Project

General

Profile

Download (26.6 KB) Statistics
| Branch: | Revision:

library / src / main / res / raw / main_vertex_shader.glsl @ f6cac1f6

1 d333eb6b Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                          //
3
//                                                                                          //
4
// This file is part of Distorted.                                                          //
5
//                                                                                          //
6
// Distorted is free software: you can redistribute it and/or modify                        //
7
// it under the terms of the GNU General Public License as published by                     //
8
// the Free Software Foundation, either version 2 of the License, or                        //
9
// (at your option) any later version.                                                      //
10
//                                                                                          //
11
// Distorted is distributed in the hope that it will be useful,                             //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                           //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                            //
14
// GNU General Public License for more details.                                             //
15
//                                                                                          //
16
// You should have received a copy of the GNU General Public License                        // 
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                       //
18
//////////////////////////////////////////////////////////////////////////////////////////////
19
20 f6cac1f6 Leszek Koltunski
uniform vec3 u_objD;                 // half of object width x half of object height X half the depth;
21
                                     // point (0,0,0) is the center of the object
22 6a06a912 Leszek Koltunski
23 f6cac1f6 Leszek Koltunski
uniform float u_Depth;               // max absolute value of v.z ; beyond that the vertex would be culled by the near or far planes.
24
                                     // I read OpenGL ES has a built-in uniform variable gl_DepthRange.near = n,
25
                                     // .far = f, .diff = f-n so maybe u_Depth is redundant
26
                                     // Update: this struct is only available in fragment shaders
27 6a06a912 Leszek Koltunski
                                
28 f6cac1f6 Leszek Koltunski
uniform mat4 u_MVPMatrix;            // A constant representing the combined model/view/projection matrix.
29
uniform mat4 u_MVMatrix;             // A constant representing the combined model/view matrix.
30 6a06a912 Leszek Koltunski
		 
31 f6cac1f6 Leszek Koltunski
attribute vec3 a_Position;           // Per-vertex position information we will pass in.
32
attribute vec3 a_Normal;             // Per-vertex normal information we will pass in.
33
attribute vec2 a_TexCoordinate;      // Per-vertex texture coordinate information we will pass in.
34 6a06a912 Leszek Koltunski
		  
