Project

General

Profile

Download (9.11 KB) Statistics
| Branch: | Revision:

library / src / main / res / raw / main_vertex_shader.glsl @ e979d285

1 d333eb6b Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
2
// Copyright 2016 Leszek Koltunski                                                          //
3
//                                                                                          //
4 7602a827 Leszek Koltunski
// This file is part of DistortedLibrary.                                                          //
5 d333eb6b Leszek Koltunski
//                                                                                          //
6 7602a827 Leszek Koltunski
// DistortedLibrary is free software: you can redistribute it and/or modify                        //
7 d333eb6b Leszek Koltunski
// it under the terms of the GNU General Public License as published by                     //
8
// the Free Software Foundation, either version 2 of the License, or                        //
9
// (at your option) any later version.                                                      //
10
//                                                                                          //
11 7602a827 Leszek Koltunski
// DistortedLibrary is distributed in the hope that it will be useful,                             //
12 d333eb6b Leszek Koltunski
// but WITHOUT ANY WARRANTY; without even the implied warranty of                           //
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                            //
14
// GNU General Public License for more details.                                             //
15
//                                                                                          //
16
// You should have received a copy of the GNU General Public License                        // 
17 7602a827 Leszek Koltunski
// along with DistortedLibrary.  If not, see <http://www.gnu.org/licenses/>.                       //
18 d333eb6b Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
19
20 341151fc Leszek Koltunski
precision highp float;
21 c1a38ba3 Leszek Koltunski
precision highp int;
22 2e7ad49f Leszek Koltunski
23 94f6d472 Leszek Koltunski
in vec3 a_Position;                  // Per-vertex position.
24
in vec3 a_Normal;                    // Per-vertex normal vector.
25 6f2d931d Leszek Koltunski
in vec3 a_Inflate;                   // This vector describes the direction this vertex needs to go when we 'inflate' the whole mesh.
26
                                     // If the mesh is locally smooth, this is equal to the normal vector. Otherwise (on sharp edges) - no.
27 94f6d472 Leszek Koltunski
in vec2 a_TexCoordinate;             // Per-vertex texture coordinate.
28 6f2d931d Leszek Koltunski
29 94f6d472 Leszek Koltunski
out vec3 v_Position;                 //
30 3fc9327a Leszek Koltunski
out vec3 v_endPosition;              // for Transform Feedback only
31 94f6d472 Leszek Koltunski
out vec3 v_Normal;                   //
32
out vec2 v_TexCoordinate;            //
33 5e331bc8 Leszek Koltunski
34 23b733db Leszek Koltunski
uniform vec3 u_Bounding;             // MeshBase.mBounding{X,Y,Z}
35
uniform vec3 u_Stretch;              // MeshBase.mStretch{X,Y,Z}
36 bfe2c61b Leszek Koltunski
uniform mat4 u_MVPMatrix;            // the combined model/view/projection matrix.
37
uniform mat4 u_MVMatrix;             // the combined model/view matrix.
38 7a5e538a Leszek Koltunski
uniform float u_Inflate;             // how much should we inflate (>0.0) or deflate (<0.0) the mesh.
39 6a06a912 Leszek Koltunski
40
#if NUM_VERTEX>0
41 ad33f883 Leszek Koltunski
uniform int vNumEffects;             // total number of vertex effects
42 15aa7d94 Leszek Koltunski
uniform int vName[NUM_VERTEX];       // their names.
43 f6cac1f6 Leszek Koltunski
uniform vec4 vUniforms[3*NUM_VERTEX];// i-th effect is 3 consecutive vec4's: [3*i], [3*i+1], [3*i+2].
44
                                     // The first vec4 is the Interpolated values,
45 4aa38649 Leszek Koltunski
                                     // second vec4: first float - cache, next 3: Center, the third -  the Region.
46 341c803d Leszek Koltunski
47
//////////////////////////////////////////////////////////////////////////////////////////////
48
// HELPER FUNCTIONS
49
