Project

General

Profile

Download (27 KB) Statistics
| Branch: | Revision:

library / src / main / res / raw / main_vertex_shader.glsl @ bfe2c61b

1 d333eb6b Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                          //
3
//                                                                                          //
4
// This file is part of Distorted.                                                          //
5
//                                                                                          //
6
// Distorted is free software: you can redistribute it and/or modify                        //
7
// it under the terms of the GNU General Public License as published by                     //
8
// the Free Software Foundation, either version 2 of the License, or                        //
9
// (at your option) any later version.                                                      //
10
//                                                                                          //
11
// Distorted is distributed in the hope that it will be useful,                             //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                           //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                            //
14
// GNU General Public License for more details.                                             //
15
//                                                                                          //
16
// You should have received a copy of the GNU General Public License                        // 
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                       //
18
//////////////////////////////////////////////////////////////////////////////////////////////
19
20 f6cac1f6 Leszek Koltunski
uniform vec3 u_objD;                 // half of object width x half of object height X half the depth;
21
                                     // point (0,0,0) is the center of the object
22 6a06a912 Leszek Koltunski
23 f6cac1f6 Leszek Koltunski
uniform float u_Depth;               // max absolute value of v.z ; beyond that the vertex would be culled by the near or far planes.
24
                                     // I read OpenGL ES has a built-in uniform variable gl_DepthRange.near = n,
25
                                     // .far = f, .diff = f-n so maybe u_Depth is redundant
26
                                     // Update: this struct is only available in fragment shaders
27 6a06a912 Leszek Koltunski
                                
28 bfe2c61b Leszek Koltunski
uniform mat4 u_MVPMatrix;            // the combined model/view/projection matrix.
29
uniform mat4 u_MVMatrix;             // the combined model/view matrix.
30 6a06a912 Leszek Koltunski
		 
31 bfe2c61b Leszek Koltunski
attribute vec3 a_Position;           // Per-vertex position.
32
attribute vec3 a_Normal;             // Per-vertex normal vector.
33
attribute vec2 a_TexCoordinate;      // Per-vertex texture coordinate.
34 6a06a912 Leszek Koltunski
		  