35 f6cac1f6 Leszek Koltunski
varying vec3 v_Position;             //
36
varying vec3 v_Normal;               //
37
varying vec2 v_TexCoordinate;        //
38 6a06a912 Leszek Koltunski
39 f6cac1f6 Leszek Koltunski
uniform int vNumEffects;             // total number of vertex effects
40 6a06a912 Leszek Koltunski
41
#if NUM_VERTEX>0
42 f6cac1f6 Leszek Koltunski
uniform int vType[NUM_VERTEX];       // their types.
43
uniform vec4 vUniforms[3*NUM_VERTEX];// i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
44
                                     // The first vec4 is the Interpolated values,
45
                                     // next is half cache half Center, the third -  the Region.
46 6a06a912 Leszek Koltunski
#endif
47
48
#if NUM_VERTEX>0
49 341c803d Leszek Koltunski
50
//////////////////////////////////////////////////////////////////////////////////////////////
51
// HELPER FUNCTIONS
52
//////////////////////////////////////////////////////////////////////////////////////////////
53 9420f2fe Leszek Koltunski
// The trick below is the if-less version of the
54 341c803d Leszek Koltunski
//
55
// t = dx<0.0 ? (u_objD.x-v.x) / (u_objD.x-ux) : (u_objD.x+v.x) / (u_objD.x+ux);
56
// h = dy<0.0 ? (u_objD.y-v.y) / (u_objD.y-uy) : (u_objD.y+v.y) / (u_objD.y+uy);
57
// d = min(t,h);
58
//
59
// float d = min(-ps.x/(sign(ps.x)*u_objD.x+p.x),-ps.y/(sign(ps.y)*u_objD.y+p.y))+1.0;
60
//
61
// We still have to avoid division by 0 when p.x = +- u_objD.x or p.y = +- u_objD.y (i.e on the edge of the Object)
62
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
63
//
64
//////////////////////////////////////////////////////////////////////////////////////////////
65
// return degree of the point as defined by the bitmap rectangle
66
67
float degree_bitmap(in vec2 S, in vec2 PS)
68
  {
69
  vec2 A = sign(PS)*u_objD.xy + S;
70
71 369ee56a Leszek Koltunski
  vec2 signA = sign(A);                           //
72
  vec2 signA_SQ = signA*signA;                    // div = PS/A if A!=0, 0 otherwise.
73 20af7b69 Leszek Koltunski
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));//
74 369ee56a Leszek Koltunski
75
  return 1.0-max(div.x,div.y);
76 341c803d Leszek Koltunski
  }
77
78
//////////////////////////////////////////////////////////////////////////////////////////////
79 9420f2fe Leszek Koltunski
// Return degree of the point as defined by the Region. Currently only supports circular regions.
80
//
81 73af5285 Leszek Koltunski
// Let us first introduce some notation.
82 9420f2fe Leszek Koltunski
// Let 'PS' be the vector from point P (the current vertex) to point S (the center of the effect).
83
// Let region.xy be the vector from point S to point O (the center point of the region circle)
84
// Let region.z be the radius of the region circle.
85 73af5285 Leszek Koltunski
// (This all should work regardless if S is inside or outside of the circle).
86
//
87
// Then, the degree of a point with respect to a given (circular!) Region is defined by:
88 9420f2fe Leszek Koltunski
//
89
// If P is outside the circle, return 0.
90 73af5285 Leszek Koltunski
// Otherwise, let X be the point where the halfline SP meets the region circle - then return |PX|/||SX|,
91 9420f2fe Leszek Koltunski
// aka the 'degree' of point P.
92
//
93 ff8ad0a7 Leszek Koltunski
// We solve the triangle OPX.
94 9420f2fe Leszek Koltunski
// We know the lengths |PO|, |OX| and the angle OPX, because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
95
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so PX = -a + sqrt(a^2 + OX^2 - PO^2)
96
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
97
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
98 341c803d Leszek Koltunski
99 4fde55a0 Leszek Koltunski
float degree_region(in vec4 region, in vec2 PS)
100 341c803d Leszek Koltunski
  {
101
  vec2 PO  = PS + region.xy;
102
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
103 9420f2fe Leszek Koltunski
104
  if( D<=0.0 ) return 0.0;
105
106 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
107 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
108
                                                         // Important: if we want to write
109
                                                         // b = 1/a if a!=0, b=1 otherwise
110
                                                         // we need to write that as
111
                                                         // b = 1 / ( a-(sign(a)-1) )
112
                                                         // [ and NOT 1 / ( a + 1 - sign(a) ) ]
113
                                                         // because the latter, if 0<a<2^-24,
114
                                                         // will suffer from round-off error and in this case
115
                                                         // a + 1.0 = 1.0 !! so 1 / (a+1-sign(a)) = 1/0 !
116 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
117 341c803d Leszek Koltunski
118 9420f2fe Leszek Koltunski
  return 1.0 / (1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
119 341c803d Leszek Koltunski
  }
120
121
//////////////////////////////////////////////////////////////////////////////////////////////
122
// return min(degree_bitmap,degree_region). Just like degree_region, currently only supports circles.
123
124 4fde55a0 Leszek Koltunski
float degree(in vec4 region, in vec2 S, in vec2 PS)
125 341c803d Leszek Koltunski
  {
126
  vec2 PO  = PS + region.xy;
127
  float D = region.z*region.z-dot(PO,PO);      // D = |OX|^2 - |PO|^2
128 9420f2fe Leszek Koltunski
129
  if( D<=0.0 ) return 0.0;