//////////////////////////////////////////////////////////////////////////////////////////////
50 9420f2fe Leszek Koltunski
// The trick below is the if-less version of the
51 341c803d Leszek Koltunski
//
52 23b733db Leszek Koltunski
// t = dx<0.0 ? (u_Bounding.x-v.x) / (u_Bounding.x-ux) : (u_Bounding.x+v.x) / (u_Bounding.x+ux);
53
// h = dy<0.0 ? (u_Bounding.y-v.y) / (u_Bounding.y-uy) : (u_Bounding.y+v.y) / (u_Bounding.y+uy);
54 341c803d Leszek Koltunski
// d = min(t,h);
55
//
56 23b733db Leszek Koltunski
// float d = min(-ps.x/(sign(ps.x)*u_Bounding.x+p.x),-ps.y/(sign(ps.y)*u_Bounding.y+p.y))+1.0;
57 341c803d Leszek Koltunski
//
58 23b733db Leszek Koltunski
// We still have to avoid division by 0 when p.x = +- u_Bounding.x or p.y = +- u_Bounding.y (i.e
59
// on the edge of the Object).
60 341c803d Leszek Koltunski
// We do that by first multiplying the above 'float d' with sign(denominator1*denominator2)^2.
61
//
62 353f7580 Leszek Koltunski
// 2019-01-09: make this 3D. The trick: we want only the EDGES of the cuboid to stay constant.
63 23b733db Leszek Koltunski
// the interiors of the Faces move! Thus, we want the MIDDLE of the PS/(sign(PS)*u_Bounding+S) !
64 341c803d Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
65 23b733db Leszek Koltunski
// return degree of the point as defined by the cuboid (u_Bounding.x X u_Bounding.y X u_Bounding.z)
66 341c803d Leszek Koltunski
67 353f7580 Leszek Koltunski
float degree_object(in vec3 S, in vec3 PS)
68 341c803d Leszek Koltunski
  {
69 353f7580 Leszek Koltunski
  vec3 ONE = vec3(1.0,1.0,1.0);
70 23b733db Leszek Koltunski
  vec3 A = sign(PS)*u_Bounding + S;
71 341c803d Leszek Koltunski
72 353f7580 Leszek Koltunski
  vec3 signA = sign(A);                      //
73
  vec3 signA_SQ = signA*signA;               // div = PS/A if A!=0, 0 otherwise.
74
  vec3 div = signA_SQ*PS/(A-(ONE-signA_SQ)); //
75 23b733db Leszek Koltunski
  vec3 ret = sign(u_Bounding)-div;
76 369ee56a Leszek Koltunski
77 50be8733 Leszek Koltunski
  float d1= ret.x-ret.y;
78
  float d2= ret.y-ret.z;
79
  float d3= ret.x-ret.z;
80 353f7580 Leszek Koltunski
81 50be8733 Leszek Koltunski
  if( d1*d2>0.0 ) return ret.y;             //
82
  if( d1*d3>0.0 ) return ret.z;             // return 1-middle(div.x,div.y,div.z)
83
  return ret.x;                             // (unless size of object is 0 then 0-middle)
84 341c803d Leszek Koltunski
  }
85
86
//////////////////////////////////////////////////////////////////////////////////////////////
87 353f7580 Leszek Koltunski
// Return degree of the point as defined by the Region. Currently only supports spherical regions.
88 9420f2fe Leszek Koltunski
//
89
// Let 'PS' be the vector from point P (the current vertex) to point S (the center of the effect).
90 353f7580 Leszek Koltunski
// Let region.xyz be the vector from point S to point O (the center point of the region sphere)
91
// Let region.w be the radius of the region sphere.
92
// (This all should work regardless if S is inside or outside of the sphere).
93 73af5285 Leszek Koltunski
//
94 353f7580 Leszek Koltunski
// Then, the degree of a point with respect to a given (spherical!) Region is defined by:
95 9420f2fe Leszek Koltunski
//
96 353f7580 Leszek Koltunski
// If P is outside the sphere, return 0.
97 50be8733 Leszek Koltunski
// Otherwise, let X be the point where the halfline SP meets the sphere - then return |PX|/|SX|,
98 9420f2fe Leszek Koltunski
// aka the 'degree' of point P.
99
//
100 ff8ad0a7 Leszek Koltunski
// We solve the triangle OPX.
101 9420f2fe Leszek Koltunski
// We know the lengths |PO|, |OX| and the angle OPX, because cos(OPX) = cos(180-OPS) = -cos(OPS) = -PS*PO/(|PS|*|PO|)
102
// then from the law of cosines PX^2 + PO^2 - 2*PX*PO*cos(OPX) = OX^2 so PX = -a + sqrt(a^2 + OX^2 - PO^2)
103
// where a = PS*PO/|PS| but we are really looking for d = |PX|/(|PX|+|PS|) = 1/(1+ (|PS|/|PX|) ) and
104
// |PX|/|PS| = -b + sqrt(b^2 + (OX^2-PO^2)/PS^2) where b=PS*PO/|PS|^2 which can be computed with only one sqrt.
105 341c803d Leszek Koltunski
106 4aa38649 Leszek Koltunski
float degree_region(in vec4 region, in vec3 PS)
107 341c803d Leszek Koltunski
  {
108 4aa38649 Leszek Koltunski
  vec3 PO  = PS + region.xyz;
109
  float D = region.w*region.w-dot(PO,PO);      // D = |OX|^2 - |PO|^2
110 9420f2fe Leszek Koltunski
