Project

General

Profile

Download (25.8 KB) Statistics
| Branch: | Revision:

library / src / main / res / raw / main_vertex_shader.glsl @ dbeddd9d

1 d333eb6b Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                          //
3
//                                                                                          //
4
// This file is part of Distorted.                                                          //
5
//                                                                                          //
6
// Distorted is free software: you can redistribute it and/or modify                        //
7
// it under the terms of the GNU General Public License as published by                     //
8
// the Free Software Foundation, either version 2 of the License, or                        //
9
// (at your option) any later version.                                                      //
10
//                                                                                          //
11
// Distorted is distributed in the hope that it will be useful,                             //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                           //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                            //
14
// GNU General Public License for more details.                                             //
15
//                                                                                          //
16
// You should have received a copy of the GNU General Public License                        // 
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                       //
18
//////////////////////////////////////////////////////////////////////////////////////////////
19
20 f6cac1f6 Leszek Koltunski
uniform vec3 u_objD;                 // half of object width x half of object height X half the depth;
21
                                     // point (0,0,0) is the center of the object
22 6a06a912 Leszek Koltunski
23 f6cac1f6 Leszek Koltunski
uniform float u_Depth;               // max absolute value of v.z ; beyond that the vertex would be culled by the near or far planes.
24
                                     // I read OpenGL ES has a built-in uniform variable gl_DepthRange.near = n,
25
                                     // .far = f, .diff = f-n so maybe u_Depth is redundant
26
                                     // Update: this struct is only available in fragment shaders
27 6a06a912 Leszek Koltunski
                                
28 f6cac1f6 Leszek Koltunski
uniform mat4 u_MVPMatrix;            // A constant representing the combined model/view/projection matrix.
29
uniform mat4 u_MVMatrix;             // A constant representing the combined model/view matrix.
30 6a06a912 Leszek Koltunski
		 
31 f6cac1f6 Leszek Koltunski
attribute vec3 a_Position;           // Per-vertex position information we will pass in.
32
attribute vec3 a_Normal;             // Per-vertex normal information we will pass in.
33
attribute vec2 a_TexCoordinate;      // Per-vertex texture coordinate information we will pass in.
34 6a06a912 Leszek Koltunski
		  