130
131 341c803d Leszek Koltunski
  vec2 A = sign(PS)*u_objD.xy + S;
132 369ee56a Leszek Koltunski
  vec2 signA = sign(A);
133
  vec2 signA_SQ = signA*signA;
134 20af7b69 Leszek Koltunski
  vec2 div = signA_SQ*PS/(A-(vec2(1,1)-signA_SQ));
135 369ee56a Leszek Koltunski
  float E = 1.0-max(div.x,div.y);
136
137 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
138 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
139 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
140 341c803d Leszek Koltunski
141 9420f2fe Leszek Koltunski
  return min(1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT)),E);
142 341c803d Leszek Koltunski
  }
143
144
//////////////////////////////////////////////////////////////////////////////////////////////
145
// Clamp v.z to (-u_Depth,u_Depth) with the following function:
146
// define h to be, say, 0.7; let H=u_Depth
147
//      if v.z < -hH then v.z = (-(1-h)^2 * H^2)/(v.z+(2h-1)H) -H   (function satisfying f(-hH)=-hH, f'(-hH)=1, lim f(x) = -H)
148
// else if v.z >  hH then v.z = (-(1-h)^2 * H^2)/(v.z-(2h-1)H) +H   (function satisfying f(+hH)=+hH, f'(+hH)=1, lim f(x) = +H)
149
// else v.z = v.z
150
151 291705f6 Leszek Koltunski
void restrictZ(inout float v)
152 341c803d Leszek Koltunski
  {
153
  const float h = 0.7;
154
  float signV = 2.0*max(0.0,sign(v))-1.0;
155
  float c = ((1.0-h)*(h-1.0)*u_Depth*u_Depth)/(v-signV*(2.0*h-1.0)*u_Depth) +signV*u_Depth;
156
  float b = max(0.0,sign(abs(v)-h*u_Depth));
157
158
  v = b*c+(1.0-b)*v; // Avoid branching: if abs(v)>h*u_Depth, then v=c; otherwise v=v.
159
  }
160
161 6a06a912 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
162 341c803d Leszek Koltunski
// DEFORM EFFECT
163
//
164 cd174a64 Leszek Koltunski
// Deform the whole shape of the Object by force V
165 6a06a912 Leszek Koltunski
// 
166 f6cac1f6 Leszek Koltunski
// If the point of application (Sx,Sy) is on the upper edge of the Object, then:
167 6a06a912 Leszek Koltunski
// a) ignore Vz
168 cd174a64 Leszek Koltunski
// b) change shape of the whole Object in the following way:
169 f6cac1f6 Leszek Koltunski
//    Suppose the upper-left corner of the Object rectangle is point L, upper-right - R, force vector V
170
//    is applied to point M on the upper edge, width of the Object = w, height = h, |LM| = Wl, |MR| = Wr,
171
//    force vector V=(Vx,Vy). Also let H = h/(h+Vy)
172 6a06a912 Leszek Koltunski
//
173
//    Let now L' and R' be points such that vec(LL') = Wr/w * vec(V) and vec(RR') = Wl/w * vec(V)
174
//    now let Vl be a point on the line segment L --> M+vec(V) such that Vl(y) = L'(y)
175
//    and let Vr be a point on the line segment R --> M+vec(V) such that Vr(y) = R'(y)
176
//    
177 f6cac1f6 Leszek Koltunski
//    Now define points Fl and Fr, the points L and R will be moved to under force V, with Fl(y)=L'(y)
178
//    and Fr(y)=R'(y) and |VrFr|/|VrR'| = |VlFl|/|VlL'| = H
179 6a06a912 Leszek Koltunski
//    Now notice that |VrR'| = |VlL'| = Wl*Wr / w   ( a little geometric puzzle! )
180
//
181
//    Then points L,R under force V move by vectors vec(Fl), vec(Fr) where
182
//    vec(Fl) = (Wr/w) * [ (Vx+Wl)-Wl*H, Vy ] = (Wr/w) * [ Wl*Vy / (h+Vy) + Vx, Vy ]
183
//    vec(Fr) = (Wl/w) * [ (Vx-Wr)+Wr*H, Vy ] = (Wl/w) * [-Wr*Vy / (h+Vy) + Vx, Vy ]
184
//
185 f6cac1f6 Leszek Koltunski
//    Lets now denote M+vec(V) = M'. The line segment LMR gets distorted to the curve Fl-M'-Fr. Let's
186
//    now arbitrarilly decide that:
187 6a06a912 Leszek Koltunski
//    a) at point Fl the curve has to be parallel to line LM'
188
//    b) at point M' - to line LR
189
//    c) at point Fr - to line M'R
190
//
191 f6cac1f6 Leszek Koltunski
//    Now if Fl=(flx,fly) , M'=(mx,my) , Fr=(frx,fry); direction vector at Fl is (vx,vy) and at M'
192
//    is (+c,0) where +c is some positive constant, then  the parametric equations of the Fl--->M'
193
//    section of the curve (which has to satisfy (X(0),Y(0)) = Fl, (X(1),Y(1))=M',
194
//    (X'(0),Y'(0)) = (vx,vy), (X'(1),Y'(1)) = (+c,0) ) is
195 6a06a912 Leszek Koltunski
//
196
//    X(t) = ( (mx-flx)-vx )t^2 + vx*t + flx                                  (*)
197
//    Y(t) = ( vy - 2(my-fly) )t^3 + ( 3(my-fly) -2vy )t^2 + vy*t + fly
198
//
199 f6cac1f6 Leszek Koltunski
//    Here we have to have X'(1) = 2(mx-flx)-vx which is positive <==> vx<2(mx-flx). We also have to
200
//    have vy<2(my-fly) so that Y'(t)>0 (this is a must otherwise we have local loops!)
201
//    Similarly for the Fr--->M' part of the curve we have the same equation except for the fact that
202
//    this time we have to have X'(1)<0 so now we have to have vx>2(mx-flx).
203 6a06a912 Leszek Koltunski
//
204 f6cac1f6 Leszek Koltunski
//    If we are stretching the left or right edge of the bitmap then the only difference is that we
205
//    have to have (X'(1),Y'(1)) = (0,+-c) with + or - c depending on which part of the curve
206 6a06a912 Leszek Koltunski
//    we are tracing. Then the parametric equation is
207
//
208
//    X(t) = ( vx - 2(mx-flx) )t^3 + ( 3(mx-flx) -2vx )t^2 + vx*t + flx
209
//    Y(t) = ( (my-fly)-vy )t^2 + vy*t + fly
210
//
211
//    If we are dragging the top edge:    
212
//
213 f6cac1f6 Leszek Koltunski
//    Now point (x,u_objD.x) on the top edge will move by vector (X(t),Y(t)) where those functions
214
//    are given by (*) and t =  x < dSx ? (u_objD.x+x)/(u_objD.x+dSx) : (u_objD.x-x)/(u_objD.x-dSx)
215
//    (this is 'vec2 time' below in the code).
216 0318e7e3 Leszek Koltunski
//    Any point (x,y) will move by vector (a*X(t),a*Y(t)) where a is (y+u_objD.y)/(2*u_objD.y)
217 6a06a912 Leszek Koltunski
  
