Project

General

Profile

Download (13 KB) Statistics
| Branch: | Revision:

library / src / main / java / org / distorted / library / mesh / MeshSphere.java @ e54bfada

1
///////////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2018 Leszek Koltunski                                                               //
3
//                                                                                               //
4
// This file is part of Distorted.                                                               //
5
//                                                                                               //
6
// Distorted is free software: you can redistribute it and/or modify                             //
7
// it under the terms of the GNU General Public License as published by                          //
8
// the Free Software Foundation, either version 2 of the License, or                             //
9
// (at your option) any later version.                                                           //
10
//                                                                                               //
11
// Distorted is distributed in the hope that it will be useful,                                  //
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of                                //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                                 //
14
// GNU General Public License for more details.                                                  //
15
//                                                                                               //
16
// You should have received a copy of the GNU General Public License                             //
17
// along with Distorted.  If not, see <http://www.gnu.org/licenses/>.                            //
18
///////////////////////////////////////////////////////////////////////////////////////////////////
19

    
20
package org.distorted.library.mesh;
21

    
22
///////////////////////////////////////////////////////////////////////////////////////////////////
23
/**
24
 * Create a Mesh which approximates a sphere.
25
 * <p>
26
 * Do so by starting off with a 16-faced solid which is basically a regular dodecahedron with each
27
 * of its 8 faces vertically split into 2 triangles, and which each step divide each of its triangular
28
 * faces into smaller and smaller subtriangles and inflate their vertices to lay on the surface or the
29
 * sphere.
30
 */
31
public class MeshSphere extends MeshBase
32
  {
33
  private static final int NUMFACES = 16;
34
  private static final double P = Math.PI;
35

    
36
  // An array of 16 entries, each describing a single face of the solid in an (admittedly) weird
37
  // fashion. Each face is a triangle, with 2 vertices on the same latitude.
38
  // Single row is (longitude of V1, longitude of V2, (common) latitude of V1 and V2, latitude of V3)
39
  // longitude of V3 is simply midpoint of V1 and V2 so we don't have to specify it here.
40

    
41
  private static final double[][] FACES =      {
42

    
43
      { 0.00*P, 0.25*P, 0.0, 0.5*P },
44
      { 0.25*P, 0.50*P, 0.0, 0.5*P },
45
      { 0.50*P, 0.75*P, 0.0, 0.5*P },
46
      { 0.75*P, 1.00*P, 0.0, 0.5*P },
47
      { 1.00*P, 1.25*P, 0.0, 0.5*P },
48
      { 1.25*P, 1.50*P, 0.0, 0.5*P },
49
      { 1.50*P, 1.75*P, 0.0, 0.5*P },
50
      { 1.75*P, 0.00*P, 0.0, 0.5*P },
51

    
52
      { 0.00*P, 0.25*P, 0.0,-0.5*P },
53
      { 0.25*P, 0.50*P, 0.0,-0.5*P },
54
      { 0.50*P, 0.75*P, 0.0,-0.5*P },
55
      { 0.75*P, 1.00*P, 0.0,-0.5*P },
56
      { 1.00*P, 1.25*P, 0.0,-0.5*P },
57
      { 1.25*P, 1.50*P, 0.0,-0.5*P },
58
      { 1.50*P, 1.75*P, 0.0,-0.5*P },
59
      { 1.75*P, 0.00*P, 0.0,-0.5*P },
60
                                               };
61
  private int currentVert;
62
  private int numVertices;
63

    
64
///////////////////////////////////////////////////////////////////////////////////////////////////
65
// Each of the 16 faces of the solid requires (level*level + 4*level) vertices for the face
66
// itself and a join to the next face (which requires 2 vertices). We don't need the join in case
67
// of the last, 16th face, thus the -2.
68
// (level*level +4*level) because there are level*level little triangles, each requiring new vertex,
69
// plus 2 extra vertices to start off a row and 2 to move to the next row (or the next face in case
70
// of the last row) and there are 'level' rows.
71