111
  if( D<=0.0 ) return 0.0;
112
113 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
114 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
115
                                                         // Important: if we want to write
116
                                                         // b = 1/a if a!=0, b=1 otherwise
117
                                                         // we need to write that as
118
                                                         // b = 1 / ( a-(sign(a)-1) )
119
                                                         // [ and NOT 1 / ( a + 1 - sign(a) ) ]
120
                                                         // because the latter, if 0<a<2^-24,
121
                                                         // will suffer from round-off error and in this case
122
                                                         // a + 1.0 = 1.0 !! so 1 / (a+1-sign(a)) = 1/0 !
123 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
124 341c803d Leszek Koltunski
125 9420f2fe Leszek Koltunski
  return 1.0 / (1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
126 341c803d Leszek Koltunski
  }
127
128
//////////////////////////////////////////////////////////////////////////////////////////////
129 353f7580 Leszek Koltunski
// return min(degree_object,degree_region). Just like degree_region, currently only supports spheres.
130 341c803d Leszek Koltunski
131 4aa38649 Leszek Koltunski
float degree(in vec4 region, in vec3 S, in vec3 PS)
132 341c803d Leszek Koltunski
  {
133 4aa38649 Leszek Koltunski
  vec3 PO  = PS + region.xyz;
134 23b733db Leszek Koltunski
  float D = region.w*region.w-dot(PO,PO);     // D = |OX|^2 - |PO|^2
135 9420f2fe Leszek Koltunski
136
  if( D<=0.0 ) return 0.0;
137
138 23b733db Leszek Koltunski
  vec3 A = sign(PS)*u_Bounding + S;
139 4aa38649 Leszek Koltunski
  vec3 signA = sign(A);
140
  vec3 signA_SQ = signA*signA;
141
  vec3 div = signA_SQ*PS/(A-(vec3(1.0,1.0,1.0)-signA_SQ));
142 23b733db Leszek Koltunski
  vec3 ret = sign(u_Bounding)-div;            // if object is flat, make ret.z 0
143 353f7580 Leszek Koltunski
144 50be8733 Leszek Koltunski
  float d1= ret.x-ret.y;
145
  float d2= ret.y-ret.z;
146
  float d3= ret.x-ret.z;
147
  float degree_object;
148 353f7580 Leszek Koltunski
149 50be8733 Leszek Koltunski
       if( d1*d2>0.0 ) degree_object= ret.y;  //
150
  else if( d1*d3>0.0 ) degree_object= ret.z;  // middle of the ret.{x,y,z} triple
151
  else                 degree_object= ret.x;  //
152 369ee56a Leszek Koltunski
153 341c803d Leszek Koltunski
  float ps_sq = dot(PS,PS);
154 20af7b69 Leszek Koltunski
  float one_over_ps_sq = 1.0/(ps_sq-(sign(ps_sq)-1.0));  // return 1.0 if ps_sq = 0.0
155 7c227ed2 Leszek Koltunski
  float DOT  = dot(PS,PO)*one_over_ps_sq;
156 50be8733 Leszek Koltunski
  float degree_region = 1.0/(1.0 + 1.0/(sqrt(DOT*DOT+D*one_over_ps_sq)-DOT));
157 341c803d Leszek Koltunski
158 50be8733 Leszek Koltunski
  return min(degree_region,degree_object);
159 341c803d Leszek Koltunski
  }
160
161 81a0b906 leszek
#endif  // NUM_VERTEX>0
162
163 6a06a912 Leszek Koltunski
//////////////////////////////////////////////////////////////////////////////////////////////
164 b2dc3c19 Leszek Koltunski
165
void main()
166
  {
167 23b733db Leszek Koltunski
  vec3 v = u_Stretch*a_Position;
168 a8537f43 Leszek Koltunski
  vec3 n = a_Normal;
169 6a06a912 Leszek Koltunski
170 23b733db Leszek Koltunski
  v += u_Inflate*u_Stretch*a_Inflate;
171 e71dd7fb Leszek Koltunski
172 6a06a912 Leszek Koltunski
#if NUM_VERTEX>0
173 7cd24173 leszek
  int effect=0;
174 b2b83871 Leszek Koltunski
175 6a06a912 Leszek Koltunski
  for(int i=0; i<vNumEffects; i++)
176
    {
177 7cd24173 leszek
    // ENABLED EFFECTS WILL BE INSERTED HERE
178 b2b83871 Leszek Koltunski
179 7cd24173 leszek
    effect+=3;
180 6a06a912 Leszek Koltunski
    }
181
#endif
182 f80337b5 leszek
   
183 a8537f43 Leszek Koltunski
  v_Position      = v;
184 e979d285 Leszek Koltunski
  v_endPosition   = v + (0.2*u_Stretch.x)*n;
185 2dacdeb2 Leszek Koltunski
  v_TexCoordinate = a_TexCoordinate;
186 f80337b5 leszek
  v_Normal        = normalize(vec3(u_MVMatrix*vec4(n,0.0)));
187 3fc9327a Leszek Koltunski
  gl_Position     = u_MVPMatrix*vec4(v,1.0);
188 d333eb6b Leszek Koltunski
  }