218
void deform(in int effect, inout vec4 v)
219
  {
220 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
221 cd174a64 Leszek Koltunski
  vec2 force = vUniforms[effect].xy;    // force = vec(MM')
222 6a06a912 Leszek Koltunski
  vec2 vert_vec, horz_vec; 
223 cd174a64 Leszek Koltunski
  vec2 signXY = sign(center-v.xy);
224
  vec2 time = (u_objD.xy+signXY*v.xy)/(u_objD.xy+signXY*center);
225
  vec2 factorV = vec2(0.5,0.5) + (center*v.xy)/(4.0*u_objD.xy*u_objD.xy);
226
  vec2 factorD = (u_objD.xy-signXY*center)/(2.0*u_objD.xy);
227
  vec2 vert_d = factorD.x*force;
228
  vec2 horz_d = factorD.y*force;
229
  float dot = dot(force,force);
230
  vec2 corr = 0.33 * (center+force+signXY*u_objD.xy) * dot / ( dot + (4.0*u_objD.x*u_objD.x) ); // .x = the vector tangent to X(t) at Fl = 0.3*vec(LM')  (or vec(RM') if signXY.x=-1).
231
                                                                                                // .y = the vector tangent to X(t) at Fb = 0.3*vec(BM')  (or vec(TM') if signXY.y=-1)
232
                                                                                                // the scalar: make the length of the speed vectors at Fl and Fr be 0 when force vector 'force' is zero
233
  vert_vec.x = ( force.x-vert_d.x-corr.x )*time.x*time.x + corr.x*time.x + vert_d.x;
234
  horz_vec.y = (-force.y+horz_d.y+corr.y )*time.y*time.y - corr.y*time.y - horz_d.y;
235
  vert_vec.y = (-3.0*vert_d.y+2.0*force.y )*time.x*time.x*time.x + (-3.0*force.y+5.0*vert_d.y )*time.x*time.x - vert_d.y*time.x - vert_d.y;
236
  horz_vec.x = ( 3.0*horz_d.x-2.0*force.x )*time.y*time.y*time.y + ( 3.0*force.x-5.0*horz_d.x )*time.y*time.y + horz_d.x*time.y + horz_d.x;
237 6a06a912 Leszek Koltunski
  