35 f6cac1f6 Leszek Koltunski
varying vec3 v_Position;             //
36
varying vec3 v_Normal;               //
37
varying vec2 v_TexCoordinate;        //
38 6a06a912 Leszek Koltunski
39 f6cac1f6 Leszek Koltunski
uniform int vNumEffects;             // total number of vertex effects
40 6a06a912 Leszek Koltunski
41
#if NUM_VERTEX>0
42 f6cac1f6 Leszek Koltunski
uniform int vType[NUM_VERTEX];       // their types.
43
uniform vec4 vUniforms[3*NUM_VERTEX];// i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
44
                                     // The first vec4 is the Interpolated values,
45
                                     // next is half cache half Center, the third -  the Region.
46 6a06a912 Leszek Koltunski
#endif
47
48
#if NUM_VERTEX>0
49 341c803d Leszek Koltunski
50
//////////////////////////////////////////////////////////////////////////////////////////////
51
// HELPER FUNCTIONS
52
//////////////////////////////////////////////////////////////////////////////////////////////
53 9420f2fe Leszek Koltunski
// The trick below is the if-less version of the
54 341c803d Leszek Koltunski
//
55
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
56
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
57
// d = min(t,h);
58
//
59
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
60
//
61
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
62
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
63
//
64
//////////////////////////////////////////////////////////////////////////////////////////////
65
// return degree of the point as defined by the bitmap rectangle
66
67
float degree_bitmap(in vec2 S, in vec2 PS)
68
  {
69
  vec2 A = sign(PS)*u_objD.xy + S;
70
71 369ee56a Leszek Koltunski
  vec2 signA = sign(A);                           //
72
  vec2 signA_SQ = signA*signA;                    // div = PS/A if A!=0, 0 otherwise.
73 20af7b69 Leszek Koltunski
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));//
74 369ee56a Leszek Koltunski
75
  return 1.0-max(div.x,div.y);
76 341c803d Leszek Koltunski
  }
77
78
//////////////////////////////////////////////////////////////////////////////////////////////
79 9420f2fe Leszek Koltunski
// Return degree of the point as defined by the Region. Currently only supports circular regions.
80
//
81 73af5285 Leszek Koltunski
// Let us first introduce some notation.
82 9420f2fe Leszek Koltunski
// Let 'PS' be the vector from point P (the current vertex) to point S (the center of the effect).
83
// Let region.xy be the vector from point S to point O (the center point of the region circle)
84
// Let region.z be the radius of the region circle.
85 73af5285 Leszek Koltunski
// (This all should work regardless if S is inside or outside of the circle).
86
//
87
// Then, the degree of a point with respect to a given (circular!) Region is defined by:
88 9420f2fe Leszek Koltunski
//
89
// If P is outside the circle, return 0.
90 73af5285 Leszek Koltunski
// Otherwise, let X be the point where the halfline SP meets the region circle - then return |PX|/||SX|,
91 9420f2fe Leszek Koltunski
// aka the 'degree' of point P.
92
//
93 ff8ad0a7 Leszek Koltunski
// We solve the triangle OPX.
94 9420f2fe Leszek Koltunski
// We know the lengths |PO|, |OX| and the angle OPX, because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
95
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so PX = -a + sqrt(a^2 + OX^2 - PO^2)
96
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
97
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
98 341c803d Leszek Koltunski
99 4fde55a0 Leszek Koltunski
float degree_region(in vec4 region, in vec2 PS)
100 341c803d Leszek Koltunski
  {
101
  vec2 PO  = PS + region.xy;
102
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
103 9420f2fe Leszek Koltunski
104
  if( D<=0.0 ) return 0.0;
105
106 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
107 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
108
                                                         // Important: if we want to write
109
                                                         // b = 1/a if a!=0, b=1 otherwise
110
                                                         // we need to write that as
111
                                                         // b = 1 / ( a-(sign(a)-1) )
112
                                                         // [ and NOT 1 / ( a + 1 - sign(a) ) ]
113
                                                         // because the latter, if 0<a<2^-24,
114
                                                         // will suffer from round-off error and in this case
115
                                                         // a + 1.0 = 1.0 !! so 1 / (a+1-sign(a)) = 1/0 !
116 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
117 341c803d Leszek Koltunski
118 9420f2fe Leszek Koltunski
  return 1.0 / (1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
119 341c803d Leszek Koltunski
  }
120
121
//////////////////////////////////////////////////////////////////////////////////////////////
122
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
123
124 4fde55a0 Leszek Koltunski
float degree(in vec4 region, in vec2 S, in vec2 PS)
125 341c803d Leszek Koltunski
  {
126
  vec2 PO  = PS + region.xy;
127
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
128 9420f2fe Leszek Koltunski
129
  if( D<=0.0 ) return 0.0;
130
131 341c803d Leszek Koltunski
  vec2 A = sign(PS)*u_objD.xy + S;
132 369ee56a Leszek Koltunski
  vec2 signA = sign(A);
133
  vec2 signA_SQ = signA*signA;
134 20af7b69 Leszek Koltunski
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));
135 369ee56a Leszek Koltunski
  float E = 1.0-max(div.x,div.y);
136
137 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
138 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