    
72
  private void computeNumberOfVertices(int level)
73
    {
74
    numVertices = NUMFACES*level*(level+4) -2;
75
    currentVert = 0;
76
    }
77

    
78
///////////////////////////////////////////////////////////////////////////////////////////////////
79

    
80
  private void repeatVertex(float[] attribs1, float[] attribs2)
81
    {
82
    if( currentVert>0 )
83
      {
84
      attribs1[VERT1_ATTRIBS*currentVert + POS_ATTRIB  ] = attribs1[VERT1_ATTRIBS*(currentVert-1) + POS_ATTRIB  ];
85
      attribs1[VERT1_ATTRIBS*currentVert + POS_ATTRIB+1] = attribs1[VERT1_ATTRIBS*(currentVert-1) + POS_ATTRIB+1];
86
      attribs1[VERT1_ATTRIBS*currentVert + POS_ATTRIB+2] = attribs1[VERT1_ATTRIBS*(currentVert-1) + POS_ATTRIB+2];
87

    
88
      attribs1[VERT1_ATTRIBS*currentVert + NOR_ATTRIB  ] = attribs1[VERT1_ATTRIBS*(currentVert-1) + NOR_ATTRIB  ];
89
      attribs1[VERT1_ATTRIBS*currentVert + NOR_ATTRIB+1] = attribs1[VERT1_ATTRIBS*(currentVert-1) + NOR_ATTRIB+1];
90
      attribs1[VERT1_ATTRIBS*currentVert + NOR_ATTRIB+2] = attribs1[VERT1_ATTRIBS*(currentVert-1) + NOR_ATTRIB+2];
91

    
92
      attribs1[VERT1_ATTRIBS*currentVert + INF_ATTRIB  ] = attribs1[VERT1_ATTRIBS*(currentVert-1) + INF_ATTRIB  ];
93
      attribs1[VERT1_ATTRIBS*currentVert + INF_ATTRIB+1] = attribs1[VERT1_ATTRIBS*(currentVert-1) + INF_ATTRIB+1];
94
      attribs1[VERT1_ATTRIBS*currentVert + INF_ATTRIB+2] = attribs1[VERT1_ATTRIBS*(currentVert-1) + INF_ATTRIB+2];
95

    
96
      attribs2[VERT2_ATTRIBS*currentVert + TEX_ATTRIB  ] = attribs2[VERT2_ATTRIBS*(currentVert-1) + TEX_ATTRIB  ];
97
      attribs2[VERT2_ATTRIBS*currentVert + TEX_ATTRIB+1] = attribs2[VERT2_ATTRIBS*(currentVert-1) + TEX_ATTRIB+1];
98

    
99
      currentVert++;
100
      }
101
    }
102

    
103
///////////////////////////////////////////////////////////////////////////////////////////////////
104
// Supposed to return the latitude of the point between two points on the sphere with latitudes
105
// lat1 and lat2, so if for example quot=0.2, then it will return the latitude of something 20%
106
// along the way from lat1 to lat2.
107
//
108
// This is approximation only - in general it is of course not true that the midpoint of two points
109
// on a unit sphere with spherical coords (A1,B1) and (A2,B2) is ( (A1+A2)/2, (B1+B2)/2 ) - take
110
// (0,0) and (PI, epsilon) as a counterexample.
111
//
112
// Here however, the latitudes we are interested at are the latitudes of the vertices of a regular
113
// icosahedron - i.e. +=A and +=PI/2, whose longitudes are close, and we don't really care if the
114
// split into smaller triangles is exact.
115
//
116
// quot better be between 0.0 and 1.0.
117
// this is 'directed' i.e. from lat1 to lat2.
118

    
119
  private double midLatitude(double lat1, double lat2, double quot)
120
    {
121
    return lat1*(1.0-quot)+lat2*quot;
122
    }
123