238 cd174a64 Leszek Koltunski
  v.xy += (factorV.y*vert_vec + factorV.x*horz_vec);
239 6a06a912 Leszek Koltunski
  }
240
241
//////////////////////////////////////////////////////////////////////////////////////////////
242 341c803d Leszek Koltunski
// DISTORT EFFECT
243 6a06a912 Leszek Koltunski
//
244
// Point (Px,Py) gets moved by vector (Wx,Wy,Wz) where Wx/Wy = Vx/Vy i.e. Wx=aVx and Wy=aVy where 
245
// a=Py/Sy (N --> when (Px,Py) is above (Sx,Sy)) or a=Px/Sx (W) or a=(w-Px)/(w-Sx) (E) or a=(h-Py)/(h-Sy) (S) 
246
// It remains to be computed which of the N,W,E or S case we have: answer: a = min[ Px/Sx , Py/Sy , (w-Px)/(w-Sx) , (h-Py)/(h-Sy) ]
247
// Computations above are valid for screen (0,0)x(w,h) but here we have (-w/2,-h/2)x(w/2,h/2)
248
//  
249
// the vertical part
250
// Let |(v.x,v.y),(ux,uy)| = |PS|, ux-v.x=dx,uy-v.y=dy, f(x) (0<=x<=|SX|) be the shape of the side of the bubble.
251
// H(v.x,v.y) = |PS|>|SX| ? 0 : f(|PX|)
252
// N(v.x,v.y) = |PS|>|SX| ? (0,0,1) : ( -(dx/|PS|)sin(beta), -(dy/|PS|)sin(beta), cos(beta) ) where tan(beta) is f'(|PX|) 
253
// ( i.e. normalize( dx, dy, -|PS|/f'(|PX|))         
254
//
255
// Now we also have to take into account the effect horizontal move by V=(u_dVx[i],u_dVy[i]) will have on the normal vector.
256
// Solution: 
257
// 1. Decompose the V into two subcomponents, one parallel to SX and another perpendicular.
258
// 2. Convince yourself (draw!) that the perpendicular component has no effect on normals.
259 30925500 Leszek Koltunski
// 3. The parallel component changes the length of |SX| by the factor of a=(|SX|-|Vpar|)/|SX| (where the length
260
//    can be negative depending on the direction)
261 6a06a912 Leszek Koltunski
// 4. that in turn leaves the x and y parts of the normal unchanged and multiplies the z component by a!
262
//
263
// |Vpar| = (u_dVx[i]*dx - u_dVy[i]*dy) / sqrt(ps_sq) = (Vx*dx-Vy*dy)/ sqrt(ps_sq)  (-Vy because y is inverted)
264
// a =  (|SX| - |Vpar|)/|SX| = 1 - |Vpar|/((sqrt(ps_sq)/(1-d)) = 1 - (1-d)*|Vpar|/sqrt(ps_sq) = 1-(1-d)*(Vx*dx-Vy*dy)/ps_sq 
265
//
266
// Side of the bubble
267
// 
268
// choose from one of the three bubble shapes: the cone, the thin bubble and the thick bubble          
269
// Case 1: 
270
// f(t) = t, i.e. f(x) = uz * x/|SX|   (a cone)
271
// -|PS|/f'(|PX|) = -|PS|*|SX|/uz but since ps_sq=|PS|^2 and d=|PX|/|SX| then |PS|*|SX| = ps_sq/(1-d)
272
// so finally -|PS|/f'(|PX|) = -ps_sq/(uz*(1-d))
273
//                    
274
// Case 2: 
275
// f(t) = 3t^2 - 2t^3 --> f(0)=0, f'(0)=0, f'(1)=0, f(1)=1 (the bell curve)
276
// here we have t = x/|SX| which makes f'(|PX|) = 6*uz*|PS|*|PX|/|SX|^3.
277
// so -|PS|/f'(|PX|) = (-|SX|^3)/(6uz|PX|) =  (-|SX|^2) / (6*uz*d) but
278
// d = |PX|/|SX| and ps_sq = |PS|^2 so |SX|^2 = ps_sq/(1-d)^2
279
// so finally -|PS|/f'(|PX|) = -ps_sq/ (6uz*d*(1-d)^2)
280
//                  
281
// Case 3:
282 73af5285 Leszek Koltunski
// f(t) = 3t^4-8t^3+6t^2 would be better as this satisfies f(0)=0, f'(0)=0, f'(1)=0, f(1)=1,
283 30925500 Leszek Koltunski
// f(0.5)=0.7 and f'(t)= t(t-1)^2 >=0 for t>=0 so this produces a fuller, thicker bubble!
284 6a06a912 Leszek Koltunski
// then -|PS|/f'(|PX|) = (-|PS|*|SX)) / (12uz*d*(d-1)^2) but |PS|*|SX| = ps_sq/(1-d) (see above!) 
285
// so finally -|PS|/f'(|PX|) = -ps_sq/ (12uz*d*(1-d)^3)  
286
//
287
// Now, new requirement: we have to be able to add up normal vectors, i.e. distort already distorted surfaces.
288 73af5285 Leszek Koltunski
// If a surface is given by z = f(x,y), then the normal vector at (x0,y0) is given by (-df/dx (x0,y0), -df/dy (x0,y0), 1 ).
289 6a06a912 Leszek Koltunski
// so if we have two surfaces defined by f1(x,y) and f2(x,y) with their normals expressed as (f1x,f1y,1) and (f2x,f2y,1) 
290 73af5285 Leszek Koltunski
// then the normal to g = f1+f2 is simply given by (f1x+f2x,f1y+f2y,1), i.e. if the third components are equal, then we
291
// can simply add up the first and second components.
292 6a06a912 Leszek Koltunski
//
293 30925500 Leszek Koltunski
// Thus we actually want to compute N(v.x,v.y) = a*(-(dx/|PS|)*f'(|PX|), -(dy/|PS|)*f'(|PX|), 1) and keep adding
294
// the first two components. (a is the horizontal part)
295 6a06a912 Leszek Koltunski
        