139 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
140 341c803d Leszek Koltunski
141 9420f2fe Leszek Koltunski
  return min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT)),E);
142 341c803d Leszek Koltunski
  }
143
144
//////////////////////////////////////////////////////////////////////////////////////////////
145
// Clamp v.z to (-u_Depth,u_Depth) with the following function:
146
// define h to be, say, 0.7; let H=u_Depth
147
//      if v.z < -hH then v.z = (-(1-h)^2 * H^2)/(v.z+(2h-1)H) -H   (function satisfying f(-hH)=-hH, f'(-hH)=1, lim f(x) = -H)
148
// else if v.z >  hH then v.z = (-(1-h)^2 * H^2)/(v.z-(2h-1)H) +H   (function satisfying f(+hH)=+hH, f'(+hH)=1, lim f(x) = +H)
149
// else v.z = v.z
150
151 291705f6 Leszek Koltunski
void restrictZ(inout float v)
152 341c803d Leszek Koltunski
  {
153
  const float h = 0.7;
154
  float signV = 2.0*max(0.0,sign(v))-1.0;
155
  float c = ((1.0-h)*(h-1.0)*u_Depth*u_Depth)/(v-signV*(2.0*h-1.0)*u_Depth) +signV*u_Depth;
156
  float b = max(0.0,sign(abs(v)-h*u_Depth));
157
158
  v = b*c+(1.0-b)*v; // Avoid branching: if abs(v)>h*u_Depth, then v=c; otherwise v=v.
159
  }
160
161 6a06a912 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
162 341c803d Leszek Koltunski
// DEFORM EFFECT
163
//
164 18d15f2f Leszek Koltunski
// Deform the whole shape of the Object by force V. Algorithm is as follows:
165
//
166
// Suppose we apply force (Vx,Vy) at point (Cx,Cy) (i.e. the center of the effect). Then, first of all,
167
// divide the rectangle into 4 smaller rectangles along the 1 horizontal + 1 vertical lines that pass
168
// through (Cx,Cy). Now suppose we have already understood the following case:
169
//
170
// A vertical (0,Vy) force applied to a rectangle (WxH) in size, at center which is the top-left corner
171
// of the rectangle.  (*)
172
//
173
// If we understand (*), then we understand everything, because in order to compute the movement of the
174
// whole rectangle we can apply (*) 8 times: for each one of the 4 sub-rectangles, apply (*) twice,
175
// once for the vertical component of the force vector, the second time for the horizontal one.
176
//
177
// Let's then compute (*):
178
// 1) the top-left point will move by exactly (0,Vy)
179
// 2) we arbitrarily decide that the top-right point will move by (|Vy|/(|Vy|+A*W))*Vy, where A is some
180
//    arbitrary constant (const float A below). The F(V,W) = (|Vy|/(|Vy|+A*W)) comes from the following:
181
//    a) we want F(V,0) = 1
182
//    b) we want lim V->inf (F) = 1
183
//    c) we actually want F() to only depend on W/V, which we have here.
184
// 3) then the top edge of the rectangle will move along the line Vy*G(x), where G(x) = (1 - (A*W/(|Vy|+A*W))*(x/W)^2)
185
// 4) Now we decide that the left edge of the rectangle will move along Vy*H(y), where H(y) = (1 - |y|/(|Vy|+C*|y|))
186
//    where C is again an arbitrary constant. Again, H(y) comes from the requirement that no matter how
187
//    strong we push the left edge of the rectangle up or down, it can never 'go over itself', but its
188
//    length will approach 0 if squeezed very hard.
189
// 5) The last point we need to compute is the left-right motion of the top-right corner (i.e. if we push
190
//    the top-left corner up very hard, we want to have the top-right corner not only move up, but also to
191
//    the left at least a little bit).
192
//    We arbitrarily decide that, in addition to moving up-down by Vy*F(V,W), the corner will also move
193
//    left-right by I(V,W) = B*W*F(V,W), where B is again an arbitrary constant.
194
// 6) combining 3), 4) and 5) together, we arrive at a movement of an arbitrary point (x,y) away from the
195
//    top-left corner:
196
//    X(x,y) = -B*x * (|Vy|/(|Vy|+A*W)) * (1-(y/H)^2)                               (**)
197
//    Y(x,y) = Vy * (1 - |y|/(|Vy|+C*|y|)) * (1 - (A*W/(|Vy|+A*W))*(x/W)^2)         (**)
198
//
199
// We notice that formulas (**) have been construed so that it is possible to continously mirror them
200
// left-right and up-down (i.e. apply not only to the 'bottom-right' rectangle of the 4 subrectangles
201
// but to all 4 of them!).
202
//
203
// Constants:
204
// a) A : valid values: (0,infinity). 'Bendiness' if the surface - the higher A is, the more the surface
205 6ebdbbf1 Leszek Koltunski
//        bends. A<=0 destroys the system.
206 18d15f2f Leszek Koltunski
// b) B : valid values: <-1,1>. The amount side edges get 'sucked' inwards when we pull the middle of the
207
//        top edge up. B=0 --> not at all, B=1: a looot. B=-0.5: the edges will actually be pushed outwards
208
//        quite a bit. One can also set it to <-1 or >1, but it will look a bit ridiculous.
209
// c) C : valid values: <1,infinity). The derivative of the H(y) function at 0, i.e. the rate of 'squeeze'
210
//        surface gets along the force line. C=1: our point gets pulled very closely to points above it
211
//        even when we apply only small vertical force to it. The higher C is, the more 'uniform' movement
212
//        along the force line is.
213
//        0<=C<1 looks completely ridiculous and C<0 destroys the system.
214
215 b86265d6 Leszek Koltunski
void deform(in int effect, inout vec4 v, inout vec4 n)
216 6a06a912 Leszek Koltunski
  {
217 6ebdbbf1 Leszek Koltunski
  const vec2 ONE = vec2(1.0,1.0);
218 18d15f2f Leszek Koltunski
219 dbeddd9d Leszek Koltunski
  const float A = 0.5;
220 18d15f2f Leszek Koltunski
  const float B = 0.2;
221
  const float C = 5.0;
222 dbeddd9d Leszek Koltunski
223 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
224 6ebdbbf1 Leszek Koltunski
  vec2 ps     = center-v.xy;
225
  vec2 aPS    = abs(ps);
226
  vec2 maxps  = u_objD.xy + abs(center);
227 b86265d6 Leszek Koltunski
  float d     = degree_region(vUniforms[effect+2],ps);
228
  vec3 force  = vUniforms[effect].xyz * d;