    
124
///////////////////////////////////////////////////////////////////////////////////////////////////
125
// Same in case of longitude. This is for our needs exact, because we are ever only calling this with
126
// two longitudes of two vertices with the same latitude. Additional problem: things can wrap around
127
// the circle.
128
// this is 'undirected' i.e. we don't assume from lon1 to lon2 - just along the smaller arc joining
129
// lon1 to lon2.
130

    
131
  private double midLongitude(double lon1, double lon2, double quot)
132
    {
133
    double min, max;
134

    
135
    if( lon1<lon2 ) { min=lon1; max=lon2; }
136
    else            { min=lon2; max=lon1; }
137

    
138
    double diff = max-min;
139
    if( diff>P ) { diff=2*P-diff; min=max; }
140

    
141
    double ret = min+quot*diff;
142
    if( ret>=2*P ) ret-=2*P;
143

    
144
    return ret;
145
    }
146

    
147
///////////////////////////////////////////////////////////////////////////////////////////////////
148
// linear map (column,row, level):
149
//
150
// (      0,       0, level) -> (lonV1,latV12)
151
// (      0, level-1, level) -> (lonV3,latV3 )
152
// (level-1,       0, level) -> (lonV2,latV12)
153

    
154
  private void addVertex(float[] attribs1, float[] attribs2, int column, int row, int level,
155
                         double lonV1, double lonV2, double latV12, double latV3)
156
    {
157
    double quotX = (double)column/level;
158
    double quotY = (double)row   /level;
159
    double quotZ;
160

    
161
    if( latV12*latV3 < 0.0 )  // equatorial triangle
162
      {
163
      quotZ = quotX + 0.5*quotY;
164
      }
165
    else                      // polar triangle
166
      {
167
      quotZ = (quotY==1.0 ? 0.5 : quotX / (1.0-quotY));
168
      }
169

    
170
    double longitude = midLongitude(lonV1, lonV2, quotZ );
171
    double latitude  = midLatitude(latV12, latV3, quotY );
172

    
173
    double sinLON = Math.sin(longitude);
174
    double cosLON = Math.cos(longitude);
175
    double sinLAT = Math.sin(latitude);
176
    double cosLAT = Math.cos(latitude);
177

    
178
    float x = (float)(cosLAT*sinLON / 2.0f);
179
    float y = (float)(sinLAT        / 2.0f);
180
    float z = (float)(cosLAT*cosLON / 2.0f);
181

    
182
    double texX = 0.5 + longitude/(2*P);
183
    if( texX>=1.0 ) texX-=1.0;
184

    
185
    double texY = 0.5 + latitude/P;
186

    
187
    attribs1[VERT1_ATTRIBS*currentVert + POS_ATTRIB  ] = x;  //
188
    attribs1[VERT1_ATTRIBS*currentVert + POS_ATTRIB+1] = y;  //
189
    attribs1[VERT1_ATTRIBS*currentVert + POS_ATTRIB+2] = z;  //
190
                                                             //  In case of this Mesh so it happens that
191
    attribs1[VERT1_ATTRIBS*currentVert + NOR_ATTRIB  ] = 2*x;//  the vertex coords, normal vector, and
192
    attribs1[VERT1_ATTRIBS*currentVert + NOR_ATTRIB+1] = 2*y;//  inflate vector have identical (x,y,z).
193
    attribs1[VERT1_ATTRIBS*currentVert + NOR_ATTRIB+2] = 2*z;//
194
                                                             //  TODO: think about some more efficient
195
    attribs1[VERT1_ATTRIBS*currentVert + INF_ATTRIB  ] = x;  //  representation.
196
    attribs1[VERT1_ATTRIBS*currentVert + INF_ATTRIB+1] = y;  //
197
    attribs1[VERT1_ATTRIBS*currentVert + INF_ATTRIB+2] = z;  //
198

    
199
    attribs2[VERT2_ATTRIBS*currentVert + TEX_ATTRIB  ] = (float)texX;
200
    attribs2[VERT2_ATTRIBS*currentVert + TEX_ATTRIB+1] = (float)texY;
201