296
void distort(in int effect, inout vec4 v, inout vec4 n)
297
  {
298 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
299 4fde55a0 Leszek Koltunski
  vec2 ps = center-v.xy;
300 a7067deb Leszek Koltunski
  vec3 force = vUniforms[effect].xyz;
301 4fde55a0 Leszek Koltunski
  float d = degree(vUniforms[effect+2],center,ps);
302 a7067deb Leszek Koltunski
  float denom = dot(ps+(1.0-d)*force.xy,ps);
303
  float one_over_denom = 1.0/(denom-0.001*(sign(denom)-1.0));          // = denom==0 ? 1000:1/denom;
304 30925500 Leszek Koltunski
305 a7067deb Leszek Koltunski
  //v.z += force.z*d;                                                  // cone
306
  //b = -(force.z*(1.0-d))*one_over_denom;                             //
307 6a06a912 Leszek Koltunski
        
308 a7067deb Leszek Koltunski
  //v.z += force.z*d*d*(3.0-2.0*d);                                    // thin bubble
309
  //b = -(6.0*force.z*d*(1.0-d)*(1.0-d))*one_over_denom;               //
310 6a06a912 Leszek Koltunski
        
311 a7067deb Leszek Koltunski
  v.z += force.z*d*d*(3.0*d*d -8.0*d +6.0);                            // thick bubble
312
  float b = -(12.0*force.z*d*(1.0-d)*(1.0-d)*(1.0-d))*one_over_denom;  //
313 6a06a912 Leszek Koltunski
                
314 a7067deb Leszek Koltunski
  v.xy += d*force.xy;
315
  n.xy += n.z*b*ps;
316 6a06a912 Leszek Koltunski
  }
317
 
318
//////////////////////////////////////////////////////////////////////////////////////////////
319 341c803d Leszek Koltunski
// SINK EFFECT
320
//
321 82ee855a Leszek Koltunski
// Pull P=(v.x,v.y) towards center of the effect with P' = P + (1-h)*dist(S-P)
322
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(S-P)
323 6a06a912 Leszek Koltunski
 
324
void sink(in int effect,inout vec4 v)
325
  {
326 fa6c352d Leszek Koltunski
  vec2 center = vUniforms[effect+1].yz;
327 4fde55a0 Leszek Koltunski
  vec2 ps = center-v.xy;
328 6a06a912 Leszek Koltunski
  float h = vUniforms[effect].x;
329 4fde55a0 Leszek Koltunski
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
330 6a06a912 Leszek Koltunski
  
