Project

General

Profile

Download (8.04 KB) Statistics
| Branch: | Revision:

library / src / main / res / raw / main_vertex_shader.glsl @ c1a38ba3

1
//////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                          //
3
//                                                                                          //
4
// This file is part of Distorted.                                                          //
5
//                                                                                          //
6
// Distorted is free software: you can redistribute it and/or modify                        //
7
// it under the terms of the GNU General Public License as published by                     //
8
// the Free Software Foundation, either version 2 of the License, or                        //
9
// (at your option) any later version.                                                      //
10
//                                                                                          //
11
// Distorted is distributed in the hope that it will be useful,                             //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                           //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                            //
14
// GNU General Public License for more details.                                             //
15
//                                                                                          //
16
// You should have received a copy of the GNU General Public License                        // 
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                       //
18
//////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
precision highp float;
21
precision highp int;
22

    
23
in vec3 a_Position;                  // Per-vertex position.
24
in vec3 a_Normal;                    // Per-vertex normal vector.
25
in vec2 a_TexCoordinate;             // Per-vertex texture coordinate.
26
out vec3 v_Position;                 //
27
out vec3 v_endPosition;              // for Transform Feedback only
28
out vec3 v_Normal;                   //
29
out vec2 v_TexCoordinate;            //
30

    
31
#ifdef OIT
32
out vec2 v_Pixel;                    // 2D pixel coords in window space
33
uniform uvec2 u_Size;                // size of the output surface, in pixels.
34
#endif
35

    
36
uniform vec3 u_objD;                 // half of object width x half of object height X half the depth;
37
                                     // point (0,0,0) is the center of the object
38

    
39
uniform mat4 u_MVPMatrix;            // the combined model/view/projection matrix.
40
uniform mat4 u_MVMatrix;             // the combined model/view matrix.
41

    
42
#if NUM_VERTEX>0
43
uniform int vNumEffects;             // total number of vertex effects
44
uniform int vName[NUM_VERTEX];       // their names.
45
uniform vec4 vUniforms[3*NUM_VERTEX];// i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
46
                                     // The first vec4 is the Interpolated values,
47
                                     // next is half cache half Center, the third -  the Region.
48

    
49
//////////////////////////////////////////////////////////////////////////////////////////////
50
// HELPER FUNCTIONS
51
//////////////////////////////////////////////////////////////////////////////////////////////
52
// The trick below is the if-less version of the
53
//
54
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
55
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
56
// d = min(t,h);
57
//
58
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
59
//
60
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
61
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
62
//
63
//////////////////////////////////////////////////////////////////////////////////////////////
64
// return degree of the point as defined by the bitmap rectangle
65

    
66
float degree_bitmap(in vec2 S, in vec2 PS)
67
  {
68
  vec2 A = sign(PS)*u_objD.xy + S;
69

    
70
  vec2 signA = sign(A);                           //
71
  vec2 signA_SQ = signA*signA;                    // div = PS/A if A!=0, 0 otherwise.
72
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));//
73

    
74
  return 1.0-max(div.x,div.y);
75
  }
76

    
77
//////////////////////////////////////////////////////////////////////////////////////////////
78
// Return degree of the point as defined by the Region. Currently only supports circular regions.
79
//
80
// Let us first introduce some notation.
81
// Let 'PS' be the vector from point P (the current vertex) to point S (the center of the effect).
82
// Let region.xy be the vector from point S to point O (the center point of the region circle)
83
// Let region.z be the radius of the region circle.
84
// (This all should work regardless if S is inside or outside of the circle).
85
//
86
// Then, the degree of a point with respect to a given (circular!) Region is defined by:
87
//
88
// If P is outside the circle, return 0.
89
// Otherwise, let X be the point where the halfline SP meets the region circle - then return |PX|/||SX|,
90
// aka the 'degree' of point P.
91
//
92
// We solve the triangle OPX.
93
// We know the lengths |PO|, |OX| and the angle OPX, because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
94
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so PX = -a + sqrt(a^2 + OX^2 - PO^2)
95
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
96
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
97

    
98
float degree_region(in vec4 region, in vec2 PS)
99
  {
100
  vec2 PO  = PS + region.xy;
101
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
102

    
103
  if( D<=0.0 ) return 0.0;
104

    
105
  float ps_sq = dot(PS,PS);
106
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
107
                                                         // Important: if we want to write
108
                                                         // b = 1/a if a!=0, b=1 otherwise
109
                                                         // we need to write that as
110
                                                         // b = 1 / ( a-(sign(a)-1) )
111
                                                         // [ and NOT 1 / ( a + 1 - sign(a) ) ]
112
                                                         // because the latter, if 0<a<2^-24,
113
                                                         // will suffer from round-off error and in this case
114
                                                         // a + 1.0 = 1.0 !! so 1 / (a+1-sign(a)) = 1/0 !
115
  float DOT  = dot(PS,PO)*one_over_ps_sq;
116

    
117
  return 1.0 / (1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
118
  }
119

    
120
//////////////////////////////////////////////////////////////////////////////////////////////
121
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
122

    
123
float degree(in vec4 region, in vec2 S, in vec2 PS)
124
  {
125
  vec2 PO  = PS + region.xy;
126
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
127

    
128
  if( D<=0.0 ) return 0.0;
129

    
130
  vec2 A = sign(PS)*u_objD.xy + S;
131
  vec2 signA = sign(A);
132
  vec2 signA_SQ = signA*signA;
133
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));
134
  float E = 1.0-max(div.x,div.y);
135

    
136
  float ps_sq = dot(PS,PS);
137
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
138
  float DOT  = dot(PS,PO)*one_over_ps_sq;
139

    
140
  return min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT)),E);
141
  }
142

    
143
#endif  // NUM_VERTEX>0
144

    
145
//////////////////////////////////////////////////////////////////////////////////////////////
146

    
147
void main()
148
  {
149
  vec3 v = 2.0*u_objD*a_Position;
150
  vec3 n = a_Normal;
151

    
152
#if NUM_VERTEX>0
153
  int effect=0;
154

    
155
  for(int i=0; i<vNumEffects; i++)
156
    {
157
    // ENABLED EFFECTS WILL BE INSERTED HERE
158

    
159
    effect+=3;
160
    }
161
#endif
162
   
163
  v_Position      = v;
164

    
165
#ifdef OIT
166
  v_Pixel         = (a_Position.xy + 0.5) * vec2(u_Size);
167
#endif
168

    
169
  v_endPosition   = v + (0.3*u_objD.x)*n;
170
  v_TexCoordinate = a_TexCoordinate;
171
  v_Normal        = normalize(vec3(u_MVMatrix*vec4(n,0.0)));
172
  gl_Position     = u_MVPMatrix*vec4(v,1.0);
173
  }                               
(6-6/13)