35 f6cac1f6 Leszek Koltunski
varying vec3 v_Position;             //
36
varying vec3 v_Normal;               //
37
varying vec2 v_TexCoordinate;        //
38 6a06a912 Leszek Koltunski
39 f6cac1f6 Leszek Koltunski
uniform int vNumEffects;             // total number of vertex effects
40 6a06a912 Leszek Koltunski
41
#if NUM_VERTEX>0
42 f6cac1f6 Leszek Koltunski
uniform int vType[NUM_VERTEX];       // their types.
43
uniform vec4 vUniforms[3*NUM_VERTEX];// i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
44
                                     // The first vec4 is the Interpolated values,
45
                                     // next is half cache half Center, the third -  the Region.
46 6a06a912 Leszek Koltunski
#endif
47
48
#if NUM_VERTEX>0
49 341c803d Leszek Koltunski
50
//////////////////////////////////////////////////////////////////////////////////////////////
51
// HELPER FUNCTIONS
52
//////////////////////////////////////////////////////////////////////////////////////////////
53 9420f2fe Leszek Koltunski
// The trick below is the if-less version of the
54 341c803d Leszek Koltunski
//
55
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
56
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
57
// d = min(t,h);
58
//
59
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
60
//
61
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
62
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
63
//
64
//////////////////////////////////////////////////////////////////////////////////////////////
65
// return degree of the point as defined by the bitmap rectangle
66
67
float degree_bitmap(in vec2 S, in vec2 PS)
68
  {
69
  vec2 A = sign(PS)*u_objD.xy + S;
70
71 369ee56a Leszek Koltunski
  vec2 signA = sign(A);                           //
72
  vec2 signA_SQ = signA*signA;                    // div = PS/A if A!=0, 0 otherwise.
73 20af7b69 Leszek Koltunski
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));//
74 369ee56a Leszek Koltunski
75
  return 1.0-max(div.x,div.y);
76 341c803d Leszek Koltunski
  }
77
78
//////////////////////////////////////////////////////////////////////////////////////////////
79 9420f2fe Leszek Koltunski
// Return degree of the point as defined by the Region. Currently only supports circular regions.
80
//
81 73af5285 Leszek Koltunski
// Let us first introduce some notation.
82 9420f2fe Leszek Koltunski
// Let 'PS' be the vector from point P (the current vertex) to point S (the center of the effect).
83
// Let region.xy be the vector from point S to point O (the center point of the region circle)
84
// Let region.z be the radius of the region circle.
85 73af5285 Leszek Koltunski
// (This all should work regardless if S is inside or outside of the circle).
86
//
87
// Then, the degree of a point with respect to a given (circular!) Region is defined by:
88 9420f2fe Leszek Koltunski
//
89
// If P is outside the circle, return 0.
90 73af5285 Leszek Koltunski
// Otherwise, let X be the point where the halfline SP meets the region circle - then return |PX|/||SX|,
91 9420f2fe Leszek Koltunski
// aka the 'degree' of point P.
92
//
93 ff8ad0a7 Leszek Koltunski
// We solve the triangle OPX.
94 9420f2fe Leszek Koltunski
// We know the lengths |PO|, |OX| and the angle OPX, because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
95
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so PX = -a + sqrt(a^2 + OX^2 - PO^2)
96
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
97
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
98 341c803d Leszek Koltunski
99 4fde55a0 Leszek Koltunski
float degree_region(in vec4 region, in vec2 PS)
100 341c803d Leszek Koltunski
  {
101
  vec2 PO  = PS + region.xy;
102
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
103 9420f2fe Leszek Koltunski
104
  if( D<=0.0 ) return 0.0;
105
106 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
107 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
108
                                                         // Important: if we want to write
109
                                                         // b = 1/a if a!=0, b=1 otherwise
110
                                                         // we need to write that as
111
                                                         // b = 1 / ( a-(sign(a)-1) )
112
                                                         // [ and NOT 1 / ( a + 1 - sign(a) ) ]
113
                                                         // because the latter, if 0<a<2^-24,
114
                                                         // will suffer from round-off error and in this case
115
                                                         // a + 1.0 = 1.0 !! so 1 / (a+1-sign(a)) = 1/0 !
116 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
117 341c803d Leszek Koltunski
118 9420f2fe Leszek Koltunski
  return 1.0 / (1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
119 341c803d Leszek Koltunski
  }
120
121
//////////////////////////////////////////////////////////////////////////////////////////////
122
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
123
124 4fde55a0 Leszek Koltunski
float degree(in vec4 region, in vec2 S, in vec2 PS)
125 341c803d Leszek Koltunski
  {
126
  vec2 PO  = PS + region.xy;
127
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
128 9420f2fe Leszek Koltunski
129
  if( D<=0.0 ) return 0.0;
130
131 341c803d Leszek Koltunski
  vec2 A = sign(PS)*u_objD.xy + S;
132 369ee56a Leszek Koltunski
  vec2 signA = sign(A);