331
  v.xy += t*ps;           
332
  }
333
334 82ee855a Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
335
// PINCH EFFECT
336
//
337
// Pull P=(v.x,v.y) towards the line that
338
// a) passes through the center of the effect
339
// b) forms angle defined in the 2nd interpolated value with the X-axis
340
// with P' = P + (1-h)*dist(line to P)
341
// when h>1 we are pushing points away from S: P' = P + (1/h-1)*dist(line to P)
342
343
void pinch(in int effect,inout vec4 v)
344
  {
345
  vec2 center = vUniforms[effect+1].yz;
346
  vec2 ps = center-v.xy;
347
  float h = vUniforms[effect].x;
348
  float t = degree(vUniforms[effect+2],center,ps) * (1.0-h)/max(1.0,h);
349
  float angle = vUniforms[effect].y;
350
  vec2 dir = vec2(sin(angle),-cos(angle));
351
352
  v.xy += t*dot(ps,dir)*dir;
353
  }
354
355 6a06a912 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
356 341c803d Leszek Koltunski
// SWIRL EFFECT
357 6a06a912 Leszek Koltunski
//
358
// Let d be the degree of the current vertex V with respect to center of the effect S and Region vRegion.
359
// This effect rotates the current vertex V by vInterpolated.x radians clockwise around the circle dilated 
360
// by (1-d) around the center of the effect S.
361
362 ff8ad0a7 Leszek Koltunski
void swirl(in int effect, inout vec4 v)
363 6a06a912 Leszek Koltunski
  {
364 fa6c352d Leszek Koltunski
  vec2 center  = vUniforms[effect+1].yz;
365 4fde55a0 Leszek Koltunski
  vec2 PS = center-v.xy;
366
  vec4 SO = vUniforms[effect+2];
367 6a06a912 Leszek Koltunski
  float d1_circle = degree_region(SO,PS);
368 4fde55a0 Leszek Koltunski
  float d1_bitmap = degree_bitmap(center,PS);
369 5b1c0f47 Leszek Koltunski
370
  float alpha = vUniforms[effect].x;
371
  float sinA = sin(alpha);
372
  float cosA = cos(alpha);
373
374 4fde55a0 Leszek Koltunski
  vec2 PS2 = vec2( PS.x*cosA+PS.y*sinA,-PS.x*sinA+PS.y*cosA ); // vector PS rotated by A radians clockwise around center.
375
  vec4 SG = (1.0-d1_circle)*SO;                                // coordinates of the dilated circle P is going to get rotated around
376
  float d2 = max(0.0,degree(SG,center,PS2));                   // make it a max(0,deg) because otherwise when center=left edge of the
377 20af7b69 Leszek Koltunski
                                                               // bitmap some points end up with d2<0 and they disappear off view.
378 4fde55a0 Leszek Koltunski
  v.xy += min(d1_circle,d1_bitmap)*(PS - PS2/(1.0-d2));        // if d2=1 (i.e P=center) we should have P unchanged. How to do it?
379
  }
380
381
//////////////////////////////////////////////////////////////////////////////////////////////
382
// WAVE EFFECT
383
//
384
// Directional sinusoidal wave effect.
385 73af5285 Leszek Koltunski
//
386
// This is an effect from a (hopefully!) generic family of effects of the form (vec3 V: |V|=1 , f(x,y) )  (*)
387
// i.e. effects defined by a unit vector and an arbitrary function. Those effects are defined to move each
388
// point (x,y,0) of the XY plane to the point (x,y,0) + V*f(x,y).
389
//
390
// In this case V is defined by angles A and B (sines and cosines of which are precomputed in
391
// EffectQueueVertex and passed in the uniforms).
392
// Let's move V to start at the origin O, let point C be the endpoint of V, and let C' be C's projection
393
// to the XY plane. Then A is defined to be the angle C0C' and angle B is the angle C'O(axisY).
394
//
395
// Also, in this case f(x,y) = amplitude*sin(x/length), with those 2 parameters passed in uniforms.
396
//
397 57297c51 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
398 73af5285 Leszek Koltunski
// How to compute any generic effect of type (*)
399 57297c51 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
400 73af5285 Leszek Koltunski
//
401
// By definition, the vertices move by f(x,y)*V.
402
//
403
// Normals are much more complicated.
404 57297c51 Leszek Koltunski
// Let angle X be the angle (0,Vy,Vz)(0,Vy,0)(Vx,Vy,Vz).
405
// Let angle Y be the angle (Vx,0,Vz)(Vx,0,0)(Vx,Vy,Vz).
406 73af5285 Leszek Koltunski
//
407
// Then it can be shown that the resulting surface, at point to which point (x0,y0,0) got moved to,
408
// has 2 tangent vectors given by
409
//
410 c6ea3680 Leszek Koltunski
// SX = (1.0+cosX*fx , cosY*sinX*fx , |sinY|*sinX*fx);  (**)
411
// SY = (cosX*sinY*fy , 1.0+cosY*fy , |sinX|*sinY*fy);  (***)
412 73af5285 Leszek Koltunski
//
413
// and then obviously the normal N is given by N= SX x SY .
414
//
415
// We still need to remember the note from the distort function about adding up normals:
416
// we first need to 'normalize' the normals to make their third components equal, and then we
417
// simply add up the first and the second component while leaving the third unchanged.
418
//
419
// How to see facts (**) and (***) ? Briefly:
420
// a) compute the 2D analogon and conclude that in this case the tangent SX is given by
421
//    SX = ( cosA*f'(x) +1, sinA*f'(x) )    (where A is the angle vector V makes with X axis )
422
// b) cut the resulting surface with plane P which
423
//    - includes vector V
424
//    - crosses plane XY along line parallel to X axis
425
// c) apply the 2D analogon and notice that the tangent vector to the curve that is the common part of P
426
//    and our surface (I am talking about the tangent vector which belongs to P) is given by
427 c6ea3680 Leszek Koltunski
//    (1+cosX*fx,0,sinX*fx) rotated by angle (90-|Y|) (where angles X,Y are defined above) along vector (1,0,0).
428
//
429
//    Matrix of rotation:
430
//
431
//    |sinY|  cosY
432
//    -cosY  |sinY|
433
//
434 73af5285 Leszek Koltunski
// d) compute the above and see that this is equal precisely to SX from (**).
435
// e) repeat points b,c,d in direction Y and come up with (***).
436 f256e1a5 Leszek Koltunski
//
437 5b1c0f47 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
438 f256e1a5 Leszek Koltunski
// Note: we should avoid passing certain combinations of parameters to this function. One such known
439
// combination is ( A: small but positive, B: any, amplitude >= length ).
440
// In this case, certain 'unlucky' points have their normals almost horizontal (they got moved by (almost!)
441
// amplitude, and other point length (i.e. <=amplitude) away got moved by 0, so the slope in this point is
442
// very steep). Visual effect is: vast majority of surface pretty much unchanged, but random 'unlucky'
443
// points very dark)
444
//
445
// Generally speaking I'd keep to amplitude < length, as the opposite case has some other problems as well.
446 4fde55a0 Leszek Koltunski
447 9ea4f88f Leszek Koltunski
void wave(in int effect, inout vec4 v, inout vec4 n)
448 4fde55a0 Leszek Koltunski
  {
449 fa6c352d Leszek Koltunski
  vec2 center     = vUniforms[effect+1].yz;
450 02ef26bc Leszek Koltunski
  float amplitude = vUniforms[effect  ].x;
451 d0c902b8 Leszek Koltunski
  float length    = vUniforms[effect  ].y;
452 02ef26bc Leszek Koltunski
453 06d71892 Leszek Koltunski
  vec2 ps = center - v.xy;
454 9ea4f88f Leszek Koltunski
  float deg = amplitude*degree_region(vUniforms[effect+2],ps);
455 815869cb Leszek Koltunski
456 39b80df0 Leszek Koltunski
  if( deg != 0.0 && length != 0.0 )
457 9ea4f88f Leszek Koltunski
    {
458 ea16dc89 Leszek Koltunski
    float phase = vUniforms[effect  ].z;
459 350cc2f5 Leszek Koltunski
    float alpha = vUniforms[effect  ].w;
460
    float beta  = vUniforms[effect+1].x;
461 5b1c0f47 Leszek Koltunski
462
    float sinA = sin(alpha);
463
    float cosA = cos(alpha);
464
    float sinB = sin(beta);
465
    float cosB = cos(beta);
466 39b80df0 Leszek Koltunski
467 ea16dc89 Leszek Koltunski
    float angle= 1.578*(ps.x*cosB-ps.y*sinB) / length + phase;
468 57297c51 Leszek Koltunski
469 350cc2f5 Leszek Koltunski
    vec3 dir= vec3(sinB*cosA,cosB*cosA,sinA);
470 39b80df0 Leszek Koltunski
471
    v.xyz += sin(angle)*deg*dir;
472
473 73af5285 Leszek Koltunski
    if( n.z != 0.0 )
474
      {
475
      float sqrtX = sqrt(dir.y*dir.y + dir.z*dir.z);
476
      float sqrtY = sqrt(dir.x*dir.x + dir.z*dir.z);
477 39b80df0 Leszek Koltunski
478 73af5285 Leszek Koltunski
      float sinX = ( sqrtY==0.0 ? 0.0 : dir.z / sqrtY);
479
      float cosX = ( sqrtY==0.0 ? 1.0 : dir.x / sqrtY);
480
      float sinY = ( sqrtX==0.0 ? 0.0 : dir.z / sqrtX);
481
      float cosY = ( sqrtX==0.0 ? 1.0 : dir.y / sqrtX);
482 39b80df0 Leszek Koltunski
483 57297c51 Leszek Koltunski
      float abs_z = dir.z <0.0 ? -(sinX*sinY) : (sinX*sinY);
484 c6ea3680 Leszek Koltunski
485 73af5285 Leszek Koltunski
      float tmp = 1.578*cos(angle)*deg/length;
486 39b80df0 Leszek Koltunski
487 57297c51 Leszek Koltunski
      float fx =-cosB*tmp;
488 73af5285 Leszek Koltunski
      float fy = sinB*tmp;
489 39b80df0 Leszek Koltunski
490 57297c51 Leszek Koltunski
      vec3 sx = vec3 (1.0+cosX*fx,cosY*sinX*fx,abs_z*fx);
491
      vec3 sy = vec3 (cosX*sinY*fy,1.0+cosY*fy,abs_z*fy);
492 39b80df0 Leszek Koltunski
493 73af5285 Leszek Koltunski
      vec3 normal = cross(sx,sy);
494 39b80df0 Leszek Koltunski
495 fe3cee39 Leszek Koltunski
      if( normal.z<=0.0 )                   // Why this bizarre shit rather than the straightforward
496
        {                                   //
497
        normal.x= 0.0;                      // if( normal.z>0.0 )
498
        normal.y= 0.0;                      //   {
499
        normal.z= 1.0;                      //   n.x = (n.x*normal.z + n.z*normal.x);
500
        }                                   //   n.y = (n.y*normal.z + n.z*normal.y);
501
                                            //   n.z = (n.z*normal.z);
502
                                            //   }
503
      n.x = (n.x*normal.z + n.z*normal.x);  //
504
      n.y = (n.y*normal.z + n.z*normal.y);  // ? Because if we do the above, my shitty Nexus4 crashes
505
      n.z = (n.z*normal.z);                 // during shader compilation!
506 39b80df0 Leszek Koltunski
      }
507 9ea4f88f Leszek Koltunski
    }
508 6a06a912 Leszek Koltunski
  }
509
510
#endif
511
512
//////////////////////////////////////////////////////////////////////////////////////////////
513
  		  