229
  vec2 aForce = abs(force.xy);
230
  float denom = dot(ps+(1.0-d)*force.xy,ps);
231
  float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));
232 6ebdbbf1 Leszek Koltunski
  vec2 Aw = A*maxps;
233
  vec2 quot = ps / maxps;
234 18d15f2f Leszek Koltunski
  quot = quot*quot;                          // ( (x/W)^2 , (y/H)^2 ) where x,y are distances from V to center
235
236
  float denomV = 1.0 / (aForce.y + Aw.x);
237
  float denomH = 1.0 / (aForce.x + Aw.y);
238 dbeddd9d Leszek Koltunski
239 44efc8a8 Leszek Koltunski
  vec2 vertCorr= ONE - aPS / ( aForce+C*aPS + (ONE-sign(aForce)) );  // avoid division by 0 when force and PS both are 0
240 dbeddd9d Leszek Koltunski
241 6ebdbbf1 Leszek Koltunski
  float mvXvert = -B * ps.x * aForce.y * (1.0-quot.y) * denomV;      // impact the vertical   component of the force vector has on horizontal movement
242
  float mvYhorz = -B * ps.y * aForce.x * (1.0-quot.x) * denomH;      // impact the horizontal component of the force vector has on vertical   movement
243 18d15f2f Leszek Koltunski
  float mvYvert =  force.y * (1.0-quot.x*Aw.x*denomV) * vertCorr.y;  // impact the vertical   component of the force vector has on vertical   movement
244
  float mvXhorz = -force.x * (1.0-quot.y*Aw.y*denomH) * vertCorr.x;  // impact the horizontal component of the force vector has on horizontal movement
245 dbeddd9d Leszek Koltunski
246
  v.x -= (mvXvert+mvXhorz);
247
  v.y -= (mvYvert+mvYhorz);
248 b86265d6 Leszek Koltunski
249
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                          // thick bubble
250
  float b = -(12.0*force.z*d*(1.0-d)*(1.0-d)*(1.0-d))*one_over_denom;//
251
252
  n.xy += n.z*b*ps;
253 6a06a912 Leszek Koltunski
  }
254
255
//////////////////////////////////////////////////////////////////////////////////////////////
256 341c803d Leszek Koltunski
// DISTORT EFFECT
257 6a06a912 Leszek Koltunski
//
258
// Point (Px,Py) gets moved by vector (Wx,Wy,Wz) where Wx/Wy = Vx/Vy i.e. Wx=aVx and Wy=aVy where 
259
// a=Py/Sy (N --> when (Px,Py) is above (Sx,Sy)) or a=Px/Sx (W) or a=(w-Px)/(w-Sx) (E) or a=(h-Py)/(h-Sy) (S) 
260
// It remains to be computed which of the N,W,E or S case we have: answer: a = min[ Px/Sx , Py/Sy , (w-Px)/(w-Sx) , (h-Py)/(h-Sy) ]
261
// Computations above are valid for screen (0,0)x(w,h) but here we have (-w/2,-h/2)x(w/2,h/2)
262
//  
263
// the vertical part
264
// Let |(v.x,v.y),(ux,uy)| = |PS|, ux-v.x=dx,uy-v.y=dy, f(x) (0<=x<=|SX|) be the shape of the side of the bubble.
265
// H(v.x,v.y) = |PS|>|SX| ? 0 : f(|PX|)
266
// N(v.x,v.y) = |PS|>|SX| ? (0,0,1) : ( -(dx/|PS|)sin(beta), -(dy/|PS|)sin(beta), cos(beta) ) where tan(beta) is f'(|PX|) 
267
// ( i.e. normalize( dx, dy, -|PS|/f'(|PX|))         
268
//
269
// Now we also have to take into account the effect horizontal move by V=(u_dVx[i],u_dVy[i]) will have on the normal vector.
270
// Solution: 
271
// 1. Decompose the V into two subcomponents, one parallel to SX and another perpendicular.
272
// 2. Convince yourself (draw!) that the perpendicular component has no effect on normals.
273 30925500 Leszek Koltunski
// 3. The parallel component changes the length of |SX| by the factor of a=(|SX|-|Vpar|)/|SX| (where the length
274
//    can be negative depending on the direction)
275 6a06a912 Leszek Koltunski
// 4. that in turn leaves the x and y parts of the normal unchanged and multiplies the z component by a!
276
//
277
// |Vpar| = (u_dVx[i]*dx - u_dVy[i]*dy) / sqrt(ps_sq) = (Vx*dx-Vy*dy)/ sqrt(ps_sq)  (-Vy because y is inverted)
278
// a =  (|SX| - |Vpar|)/|SX| = 1 - |Vpar|/((sqrt(ps_sq)/(1-d)) = 1 - (1-d)*|Vpar|/sqrt(ps_sq) = 1-(1-d)*(Vx*dx-Vy*dy)/ps_sq 
279
//
280
// Side of the bubble
281
// 
282
// choose from one of the three bubble shapes: the cone, the thin bubble and the thick bubble          
283
// Case 1: 
284
// f(t) = t, i.e. f(x) = uz * x/|SX|   (a cone)
285
// -|PS|/f'(|PX|) = -|PS|*|SX|/uz but since ps_sq=|PS|^2 and d=|PX|/|SX| then |PS|*|SX| = ps_sq/(1-d)
286
// so finally -|PS|/f'(|PX|) = -ps_sq/(uz*(1-d))
287
//                    
288
// Case 2: 
289
// f(t) = 3t^2 - 2t^3 --> f(0)=0, f'(0)=0, f'(1)=0, f(1)=1 (the bell curve)
290
// here we have t = x/|SX| which makes f'(|PX|) = 6*uz*|PS|*|PX|/|SX|^3.
291
// so -|PS|/f'(|PX|) = (-|SX|^3)/(6uz|PX|) =  (-|SX|^2) / (6*uz*d) but
292
// d = |PX|/|SX| and ps_sq = |PS|^2 so |SX|^2 = ps_sq/(1-d)^2
293
// so finally -|PS|/f'(|PX|) = -ps_sq/ (6uz*d*(1-d)^2)
294
//                  
295
// Case 3:
296 73af5285 Leszek Koltunski
// f(t) = 3t^4-8t^3+6t^2 would be better as this satisfies f(0)=0, f'(0)=0, f'(1)=0, f(1)=1,
297 30925500 Leszek Koltunski
// f(0.5)=0.7 and f'(t)= t(t-1)^2 >=0 for t>=0 so this produces a fuller, thicker bubble!
298 6a06a912 Leszek Koltunski
// then -|PS|/f'(|PX|) = (-|PS|*|SX)) / (12uz*d*(d-1)^2) but |PS|*|SX| = ps_sq/(1-d) (see above!) 
299
// so finally -|PS|/f'(|PX|) = -ps_sq/ (12uz*d*(1-d)^3)  
300
//
301
// Now, new requirement: we have to be able to add up normal vectors, i.e. distort already distorted surfaces.
302 73af5285 Leszek Koltunski
// If a surface is given by z = f(x,y), then the normal vector at (x0,y0) is given by (-df/dx (x0,y0), -df/dy (x0,y0), 1 ).
303 6a06a912 Leszek Koltunski
// so if we have two surfaces defined by f1(x,y) and f2(x,y) with their normals expressed as (f1x,f1y,1) and (f2x,f2y,1) 
304 73af5285 Leszek Koltunski
// then the normal to g = f1+f2 is simply given by (f1x+f2x,f1y+f2y,1), i.e. if the third components are equal, then we
305
// can simply add up the first and second components.
306 6a06a912 Leszek Koltunski
//
307 30925500 Leszek Koltunski
// Thus we actually want to compute N(v.x,v.y) = a*(-(dx/|PS|)*f'(|PX|), -(dy/|PS|)*f'(|PX|), 1) and keep adding
308
// the first two components. (a is the horizontal part)
309 6a06a912 Leszek Koltunski
        
