Project

General

Profile

« Previous | Next » 

Revision c6ea3680

Added by Leszek Koltunski over 8 years ago

Correct one issue with incorrect shadows in WAVE when V.z <0 .

View differences:

src/main/res/raw/main_vertex_shader.glsl
374 374
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
375 375
// has 2 tangent vectors given by
376 376
//
377
// SX = (1.0+cosX*fx , cosY*sinX*fx , sinY*sinX*fx);  (**)
378
// SY = (cosX*sinY*fy , 1.0+cosY*fy , sinX*sinY*fy);  (***)
377
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
378
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
379 379
//
380 380
// and then obviously the normal N is given by N= SX x SY .
381 381
//
......
391 391
//    - crosses plane XY along line parallel to X axis
392 392
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
393 393
//    and our surface (I am talking about the tangent vector which belongs to P) is given by
394
//    (1+cosX*fx,0,sinX*fx) rotated by angle Y (where angles X,Y are defined above) along vector (1,0,0).
394
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
395
//
396
//    Matrix of rotation:
397
//
398
//    |sinY|  cosY
399
//    -cosY  |sinY|
400
//
395 401
// d) compute the above and see that this is equal precisely to SX from (**).
396 402
// e) repeat points b,c,d in direction Y and come up with (***).
397 403

  
......
426 432
      float sinY = ( sqrtX==0.0 ? 0.0 : dir.z / sqrtX);
427 433
      float cosY = ( sqrtX==0.0 ? 1.0 : dir.y / sqrtX);
428 434

  
435
      float absSinX = sinX<0.0 ? -sinX:sinX;
436
      float absSinY = sinY<0.0 ? -sinY:sinY;
437

  
429 438
      float tmp = 1.578*cos(angle)*deg/length;
430 439

  
431 440
      float fx = cosB*tmp;
432 441
      float fy = sinB*tmp;
433 442

  
434
      vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,sinY*sinX*fx);
435
      vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,sinX*sinY*fy);
443
      vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,absSinY*sinX*fx);
444
      vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,absSinX*sinY*fy);
436 445

  
437 446
      vec3 normal = cross(sx,sy);
438 447

  

Also available in: Unified diff