133
  vec2 signA_SQ = signA*signA;
134 20af7b69 Leszek Koltunski
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));
135 369ee56a Leszek Koltunski
  float E = 1.0-max(div.x,div.y);
136
137 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
138 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
139 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
140 341c803d Leszek Koltunski
141 9420f2fe Leszek Koltunski
  return min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT)),E);
142 341c803d Leszek Koltunski
  }
143
144
//////////////////////////////////////////////////////////////////////////////////////////////
145
// Clamp v.z to (-u_Depth,u_Depth) with the following function:
146
// define h to be, say, 0.7; let H=u_Depth
147
//      if v.z < -hH then v.z = (-(1-h)^2 * H^2)/(v.z+(2h-1)H) -H   (function satisfying f(-hH)=-hH, f'(-hH)=1, lim f(x) = -H)
148
// else if v.z >  hH then v.z = (-(1-h)^2 * H^2)/(v.z-(2h-1)H) +H   (function satisfying f(+hH)=+hH, f'(+hH)=1, lim f(x) = +H)
149
// else v.z = v.z
150
151 291705f6 Leszek Koltunski
void restrictZ(inout float v)
152 341c803d Leszek Koltunski
  {
153
  const float h = 0.7;
154
  float signV = 2.0*max(0.0,sign(v))-1.0;
155
  float c = ((1.0-h)*(h-1.0)*u_Depth*u_Depth)/(v-signV*(2.0*h-1.0)*u_Depth) +signV*u_Depth;
156
  float b = max(0.0,sign(abs(v)-h*u_Depth));
157
158
  v = b*c+(1.0-b)*v; // Avoid branching: if abs(v)>h*u_Depth, then v=c; otherwise v=v.
159
  }
160
161 6a06a912 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
162 341c803d Leszek Koltunski
// DEFORM EFFECT
163
//
164 cd174a64 Leszek Koltunski
// Deform the whole shape of the Object by force V
165 6a06a912 Leszek Koltunski
// 
166 f6cac1f6 Leszek Koltunski
// If the point of application (Sx,Sy) is on the upper edge of the Object, then:
167 6a06a912 Leszek Koltunski
// a) ignore Vz
168 cd174a64 Leszek Koltunski
// b) change shape of the whole Object in the following way:
169 f6cac1f6 Leszek Koltunski
//    Suppose the upper-left corner of the Object rectangle is point L, upper-right - R, force vector V
170
//    is applied to point M on the upper edge, width of the Object = w, height = h, |LM| = Wl, |MR| = Wr,
171
//    force vector V=(Vx,Vy). Also let H = h/(h+Vy)
172 6a06a912 Leszek Koltunski
//
173
//    Let now L' and R' be points such that vec(LL') = Wr/w * vec(V) and vec(RR') = Wl/w * vec(V)
174
//    now let Vl be a point on the line segment L --> M+vec(V) such that Vl(y) = L'(y)
175
//    and let Vr be a point on the line segment R --> M+vec(V) such that Vr(y) = R'(y)
176
//    
177 f6cac1f6 Leszek Koltunski
//    Now define points Fl and Fr, the points L and R will be moved to under force V, with Fl(y)=L'(y)
178
//    and Fr(y)=R'(y) and |VrFr|/|VrR'| = |VlFl|/|VlL'| = H
179 6a06a912 Leszek Koltunski
//    Now notice that |VrR'| = |VlL'| = Wl*Wr / w   ( a little geometric puzzle! )
180
//
181
//    Then points L,R under force V move by vectors vec(Fl), vec(Fr) where
182
//    vec(Fl) = (Wr/w) * [ (Vx+Wl)-Wl*H, Vy ] = (Wr/w) * [ Wl*Vy / (h+Vy) + Vx, Vy ]
183
//    vec(Fr) = (Wl/w) * [ (Vx-Wr)+Wr*H, Vy ] = (Wl/w) * [-Wr*Vy / (h+Vy) + Vx, Vy ]
184
//
185 f6cac1f6 Leszek Koltunski
//    Lets now denote M+vec(V) = M'. The line segment LMR gets distorted to the curve Fl-M'-Fr. Let's
186
//    now arbitrarilly decide that:
187 6a06a912 Leszek Koltunski
//    a) at point Fl the curve has to be parallel to line LM'
188
//    b) at point M' - to line LR
189
//    c) at point Fr - to line M'R
190
//
191 f6cac1f6 Leszek Koltunski
//    Now if Fl=(flx,fly) , M'=(mx,my) , Fr=(frx,fry); direction vector at Fl is (vx,vy) and at M'
192
//    is (+c,0) where +c is some positive constant, then  the parametric equations of the Fl--->M'
193
//    section of the curve (which has to satisfy (X(0),Y(0)) = Fl, (X(1),Y(1))=M',
194
//    (X'(0),Y'(0)) = (vx,vy), (X'(1),Y'(1)) = (+c,0) ) is
195 6a06a912 Leszek Koltunski
//
196
//    X(t) = ( (mx-flx)-vx )t^2 + vx*t + flx                                  (*)
197
//    Y(t) = ( vy - 2(my-fly) )t^3 + ( 3(my-fly) -2vy )t^2 + vy*t + fly
198
//
199 f6cac1f6 Leszek Koltunski
//    Here we have to have X'(1) = 2(mx-flx)-vx which is positive <==> vx<2(mx-flx). We also have to
200
//    have vy<2(my-fly) so that Y'(t)>0 (this is a must otherwise we have local loops!)
201
//    Similarly for the Fr--->M' part of the curve we have the same equation except for the fact that
202 3ea19d1c Leszek Koltunski
//    this time we have to have X'(1)<0 so now we have to have vx>2(mx-frx).
203 6a06a912 Leszek Koltunski
//
204 f6cac1f6 Leszek Koltunski
//    If we are stretching the left or right edge of the bitmap then the only difference is that we
205
//    have to have (X'(1),Y'(1)) = (0,+-c) with + or - c depending on which part of the curve
206 6a06a912 Leszek Koltunski
//    we are tracing. Then the parametric equation is
207
//
208
//    X(t) = ( vx - 2(mx-flx) )t^3 + ( 3(mx-flx) -2vx )t^2 + vx*t + flx
209
//    Y(t) = ( (my-fly)-vy )t^2 + vy*t + fly
210
//
211
//    If we are dragging the top edge:    
212
//
213 3ea19d1c Leszek Koltunski
//    Then point (x,h/2) on the top edge will move by vector (X(t),Y(t)) where those functions are
214
//    given by (*) and t =  x < dSx ? (w/2+x)/(w/2+dSx) : (w/2-x)/(w/2-dSx)    (-w/2 < x < +w/2 !)
215 f6cac1f6 Leszek Koltunski
//    (this is 'vec2 time' below in the code).
216 3ea19d1c Leszek Koltunski
//    Any point (x,y) will move by vector (a*X(t),a*Y(t)) where a is (y+h/2)/h
217 6a06a912 Leszek Koltunski
  