514
void main()                                                 	
515
  {              
516 0318e7e3 Leszek Koltunski
  vec4 v = vec4( 2.0*u_objD*a_Position,1.0 );
517 6a06a912 Leszek Koltunski
  vec4 n = vec4(a_Normal,0.0);
518
519
#if NUM_VERTEX>0
520
  for(int i=0; i<vNumEffects; i++)
521
    {
522
         if( vType[i]==DISTORT) distort(3*i,v,n);
523 341c803d Leszek Koltunski
    else if( vType[i]==DEFORM ) deform (3*i,v);
524
    else if( vType[i]==SINK   ) sink   (3*i,v);
525 82ee855a Leszek Koltunski
    else if( vType[i]==PINCH  ) pinch  (3*i,v);
526 341c803d Leszek Koltunski
    else if( vType[i]==SWIRL  ) swirl  (3*i,v);
527 9ea4f88f Leszek Koltunski
    else if( vType[i]==WAVE   ) wave   (3*i,v,n);
528 6a06a912 Leszek Koltunski
    }
529
 
530 291705f6 Leszek Koltunski
  restrictZ(v.z);
531 6a06a912 Leszek Koltunski
#endif
532
   
533 77fcb24d Leszek Koltunski
  v_Position      = v.xyz;
534 2dacdeb2 Leszek Koltunski
  v_TexCoordinate = a_TexCoordinate;
535 6a06a912 Leszek Koltunski
  v_Normal        = normalize(vec3(u_MVMatrix*n));
536
  gl_Position     = u_MVPMatrix*v;      
537 d333eb6b Leszek Koltunski
  }