    
202
    currentVert++;
203

    
204
    ////////////////////////////////////////////////////////////////////////////////////////////////
205
    // Problem: on the 'change of date' line in the back of the sphere, some triangles see texX
206
    // coords suddenly jump from 1-epsilon to 0, which looks like a seam with a narrow copy of
207
    // the whole texture there. Solution: remap texX to 1.0.
208
    ////////////////////////////////////////////////////////////////////////////////////////////////
209

    
210
    if( currentVert>=3 && texX==0.0 )
211
      {
212
      double tex1 = attribs2[VERT2_ATTRIBS*(currentVert-2) + TEX_ATTRIB];
213
      double tex2 = attribs2[VERT2_ATTRIBS*(currentVert-3) + TEX_ATTRIB];
214

    
215
      // if the triangle is not degenerate and last vertex was on the western hemisphere
216
      if( tex1!=tex2 && tex1>0.5 )
217
        {
218
        attribs2[VERT2_ATTRIBS*(currentVert-1) + TEX_ATTRIB] = 1.0f;
219
        }
220
      }
221
    }
222

    
223
///////////////////////////////////////////////////////////////////////////////////////////////////
224

    
225
  private void buildFace(float[] attribs1, float[] attribs2, int level, int face, double lonV1, double lonV2, double latV12, double latV3)
226
    {
227
    for(int row=0; row<level; row++)
228
      {
229
      for (int column=0; column<level-row; column++)
230
        {
231
        addVertex(attribs1, attribs2, column, row  , level, lonV1, lonV2, latV12, latV3);
232
        if (column==0 && !(face==0 && row==0 ) ) repeatVertex(attribs1, attribs2);
233
        addVertex(attribs1, attribs2, column, row+1, level, lonV1, lonV2, latV12, latV3);
234
        }
235

    
236
      addVertex(attribs1, attribs2, level-row, row , level, lonV1, lonV2, latV12, latV3);
237
      if( row!=level-1 || face!=NUMFACES-1 ) repeatVertex(attribs1, attribs2);
238
      }
239
    }
240

    
241
///////////////////////////////////////////////////////////////////////////////////////////////////
242
// PUBLIC API
243
///////////////////////////////////////////////////////////////////////////////////////////////////
244
  /**
245
   * Creates the underlying grid of vertices with the usual attribs which approximates a sphere.
246
   * <p>
247
   * When level=1, it outputs the 12 vertices of a regular icosahedron.
248
   * When level=N, it divides each of the 20 icosaherdon's triangular faces into N^2 smaller triangles
249
   * (by dividing each side into N equal segments) and 'inflates' the internal vertices so that they
250
   * touch the sphere.
251
   *
252
   * @param level Specifies the approximation level. Valid values: level &ge; 1
253
   */
254
  public MeshSphere(int level)
255
    {
256
    super();
257

    
258
    computeNumberOfVertices(level);
259
    float[] attribs1= new float[VERT1_ATTRIBS*numVertices];
260
    float[] attribs2= new float[VERT2_ATTRIBS*numVertices];
261

    
262
    for(int face=0; face<NUMFACES; face++ )
263
      {
264
      buildFace(attribs1, attribs2, level, face, FACES[face][0], FACES[face][1], FACES[face][2], FACES[face][3]);
265
      }
266

    
267
    if( currentVert!=numVertices )
268
      android.util.Log.d("MeshSphere", "currentVert= " +currentVert+" numVertices="+numVertices );
269

    
270
    setAttribs(attribs1, attribs2);
271
    }
272

    
273
///////////////////////////////////////////////////////////////////////////////////////////////////
274
/**
275
 * deep copy.
276
 */
277
  public MeshSphere(MeshSphere mesh)
278
    {
279
    super(mesh);
280
    }
281

    
282
///////////////////////////////////////////////////////////////////////////////////////////////////
283
/**
284
 * deep copy.
285
 */
286
  public MeshSphere deepCopy()
287
    {
288
    return new MeshSphere(this);
289
    }
290
  }
(6-6/7)