310
void distort(in int effect, inout vec4 v, inout vec4 n)
311
  {
312 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
313 4fde55a0 Leszek Koltunski
  vec2 ps = center-v.xy;
314 a7067deb Leszek Koltunski
  vec3 force = vUniforms[effect].xyz;
315 4fde55a0 Leszek Koltunski
  float d = degree(vUniforms[effect+2],center,ps);
316 a7067deb Leszek Koltunski
  float denom = dot(ps+(1.0-d)*force.xy,ps);
317
  float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));          // = denom==0 ? 1000:1/denom;
318 30925500 Leszek Koltunski
319 a7067deb Leszek Koltunski
  //v.z += force.z*d;                                                  // cone
320
  //b = -(force.z*(1.0-d))*one_over_denom;                             //
321 6a06a912 Leszek Koltunski
        
322 a7067deb Leszek Koltunski
  //v.z += force.z*d*d*(3.0-2.0*d);                                    // thin bubble
323
  //b = -(6.0*force.z*d*(1.0-d)*(1.0-d))*one_over_denom;               //
324 6a06a912 Leszek Koltunski
        
325 a7067deb Leszek Koltunski
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                            // thick bubble
326
  float b = -(12.0*force.z*d*(1.0-d)*(1.0-d)*(1.0-d))*one_over_denom;  //
327 6a06a912 Leszek Koltunski
                
