 4fde55a0 Leszek Koltunski
  {
456 fa6c352d Leszek Koltunski
  vec2 center     = vUniforms[effect+1].yz;
457 02ef26bc Leszek Koltunski
  float amplitude = vUniforms[effect  ].x;
458 d0c902b8 Leszek Koltunski
  float length    = vUniforms[effect  ].y;
459 02ef26bc Leszek Koltunski
460 06d71892 Leszek Koltunski
  vec2 ps = center - v.xy;
461 9ea4f88f Leszek Koltunski
  float deg = amplitude*degree_region(vUniforms[effect+2],ps);
462 815869cb Leszek Koltunski
463 39b80df0 Leszek Koltunski
  if( deg != 0.0 && length != 0.0 )
464 9ea4f88f Leszek Koltunski
    {
465 ea16dc89 Leszek Koltunski
    float phase = vUniforms[effect  ].z;
466 350cc2f5 Leszek Koltunski
    float alpha = vUniforms[effect  ].w;
467
    float beta  = vUniforms[effect+1].x;
468 5b1c0f47 Leszek Koltunski
469
    float sinA = sin(alpha);
470
    float cosA = cos(alpha);
471
    float sinB = sin(beta);
472
    float cosB = cos(beta);
473 39b80df0 Leszek Koltunski
474 ea16dc89 Leszek Koltunski
    float angle= 1.578*(ps.x*cosB-ps.y*sinB) / length + phase;
475 57297c51 Leszek Koltunski
476 350cc2f5 Leszek Koltunski
    vec3 dir= vec3(sinB*cosA,cosB*cosA,sinA);
477 39b80df0 Leszek Koltunski
478
    v.xyz += sin(angle)*deg*dir;
479
480 73af5285 Leszek Koltunski
    if( n.z != 0.0 )
481
      {
482
      float sqrtX = sqrt(dir.y*dir.y + dir.z*dir.z);
483
      float sqrtY = sqrt(dir.x*dir.x + dir.z*dir.z);
484 39b80df0 Leszek Koltunski
485 73af5285 Leszek Koltunski
      float sinX = ( sqrtY==0.0 ? 0.0 : dir.z / sqrtY);
486
      float cosX = ( sqrtY==0.0 ? 1.0 : dir.x / sqrtY);
487
      float sinY = ( sqrtX==0.0 ? 0.0 : dir.z / sqrtX);
488
      float cosY = ( sqrtX==0.0 ? 1.0 : dir.y / sqrtX);
489 39b80df0 Leszek Koltunski
490 57297c51 Leszek Koltunski
      float abs_z = dir.z <0.0 ? -(sinX*sinY) : (sinX*sinY);
491 c6ea3680 Leszek Koltunski
492 73af5285 Leszek Koltunski
      float tmp = 1.578*cos(angle)*deg/length;
493 39b80df0 Leszek Koltunski
494 57297c51 Leszek Koltunski
      float fx =-cosB*tmp;
495 73af5285 Leszek Koltunski
      float fy = sinB*tmp;
496 39b80df0 Leszek Koltunski
497 57297c51 Leszek Koltunski
      vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,abs_z*fx);
498
      vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,abs_z*fy);
499 39b80df0 Leszek Koltunski
500 73af5285 Leszek Koltunski
      vec3 normal = cross(sx,sy);
501 39b80df0 Leszek Koltunski
502 fe3cee39 Leszek Koltunski
      if( normal.z<=0.0 )                   // Why this bizarre shit rather than the straightforward
503
        {                                   //
504
        normal.x= 0.0;                      // if( normal.z>0.0 )
505
        normal.y= 0.0;                      //   {
506
        normal.z= 1.0;                      //   n.x = (n.x*normal.z + n.z*normal.x);
507
        }                                   //   n.y = (n.y*normal.z + n.z*normal.y);
508
                                            //   n.z = (n.z*normal.z);
509
                                            //   }
510
      n.x = (n.x*normal.z + n.z*normal.x);  //
511
      n.y = (n.y*normal.z + n.z*normal.y);  // ? Because if we do the above, my shitty Nexus4 crashes
512
      n.z = (n.z*normal.z);                 // during shader compilation!
513 39b80df0 Leszek Koltunski
      }
514 9ea4f88f Leszek Koltunski
    }
515 6a06a912 Leszek Koltunski
  }
516
517
#endif
518
519
//////////////////////////////////////////////////////////////////////////////////////////////
520
  		  
521
void main()                                                 	
522
  {              
523 0318e7e3 Leszek Koltunski
  vec4 v = vec4( 2.0*u_objD*a_Position,1.0 );
524 6a06a912 Leszek Koltunski
  vec4 n = vec4(a_Normal,0.0);
525
526
#if NUM_VERTEX>0
527
  for(int i=0; i<vNumEffects; i++)
528
    {
529
         if( vType[i]==DISTORT) distort(3*i,v,n);
530 341c803d Leszek Koltunski
    else if( vType[i]==DEFORM ) deform (3*i,v);
531
    else if( vType[i]==SINK   ) sink   (3*i,v);
532 82ee855a Leszek Koltunski
    else if( vType[i]==PINCH  ) pinch  (3*i,v);
533 341c803d Leszek Koltunski
    else if( vType[i]==SWIRL  ) swirl  (3*i,v);
534 9ea4f88f Leszek Koltunski
    else if( vType[i]==WAVE   ) wave   (3*i,v,n);
535 6a06a912 Leszek Koltunski
    }
536
 
537 291705f6 Leszek Koltunski
  restrictZ(v.z);
538 6a06a912 Leszek Koltunski
#endif
539
   
540 77fcb24d Leszek Koltunski
  v_Position      = v.xyz;
541 2dacdeb2 Leszek Koltunski
  v_TexCoordinate = a_TexCoordinate;
542 6a06a912 Leszek Koltunski
  v_Normal        = normalize(vec3(u_MVMatrix*n));
543
  gl_Position     = u_MVPMatrix*v;      
544 d333eb6b Leszek Koltunski
  }