218
void deform(in int effect, inout vec4 v)
219
  {
220 dbeddd9d Leszek Koltunski
  const float A = 0.5;
221
  const float B = 0.3;
222
223 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
224 dbeddd9d Leszek Koltunski
  vec2 force  = vUniforms[effect].xy;
225
  vec2 dist   = center-v.xy;
226
  vec2 aDist  = abs(dist.xy);
227
  vec2 maxdist= u_objD.xy + abs(center);
228
  vec2 aForce = abs(force);
229
230
  vec2 Aw = A*maxdist;
231
  vec2 quot = dist / maxdist;
232
233
  float mvXvert =-((B*dist.x*aForce.y)/(aForce.y + Aw.x))*(1.0-quot.y*quot.y);
234
  float mvYvert = force.y*( 1.0 - quot.x*quot.x*(Aw.x/(aForce.y+Aw.x)) ) * aForce.y/(aForce.y+aDist.y);
235
236
  float mvXhorz =-force.x*( 1.0 - quot.y*quot.y*(Aw.y/(aForce.x+Aw.y)) ) * aForce.x/(aForce.x+aDist.x);
237
  float mvYhorz =-((B*dist.y*aForce.x)/(aForce.x + Aw.y))*(1.0-quot.x*quot.x);
238
239
  v.x -= (mvXvert+mvXhorz);
240
  v.y -= (mvYvert+mvYhorz);
241 6a06a912 Leszek Koltunski
  }
242
243
//////////////////////////////////////////////////////////////////////////////////////////////
244 341c803d Leszek Koltunski
// DISTORT EFFECT
245 6a06a912 Leszek Koltunski
//
246
// Point (Px,Py) gets moved by vector (Wx,Wy,Wz) where Wx/Wy = Vx/Vy i.e. Wx=aVx and Wy=aVy where 
247
// a=Py/Sy (N --> when (Px,Py) is above (Sx,Sy)) or a=Px/Sx (W) or a=(w-Px)/(w-Sx) (E) or a=(h-Py)/(h-Sy) (S) 
248
// It remains to be computed which of the N,W,E or S case we have: answer: a = min[ Px/Sx , Py/Sy , (w-Px)/(w-Sx) , (h-Py)/(h-Sy) ]
249
// Computations above are valid for screen (0,0)x(w,h) but here we have (-w/2,-h/2)x(w/2,h/2)
250
//  
251
// the vertical part
252
// Let |(v.x,v.y),(ux,uy)| = |PS|, ux-v.x=dx,uy-v.y=dy, f(x) (0<=x<=|SX|) be the shape of the side of the bubble.
253
// H(v.x,v.y) = |PS|>|SX| ? 0 : f(|PX|)
254
// N(v.x,v.y) = |PS|>|SX| ? (0,0,1) : ( -(dx/|PS|)sin(beta), -(dy/|PS|)sin(beta), cos(beta) ) where tan(beta) is f'(|PX|) 
255
// ( i.e. normalize( dx, dy, -|PS|/f'(|PX|))         
256
//
257
// Now we also have to take into account the effect horizontal move by V=(u_dVx[i],u_dVy[i]) will have on the normal vector.
258
// Solution: 
259
// 1. Decompose the V into two subcomponents, one parallel to SX and another perpendicular.
260
// 2. Convince yourself (draw!) that the perpendicular component has no effect on normals.
261 30925500 Leszek Koltunski
// 3. The parallel component changes the length of |SX| by the factor of a=(|SX|-|Vpar|)/|SX| (where the length
262
//    can be negative depending on the direction)
263 6a06a912 Leszek Koltunski
// 4. that in turn leaves the x and y parts of the normal unchanged and multiplies the z component by a!
264
//
265
// |Vpar| = (u_dVx[i]*dx - u_dVy[i]*dy) / sqrt(ps_sq) = (Vx*dx-Vy*dy)/ sqrt(ps_sq)  (-Vy because y is inverted)
266
// a =  (|SX| - |Vpar|)/|SX| = 1 - |Vpar|/((sqrt(ps_sq)/(1-d)) = 1 - (1-d)*|Vpar|/sqrt(ps_sq) = 1-(1-d)*(Vx*dx-Vy*dy)/ps_sq 
267
//
268
// Side of the bubble
269
// 
270
// choose from one of the three bubble shapes: the cone, the thin bubble and the thick bubble          
271
// Case 1: 
272
// f(t) = t, i.e. f(x) = uz * x/|SX|   (a cone)
273
// -|PS|/f'(|PX|) = -|PS|*|SX|/uz but since ps_sq=|PS|^2 and d=|PX|/|SX| then |PS|*|SX| = ps_sq/(1-d)
274
// so finally -|PS|/f'(|PX|) = -ps_sq/(uz*(1-d))
275
//                    
276
// Case 2: 
277
// f(t) = 3t^2 - 2t^3 --> f(0)=0, f'(0)=0, f'(1)=0, f(1)=1 (the bell curve)
278
// here we have t = x/|SX| which makes f'(|PX|) = 6*uz*|PS|*|PX|/|SX|^3.
279
// so -|PS|/f'(|PX|) = (-|SX|^3)/(6uz|PX|) =  (-|SX|^2) / (6*uz*d) but
280
// d = |PX|/|SX| and ps_sq = |PS|^2 so |SX|^2 = ps_sq/(1-d)^2
281
// so finally -|PS|/f'(|PX|) = -ps_sq/ (6uz*d*(1-d)^2)
282
//                  
283
// Case 3:
284 73af5285 Leszek Koltunski
// f(t) = 3t^4-8t^3+6t^2 would be better as this satisfies f(0)=0, f'(0)=0, f'(1)=0, f(1)=1,
285 30925500 Leszek Koltunski
// f(0.5)=0.7 and f'(t)= t(t-1)^2 >=0 for t>=0 so this produces a fuller, thicker bubble!
286 6a06a912 Leszek Koltunski
// then -|PS|/f'(|PX|) = (-|PS|*|SX)) / (12uz*d*(d-1)^2) but |PS|*|SX| = ps_sq/(1-d) (see above!) 
287
// so finally -|PS|/f'(|PX|) = -ps_sq/ (12uz*d*(1-d)^3)  
288
//
289
// Now, new requirement: we have to be able to add up normal vectors, i.e. distort already distorted surfaces.
290 73af5285 Leszek Koltunski
// If a surface is given by z = f(x,y), then the normal vector at (x0,y0) is given by (-df/dx (x0,y0), -df/dy (x0,y0), 1 ).
291 6a06a912 Leszek Koltunski
// so if we have two surfaces defined by f1(x,y) and f2(x,y) with their normals expressed as (f1x,f1y,1) and (f2x,f2y,1) 
292 73af5285 Leszek Koltunski
// then the normal to g = f1+f2 is simply given by (f1x+f2x,f1y+f2y,1), i.e. if the third components are equal, then we
293
// can simply add up the first and second components.
294 6a06a912 Leszek Koltunski
//
295 30925500 Leszek Koltunski
// Thus we actually want to compute N(v.x,v.y) = a*(-(dx/|PS|)*f'(|PX|), -(dy/|PS|)*f'(|PX|), 1) and keep adding
296
// the first two components. (a is the horizontal part)
297 6a06a912 Leszek Koltunski
        