328 a7067deb Leszek Koltunski
  v.xy += d*force.xy;
329
  n.xy += n.z*b*ps;
330 6a06a912 Leszek Koltunski
  }
331
 
332
//////////////////////////////////////////////////////////////////////////////////////////////
333 341c803d Leszek Koltunski
// SINK EFFECT
334
//
335 82ee855a Leszek Koltunski
// Pull P=(v.x,v.y) towards center of the effect with P' = P + (1-h)*dist(S-P)
336
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(S-P)
337 6a06a912 Leszek Koltunski
 
338
void sink(in int effect,inout vec4 v)
339
  {
340 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
341 4fde55a0 Leszek Koltunski
  vec2 ps = center-v.xy;
342 6a06a912 Leszek Koltunski
  float h = vUniforms[effect].x;
343 4fde55a0 Leszek Koltunski
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
344 6a06a912 Leszek Koltunski
  
345
  v.xy += t*ps;           
346
  }
347
348 82ee855a Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
349
// PINCH EFFECT
350
//
351
// Pull P=(v.x,v.y) towards the line that
352
// a) passes through the center of the effect
353
// b) forms angle defined in the 2nd interpolated value with the X-axis
354
// with P' = P + (1-h)*dist(line to P)
355
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(line to P)
356
357
void pinch(in int effect,inout vec4 v)
358
  {
359
  vec2 center = vUniforms[effect+1].yz;
360
  vec2 ps = center-v.xy;
361
  float h = vUniforms[effect].x;
362
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
363
  float angle = vUniforms[effect].y;
364
  vec2 dir = vec2(sin(angle),-cos(angle));
365
366
  v.xy += t*dot(ps,dir)*dir;
367
  }
368
369 6a06a912 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
370 341c803d Leszek Koltunski
// SWIRL EFFECT
371 6a06a912 Leszek Koltunski
//
372
// Let d be the degree of the current vertex V with respect to center of the effect S and Region vRegion.
373
// This effect rotates the current vertex V by vInterpolated.x radians clockwise around the circle dilated 
374
// by (1-d) around the center of the effect S.
375
376 ff8ad0a7 Leszek Koltunski
void swirl(in int effect, inout vec4 v)
377 6a06a912 Leszek Koltunski
  {
378 fa6c352d Leszek Koltunski
  vec2 center  = vUniforms[effect+1].yz;
379 4fde55a0 Leszek Koltunski
  vec2 PS = center-v.xy;
380
  vec4 SO = vUniforms[effect+2];
381 6a06a912 Leszek Koltunski
  float d1_circle = degree_region(SO,PS);
382 4fde55a0 Leszek Koltunski
  float d1_bitmap = degree_bitmap(center,PS);
383 5b1c0f47 Leszek Koltunski
384
  float alpha = vUniforms[effect].x;
385
  float sinA = sin(alpha);
386
  float cosA = cos(alpha);
387
388 4fde55a0 Leszek Koltunski
  vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around center.
389
  vec4 SG = (1.0-d1_circle)*SO;                                // coordinates of the dilated circle P is going to get rotated around
390
  float d2 = max(0.0,degree(SG,center,PS2));                   // make it a max(0,deg) because otherwise when center=left edge of the
391 20af7b69 Leszek Koltunski
                                                               // bitmap some points end up with d2<0 and they disappear off view.
392 4fde55a0 Leszek Koltunski
  v.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2));        // if d2=1 (i.e P=center) we should have P unchanged. How to do it?
393
  }
394
395
//////////////////////////////////////////////////////////////////////////////////////////////
396
// WAVE EFFECT
397
//
398
// Directional sinusoidal wave effect.
399 73af5285 Leszek Koltunski
//
400
// This is an effect from a (hopefully!) generic family of effects of the form (vec3 V: |V|=1 , f(x,y) )  (*)
401
// i.e. effects defined by a unit vector and an arbitrary function. Those effects are defined to move each
402
// point (x,y,0) of the XY plane to the point (x,y,0) + V*f(x,y).
403
//
404
// In this case V is defined by angles A and B (sines and cosines of which are precomputed in
405
// EffectQueueVertex and passed in the uniforms).
406
// Let's move V to start at the origin O, let point C be the endpoint of V, and let C' be C's projection
407
// to the XY plane. Then A is defined to be the angle C0C' and angle B is the angle C'O(axisY).
408
//
409
// Also, in this case f(x,y) = amplitude*sin(x/length), with those 2 parameters passed in uniforms.
410
//
411 57297c51 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
412 73af5285 Leszek Koltunski
// How to compute any generic effect of type (*)
413 57297c51 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
414 73af5285 Leszek Koltunski
//
415
// By definition, the vertices move by f(x,y)*V.
416
//
417
// Normals are much more complicated.
418 57297c51 Leszek Koltunski
// Let angle X be the angle (0,Vy,Vz)(0,Vy,0)(Vx,Vy,Vz).
419
// Let angle Y be the angle (Vx,0,Vz)(Vx,0,0)(Vx,Vy,Vz).
420 73af5285 Leszek Koltunski
//
421
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
422
// has 2 tangent vectors given by
423
//
424 c6ea3680 Leszek Koltunski
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
425
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
426 73af5285 Leszek Koltunski
//
427
// and then obviously the normal N is given by N= SX x SY .
428
//
429
// We still need to remember the note from the distort function about adding up normals:
430
// we first need to 'normalize' the normals to make their third components equal, and then we
431