298
void distort(in int effect, inout vec4 v, inout vec4 n)
299
  {
300 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
301 4fde55a0 Leszek Koltunski
  vec2 ps = center-v.xy;
302 a7067deb Leszek Koltunski
  vec3 force = vUniforms[effect].xyz;
303 4fde55a0 Leszek Koltunski
  float d = degree(vUniforms[effect+2],center,ps);
304 a7067deb Leszek Koltunski
  float denom = dot(ps+(1.0-d)*force.xy,ps);
305
  float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));          // = denom==0 ? 1000:1/denom;
306 30925500 Leszek Koltunski
307 a7067deb Leszek Koltunski
  //v.z += force.z*d;                                                  // cone
308
  //b = -(force.z*(1.0-d))*one_over_denom;                             //
309 6a06a912 Leszek Koltunski
        
310 a7067deb Leszek Koltunski
  //v.z += force.z*d*d*(3.0-2.0*d);                                    // thin bubble
311
  //b = -(6.0*force.z*d*(1.0-d)*(1.0-d))*one_over_denom;               //
312 6a06a912 Leszek Koltunski
        
313 a7067deb Leszek Koltunski
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                            // thick bubble
314
  float b = -(12.0*force.z*d*(1.0-d)*(1.0-d)*(1.0-d))*one_over_denom;  //
315 6a06a912 Leszek Koltunski
                
316 a7067deb Leszek Koltunski
  v.xy += d*force.xy;
317
  n.xy += n.z*b*ps;
318 6a06a912 Leszek Koltunski
  }
319
 
320
//////////////////////////////////////////////////////////////////////////////////////////////
321 341c803d Leszek Koltunski
// SINK EFFECT
322
//
323 82ee855a Leszek Koltunski
// Pull P=(v.x,v.y) towards center of the effect with P' = P + (1-h)*dist(S-P)
324
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(S-P)
325 6a06a912 Leszek Koltunski
 
326
void sink(in int effect,inout vec4 v)
327
  {
328 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
329 4fde55a0 Leszek Koltunski
  vec2 ps = center-v.xy;
330 6a06a912 Leszek Koltunski
  float h = vUniforms[effect].x;
331 4fde55a0 Leszek Koltunski
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
332 6a06a912 Leszek Koltunski
  
333
  v.xy += t*ps;           
334
  }
335
336 82ee855a Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
337
// PINCH EFFECT
338
//
339
// Pull P=(v.x,v.y) towards the line that
340
// a) passes through the center of the effect
341
// b) forms angle defined in the 2nd interpolated value with the X-axis
342
// with P' = P + (1-h)*dist(line to P)
343
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(line to P)
344
345
void pinch(in int effect,inout vec4 v)
346
  {
347
  vec2 center = vUniforms[effect+1].yz;
348
  vec2 ps = center-v.xy;
349
  float h = vUniforms[effect].x;
350
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
351
  float angle = vUniforms[effect].y;
352
  vec2 dir = vec2(sin(angle),-cos(angle));
353
354
  v.xy += t*dot(ps,dir)*dir;
355
  }
356
357 6a06a912 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
358 341c803d Leszek Koltunski
// SWIRL EFFECT
359 6a06a912 Leszek Koltunski
//
360
// Let d be the degree of the current vertex V with respect to center of the effect S and Region vRegion.
361
// This effect rotates the current vertex V by vInterpolated.x radians clockwise around the circle dilated 
362
// by (1-d) around the center of the effect S.
363
364 ff8ad0a7 Leszek Koltunski
void swirl(in int effect, inout vec4 v)
365 6a06a912 Leszek Koltunski
  {
366 fa6c352d Leszek Koltunski
  vec2 center  = vUniforms[effect+1].yz;
367 4fde55a0 Leszek Koltunski
  vec2 PS = center-v.xy;
368
  vec4 SO = vUniforms[effect+2];
369 6a06a912 Leszek Koltunski
  float d1_circle = degree_region(SO,PS);
370 4fde55a0 Leszek Koltunski
  float d1_bitmap = degree_bitmap(center,PS);
371 5b1c0f47 Leszek Koltunski
372
  float alpha = vUniforms[effect].x;
373
  float sinA = sin(alpha);
374
  float cosA = cos(alpha);
375
376 4fde55a0 Leszek Koltunski
  vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around center.
377
  vec4 SG = (1.0-d1_circle)*SO;                                // coordinates of the dilated circle P is going to get rotated around
378
  float d2 = max(0.0,degree(SG,center,PS2));                   // make it a max(0,deg) because otherwise when center=left edge of the
379 20af7b69 Leszek Koltunski
                                                               // bitmap some points end up with d2<0 and they disappear off view.
380 4fde55a0 Leszek Koltunski
  v.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2));        // if d2=1 (i.e P=center) we should have P unchanged. How to do it?
381
  }
382
383
//////////////////////////////////////////////////////////////////////////////////////////////
384
// WAVE EFFECT
385
//
386
// Directional sinusoidal wave effect.
387 73af5285 Leszek Koltunski
//
388
// This is an effect from a (hopefully!) generic family of effects of the form (vec3 V: |V|=1 , f(x,y) )  (*)
389
// i.e. effects defined by a unit vector and an arbitrary function. Those effects are defined to move each
390
// point (x,y,0) of the XY plane to the point (x,y,0) + V*f(x,y).
391
//
392
// In this case V is defined by angles A and B (sines and cosines of which are precomputed in
393
// EffectQueueVertex and passed in the uniforms).
394
// Let's move V to start at the origin O, let point C be the endpoint of V, and let C' be C's projection
395
// to the XY plane. Then A is defined to be the angle C0C' and angle B is the angle C'O(axisY).
396
//
397
// Also, in this case f(x,y) = amplitude*sin(x/length), with those 2 parameters passed in uniforms.
398
//
399 57297c51 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
400 73af5285 Leszek Koltunski
// How to compute any generic effect of type (*)
401 57297c51 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
402 73af5285 Leszek Koltunski
//
403
// By definition, the vertices move by f(x,y)*V.
404
//
405
// Normals are much more complicated.
406 57297c51 Leszek Koltunski
// Let angle X be the angle (0,Vy,Vz)(0,Vy,0)(Vx,Vy,Vz).
407
// Let angle Y be the angle (Vx,0,Vz)(Vx,0,0)(Vx,Vy,Vz).
408 73af5285 Leszek Koltunski
//
409
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
410
// has 2 tangent vectors given by
411
//
412 c6ea3680 Leszek Koltunski
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
413
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
414 73af5285 Leszek Koltunski
//
415
// and then obviously the normal N is given by N= SX x SY .
416
//
417
// We still need to remember the note from the distort function about adding up normals:
418
// we first need to 'normalize' the normals to make their third components equal, and then we
419
// simply add up the first and the second component while leaving the third unchanged.
420
//
421
// How to see facts (**) and (***) ? Briefly:
422
// a) compute the 2D analogon and conclude that in this case the tangent SX is given by
423
//    SX = ( cosA*f'(x) +1, sinA*f'(x) )    (where A is the angle vector V makes with X axis )
424
// b) cut the resulting surface with plane P which
425
//    - includes vector V