// simply add up the first and the second component while leaving the third unchanged.
432
//
433
// How to see facts (**) and (***) ? Briefly:
434
// a) compute the 2D analogon and conclude that in this case the tangent SX is given by
435
//    SX = ( cosA*f'(x) +1, sinA*f'(x) )    (where A is the angle vector V makes with X axis )
436
// b) cut the resulting surface with plane P which
437
//    - includes vector V
438
//    - crosses plane XY along line parallel to X axis
439
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
440
//    and our surface (I am talking about the tangent vector which belongs to P) is given by
441 c6ea3680 Leszek Koltunski
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
442
//
443
//    Matrix of rotation:
444
//
445
//    |sinY|  cosY
446
//    -cosY  |sinY|
447
//
448 73af5285 Leszek Koltunski
// d) compute the above and see that this is equal precisely to SX from (**).
449
// e) repeat points b,c,d in direction Y and come up with (***).
450 f256e1a5 Leszek Koltunski
//
451 5b1c0f47 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
452 f256e1a5 Leszek Koltunski
// Note: we should avoid passing certain combinations of parameters to this function. One such known
453
// combination is ( A: small but positive, B: any, amplitude >= length ).
454
// In this case, certain 'unlucky' points have their normals almost horizontal (they got moved by (almost!)
455
// amplitude, and other point length (i.e. <=amplitude) away got moved by 0, so the slope in this point is
456
// very steep). Visual effect is: vast majority of surface pretty much unchanged, but random 'unlucky'
457
// points very dark)
458
//
459
// Generally speaking I'd keep to amplitude < length, as the opposite case has some other problems as well.
460 4fde55a0 Leszek Koltunski
461 9ea4f88f Leszek Koltunski
void wave(in int effect, inout vec4 v, inout vec4 n)
462 4fde55a0 Leszek Koltunski
  {
463 fa6c352d Leszek Koltunski
  vec2 center     = vUniforms[effect+1].yz;
464 02ef26bc Leszek Koltunski
  float amplitude = vUniforms[effect  ].x;
465 d0c902b8 Leszek Koltunski
  float length    = vUniforms[effect  ].y;
466 02ef26bc Leszek Koltunski
467 06d71892 Leszek Koltunski
  vec2 ps = center - v.xy;
468 9ea4f88f Leszek Koltunski
  float deg = amplitude*degree_region(vUniforms[effect+2],ps);
469 815869cb Leszek Koltunski
470 39b80df0 Leszek Koltunski
  if( deg != 0.0 && length != 0.0 )
471 9ea4f88f Leszek Koltunski
    {
472 ea16dc89 Leszek Koltunski
    float phase = vUniforms[effect  ].z;
473 350cc2f5 Leszek Koltunski
    float alpha = vUniforms[effect  ].w;
474
    float beta  = vUniforms[effect+1].x;
475 5b1c0f47 Leszek Koltunski
476
    float sinA = sin(alpha);
477
    float cosA = cos(alpha);
478
    float sinB = sin(beta);
479
    float cosB = cos(beta);
480 39b80df0 Leszek Koltunski
481 ea16dc89 Leszek Koltunski
    float angle= 1.578*(ps.x*cosB-ps.y*sinB) / length + phase;
482 57297c51 Leszek Koltunski
483 350cc2f5 Leszek Koltunski
    vec3 dir= vec3(sinB*cosA,cosB*cosA,sinA);
484 39b80df0 Leszek Koltunski
485
    v.xyz += sin(angle)*deg*dir;
486
487 73af5285 Leszek Koltunski
    if( n.z != 0.0 )
488
      {
489
      float sqrtX = sqrt(dir.y*dir.y + dir.z*dir.z);
490
      float sqrtY = sqrt(dir.x*dir.x + dir.z*dir.z);
491 39b80df0 Leszek Koltunski
492 73af5285 Leszek Koltunski
      float sinX = ( sqrtY==0.0 ? 0.0 : dir.z / sqrtY);
493
      float cosX = ( sqrtY==0.0 ? 1.0 : dir.x / sqrtY);
494
      float sinY = ( sqrtX==0.0 ? 0.0 : dir.z / sqrtX);
495
      float cosY = ( sqrtX==0.0 ? 1.0 : dir.y / sqrtX);
496 39b80df0 Leszek Koltunski
497 57297c51 Leszek Koltunski
      float abs_z = dir.z <0.0 ? -(sinX*sinY) : (sinX*sinY);
498 c6ea3680 Leszek Koltunski
499 73af5285 Leszek Koltunski
      float tmp = 1.578*cos(angle)*deg/length;
500 39b80df0 Leszek Koltunski
501 57297c51 Leszek Koltunski
      float fx =-cosB*tmp;
502 73af5285 Leszek Koltunski
      float fy = sinB*tmp;
503 39b80df0 Leszek Koltunski
504 57297c51 Leszek Koltunski
      vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,abs_z*fx);
505
      vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,abs_z*fy);
506 39b80df0 Leszek Koltunski
507 73af5285 Leszek Koltunski
      vec3 normal = cross(sx,sy);
508 39b80df0 Leszek Koltunski
509 fe3cee39 Leszek Koltunski
      if( normal.z<=0.0 )                   // Why this bizarre shit rather than the straightforward
510
        {                                   //
511
        normal.x= 0.0;                      // if( normal.z>0.0 )
512
        normal.y= 0.0;                      //   {
513
        normal.z= 1.0;                      //   n.x = (n.x*normal.z + n.z*normal.x);
514
        }                                   //   n.y = (n.y*normal.z + n.z*normal.y);
515
                                            //   n.z = (n.z*normal.z);
516
                                            //   }
517
      n.x = (n.x*normal.z + n.z*normal.x);  //
518
      n.y = (n.y*normal.z + n.z*normal.y);  // ? Because if we do the above, my shitty Nexus4 crashes
519
      n.z = (n.z*normal.z);                 // during shader compilation!
520 39b80df0 Leszek Koltunski
      }
521 9ea4f88f Leszek Koltunski
    }
522 6a06a912 Leszek Koltunski
  }
523
524
#endif
525
526
//////////////////////////////////////////////////////////////////////////////////////////////
527
  		  