426
//    - crosses plane XY along line parallel to X axis
427
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
428
//    and our surface (I am talking about the tangent vector which belongs to P) is given by
429 c6ea3680 Leszek Koltunski
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
430
//
431
//    Matrix of rotation:
432
//
433
//    |sinY|  cosY
434
//    -cosY  |sinY|
435
//
436 73af5285 Leszek Koltunski
// d) compute the above and see that this is equal precisely to SX from (**).
437
// e) repeat points b,c,d in direction Y and come up with (***).
438 f256e1a5 Leszek Koltunski
//
439 5b1c0f47 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
440 f256e1a5 Leszek Koltunski
// Note: we should avoid passing certain combinations of parameters to this function. One such known
441
// combination is ( A: small but positive, B: any, amplitude >= length ).
442
// In this case, certain 'unlucky' points have their normals almost horizontal (they got moved by (almost!)
443
// amplitude, and other point length (i.e. <=amplitude) away got moved by 0, so the slope in this point is
444
// very steep). Visual effect is: vast majority of surface pretty much unchanged, but random 'unlucky'
445
// points very dark)
446
//
447
// Generally speaking I'd keep to amplitude < length, as the opposite case has some other problems as well.
448 4fde55a0 Leszek Koltunski
449 9ea4f88f Leszek Koltunski
void wave(in int effect, inout vec4 v, inout vec4 n)
450 4fde55a0 Leszek Koltunski
  {
451 fa6c352d Leszek Koltunski
  vec2 center     = vUniforms[effect+1].yz;
452 02ef26bc Leszek Koltunski
  float amplitude = vUniforms[effect  ].x;
453 d0c902b8 Leszek Koltunski
  float length    = vUniforms[effect  ].y;
454 02ef26bc Leszek Koltunski
455 06d71892 Leszek Koltunski
  vec2 ps = center - v.xy;
456 9ea4f88f Leszek Koltunski
  float deg = amplitude*degree_region(vUniforms[effect+2],ps);
457 815869cb Leszek Koltunski
458 39b80df0 Leszek Koltunski
  if( deg != 0.0 && length != 0.0 )
459 9ea4f88f Leszek Koltunski
    {
460 ea16dc89 Leszek Koltunski
    float phase = vUniforms[effect  ].z;
461 350cc2f5 Leszek Koltunski
    float alpha = vUniforms[effect  ].w;
462
    float beta  = vUniforms[effect+1].x;
463 5b1c0f47 Leszek Koltunski
464
    float sinA = sin(alpha);
465
    float cosA = cos(alpha);
466
    float sinB = sin(beta);
467
    float cosB = cos(beta);
468 39b80df0 Leszek Koltunski
469 ea16dc89 Leszek Koltunski
    float angle= 1.578*(ps.x*cosB-ps.y*sinB) / length + phase;
470 57297c51 Leszek Koltunski
471 350cc2f5 Leszek Koltunski
    vec3 dir= vec3(sinB*cosA,cosB*cosA,sinA);
472 39b80df0 Leszek Koltunski
473
    v.xyz += sin(angle)*deg*dir;
474
475 73af5285 Leszek Koltunski
    if( n.z != 0.0 )
476
      {
477
      float sqrtX = sqrt(dir.y*dir.y + dir.z*dir.z);
478
      float sqrtY = sqrt(dir.x*dir.x + dir.z*dir.z);
479 39b80df0 Leszek Koltunski
480 73af5285 Leszek Koltunski
      float sinX = ( sqrtY==0.0 ? 0.0 : dir.z / sqrtY);
481
      float cosX = ( sqrtY==0.0 ? 1.0 : dir.x / sqrtY);
482
      float sinY = ( sqrtX==0.0 ? 0.0 : dir.z / sqrtX);
483
      float cosY = ( sqrtX==0.0 ? 1.0 : dir.y / sqrtX);
484 39b80df0 Leszek Koltunski
485 57297c51 Leszek Koltunski
      float abs_z = dir.z <0.0 ? -(sinX*sinY) : (sinX*sinY);
486 c6ea3680 Leszek Koltunski
487 73af5285 Leszek Koltunski
      float tmp = 1.578*cos(angle)*deg/length;
488 39b80df0 Leszek Koltunski
489 57297c51 Leszek Koltunski
      float fx =-cosB*tmp;
490 73af5285 Leszek Koltunski
      float fy = sinB*tmp;
491 39b80df0 Leszek Koltunski
492 57297c51 Leszek Koltunski
      vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,abs_z*fx);
493
      vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,abs_z*fy);
494 39b80df0 Leszek Koltunski
495 73af5285 Leszek Koltunski
      vec3 normal = cross(sx,sy);
496 39b80df0 Leszek Koltunski
497 fe3cee39 Leszek Koltunski
      if( normal.z<=0.0 )                   // Why this bizarre shit rather than the straightforward
498
        {                                   //
499
        normal.x= 0.0;                      // if( normal.z>0.0 )
500
        normal.y= 0.0;                      //   {
501
        normal.z= 1.0;                      //   n.x = (n.x*normal.z + n.z*normal.x);
502
        }                                   //   n.y = (n.y*normal.z + n.z*normal.y);
503
                                            //   n.z = (n.z*normal.z);
504
                                            //   }
505
      n.x = (n.x*normal.z + n.z*normal.x);  //
506
      n.y = (n.y*normal.z + n.z*normal.y);  // ? Because if we do the above, my shitty Nexus4 crashes
507
      n.z = (n.z*normal.z);                 // during shader compilation!
508 39b80df0 Leszek Koltunski
      }
509 9ea4f88f Leszek Koltunski
    }
510 6a06a912 Leszek Koltunski
  }
511
512
#endif
513
514
//////////////////////////////////////////////////////////////////////////////////////////////
515
  		  