528
void main()                                                 	
529
  {              
530 0318e7e3 Leszek Koltunski
  vec4 v = vec4( 2.0*u_objD*a_Position,1.0 );
531 6a06a912 Leszek Koltunski
  vec4 n = vec4(a_Normal,0.0);
532
533
#if NUM_VERTEX>0
534
  for(int i=0; i<vNumEffects; i++)
535
    {
536
         if( vType[i]==DISTORT) distort(3*i,v,n);
537 b86265d6 Leszek Koltunski
    else if( vType[i]==DEFORM ) deform (3*i,v,n);
538 341c803d Leszek Koltunski
    else if( vType[i]==SINK   ) sink   (3*i,v);
539 82ee855a Leszek Koltunski
    else if( vType[i]==PINCH  ) pinch  (3*i,v);
540 341c803d Leszek Koltunski
    else if( vType[i]==SWIRL  ) swirl  (3*i,v);
541 9ea4f88f Leszek Koltunski
    else if( vType[i]==WAVE   ) wave   (3*i,v,n);
542 6a06a912 Leszek Koltunski
    }
543
 
544 291705f6 Leszek Koltunski
  restrictZ(v.z);
545 6a06a912 Leszek Koltunski
#endif
546
   
547 77fcb24d Leszek Koltunski
  v_Position      = v.xyz;
548 2dacdeb2 Leszek Koltunski
  v_TexCoordinate = a_TexCoordinate;
549 6a06a912 Leszek Koltunski
  v_Normal        = normalize(vec3(u_MVMatrix*n));
550
  gl_Position     = u_MVPMatrix*v;      
551 d333eb6b Leszek Koltunski
  }