516
void main()                                                 	
517
  {              
518 0318e7e3 Leszek Koltunski
  vec4 v = vec4( 2.0*u_objD*a_Position,1.0 );
519 6a06a912 Leszek Koltunski
  vec4 n = vec4(a_Normal,0.0);
520
521
#if NUM_VERTEX>0
522
  for(int i=0; i<vNumEffects; i++)
523
    {
524
         if( vType[i]==DISTORT) distort(3*i,v,n);
525 341c803d Leszek Koltunski
    else if( vType[i]==DEFORM ) deform (3*i,v);
526
    else if( vType[i]==SINK   ) sink   (3*i,v);
527 82ee855a Leszek Koltunski
    else if( vType[i]==PINCH  ) pinch  (3*i,v);
528 341c803d Leszek Koltunski
    else if( vType[i]==SWIRL  ) swirl  (3*i,v);
529 9ea4f88f Leszek Koltunski
    else if( vType[i]==WAVE   ) wave   (3*i,v,n);
530 6a06a912 Leszek Koltunski
    }
531
 
532 291705f6 Leszek Koltunski
  restrictZ(v.z);
533 6a06a912 Leszek Koltunski
#endif
534
   
535 77fcb24d Leszek Koltunski
  v_Position      = v.xyz;
536 2dacdeb2 Leszek Koltunski
  v_TexCoordinate = a_TexCoordinate;
537 6a06a912 Leszek Koltunski
  v_Normal        = normalize(vec3(u_MVMatrix*n));
538
  gl_Position     = u_MVPMatrix*v;      
539 d333eb6b Leszek Koltunski
  }